See you again at Website

http://www.ikont.co.jp/eg/

BEARINGS

BEARINGS

CAT-5508.3

CAT-5508.3

NIPPON THOMPSON CO., LTD.

IKI INDEX OF DIMENSION TABLES

General Explanation

 BA···Z
 BAM
 B27

 BHA···Z
 BHAM
 B27

 YB
 YBH
 B27

Shell Type Needle Roller Bearings

KT — C5 KT···EG — C21 KTV···EG — C22

for general usage

Needle Roller Cages
for engine connecting rods

Needle Roller Cages

(R) NA 69 — D9(D29)

GTR (I) — D9(D31) GBR (I) — D55(D59)

Machined Type Needle Roller Bearings

Needle Roller Bearings with separable cage

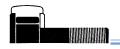
NAG 49 E7
NAU 49 E7
TRU E7

NAS 50 ——— E19

Roller Bearings

AZK — F11 WS GS — F11

Thrust Bearings



NAX (I) ——— G5(G7) NBX (I) ——— G5(G7)

NATA 59 ——— G9 NATB 59 ——— G9

Combined Type Needle Roller Bearings

 CF
 I21
 CF···W

 CFES
 I27
 CF-RU

 CFE
 I29
 CF-FU

CF-W — I33 CF-RU1 — I37 CF-FU1 — I37 CF-SFU — I39 CF···G — I41 CF···/SG — I43 CFS — I45 CFS···W — I49 NUCF — I53 CR — 155 CRH — 163 CL — 120

(R) NAST — (179)180 NART — 183 NURT — 187 LRTZ — H13 LRB — H25 LRBZ — H25

Inner Rings

Cam Followers
Roller Followers

CRBH ——— J15

CRBC — J17 CRB — J17

CRBT ---- J21

CRBS ---- J23

CRY -

CRBF —— J25

-189

Crossed Roller Bearings

 SB
 K11

 GE
 K15

 SBB
 K23

PB — K37

 PHS
 K38

 POS
 K39

 PHSB
 K40

 POSB
 K41

 PHSA
 K42

 SNA
 K58

 SNM
 K59

 SNPT
 K59

Spherical Bushings
Pilloballs L-balls
Super Flexible Nozzles

os — L3 ps — L4

WR — L19 AR — L21

Needle Roller —— L25

Parts For Needle Roller Bearings

Applications — M1
Miscellaneous Tables — M33

Presentation of Linear Motion Rolling Guide — M47
Presentation of Mechatronics Series — M57

Applications Miscellaneous Tables

Presentation of Linear Motion Rolling Guide
and Mechatronics Series

В

Е

F

G

Н

Ι

1

K

L

Gifu factory main entrance

Assembling process in a clean room

The **IKD** Needle Roller Bearing Series are manufactured through a control system that alleviates their impact on the global environment to meet the quality requirements of ISO 14001 in compliance with the quality requirements level of ISO 9001 for quality improvement.

This catalog adopts the SI system (system of international units) in conformance with ISO (International Organization for Standardization) Standard 1000.

In the table of dimensions, standard products are referred to using identification numbers marked with ______. The products are reputed for high quality, reasonable price and quick delivery. The identification numbers marked with ______ refer to our semi-standard products.

The specifications and dimensions of products in this catalogue are subject to change without prior notice.

Index

General Explanation

Characteristics of Needle Roller Bearings	Α	3
Types and Features of Bearings	Α	5
Outline of Bearing Selection	Α1	6
Basic Dynamic Load Rating and Life	Α1	.7
Basic Static Load Rating and Static Safety Factor	Α2	1
Calculation of Bearing Loads	Α2	2
Soundary Dimensions and Identification Number	Α2	6
Accuracy	Α3	0
Clearance	Α3	7
-it	Α3	9
Design of Shaft and Housing	Α4	4
ubrication	Α4	9
riction and Allowable Rotational Speed	Α5	6
Operating Temperature Range	Α5	7
landling of Bearings	Α5	7

Description of Each Series & Table of Dimensions

Shell Type Needle Roller Bearings	IA.ITA.RA.RHA	R I
Needle Roller Cages for general usage	KT	C 1
$\textbf{Needle Roller Cages} \ \text{for engine connecting rods}$	KT···EG·KTV···EG	C17
Machined Type Needle Roller Bearings	NA·TAFI·TRI·BRI	D 1
C-Lube Machined Type Needle Roller Bearings	TAF···/SG	D91
Needle Roller Bearings with separable cage	NAF	D93
Roller Bearings	NAG·NAU·TRU·NAS	E 1
Thrust Bearings	NTB·AS·AZK·WS·GS	F 1
Combined Type Needle Roller Bearings	NAX·NBX·NATA·NATB	G 1
Inner Rings	IRT·IRB·LRT·LRB	H 1
Cam Followers	CF·CFS·NUCF·CR	I 1
Roller Followers	NAST·NART·NURT·CRY	I 71
Crossed Roller Bearings	CRBH·CRBC·CRB·CRBT·CRBS·CRBF	J 1
Spherical Bushings	SB·GE·SBB	K 1
Pilloballs	PB·PHS·POS·PHSB·POSB·PHSA	K29
L-balls	LHSA·LHS	K45
Super Flexible Nozzles	SNA·SNM·SNPT	K55
Parts For Needle Roller Bearings	OS·DS·WR·AR·Needle Roller	L 1

Applications Miscellaneous Tables

Presentation of Linear Motion Rolling Guide and Mechatronics Series M47

Alphabetical Index M51

2

E

D

Ι

1

K

L

M

General Explanation

Nippon Thompson Co., Ltd. is a bearing manufacturer that launched the technical development of needle roller bearings for the first time in Japan and is proud of the high quality level and abundant varieties of its products.

Needle roller bearings are bearings for rotary motion that incorporate needle-shaped thin rollers instead of ordinary bearing balls or rollers. Compared with other rolling bearings, they are small-sized and lightweight but have a large load capacity. They are widely used with high reliability in the fields of automobiles, industrial machinery, OA equipment, etc. as resource-saving type bearings that make the whole machine compact.

A1 A2

IKO

A

D

Е

G

Н

Characteristics of Needle Roller Bearings

Bearings can be classified into two main types, namely rolling bearings and sliding bearings. Rolling bearings can be subdivided further into ball bearings and roller bearings according to the rolling elements.

IKDNeedle Roller Bearings are high-precision rolling bearings with a low sectional height, incorporating needle rollers as the rolling element. They have the following features.

Merits of Rolling Bearings

Compared with sliding bearings, rolling bearings have the following merits:

Static and kinetic friction is low.

Since the difference between static friction and kinetic friction is small and the frictional coefficient is also small, drive units or machines can be made more compact and lightweight, saving machine costs and power consumption.

Stable accuracy can be maintained for long periods.

Owing to less wear, stable accuracy can be maintained for long periods.

3 Machine reliability is improved.

Since the bearing life can be estimated based on rolling fatigue, machine reliability is improved.

4 Lubrication is simplified.

Since grease lubrication is sufficient in most cases, lubrication can be simplified for easy maintenance.

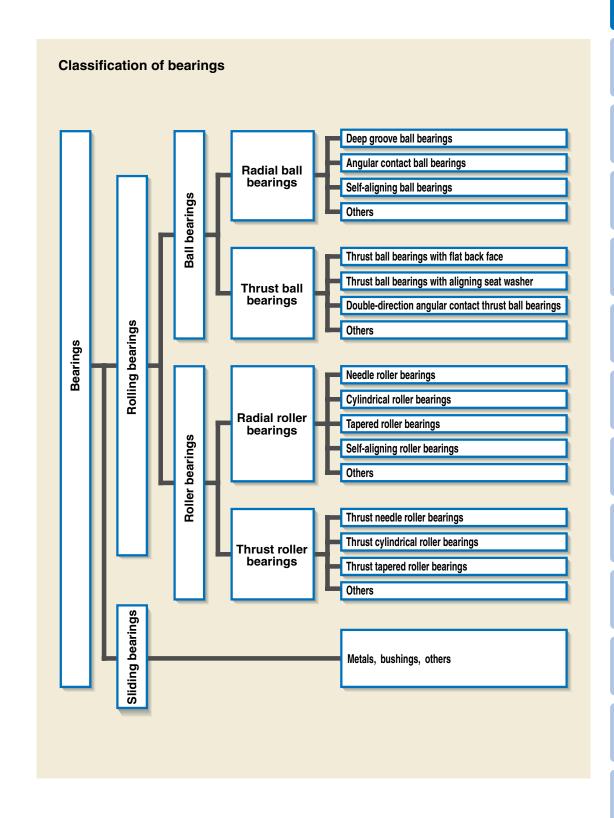
Merits of Needle Roller Bearings

Compared with other rolling bearings, **IKD** Needle Roller Bearings have the following advantages:

With a low sectional height, they can withstand heavy loads.

Since they have a low sectional height compared with other rolling bearings and yet can withstand heavy loads, machines can be made more compact and lightweight, thus saving costs.

Rotating torque is small, improving mechanical efficiency.

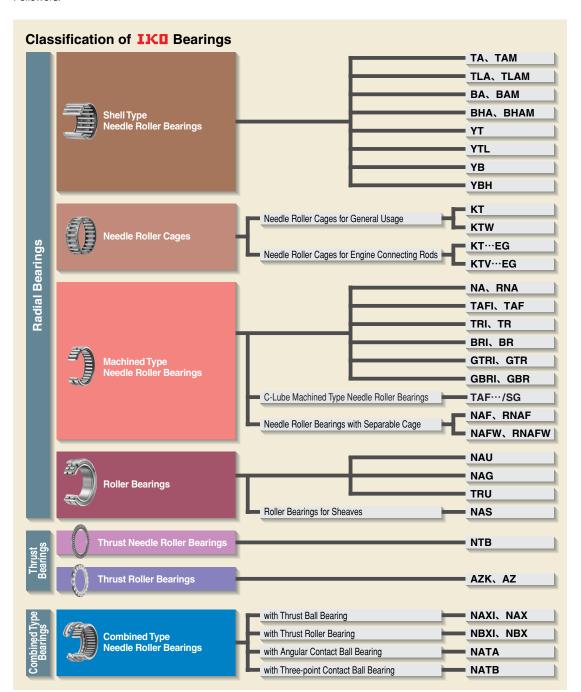

Since the rotating radius is small, the rotating torque is also small under the same frictional conditions, thus improving mechanical efficiency.

1 Inertia is minimized.

Since the bearing volume and weight are small, the moment of inertia of the bearing is minimized when it is put in motion.

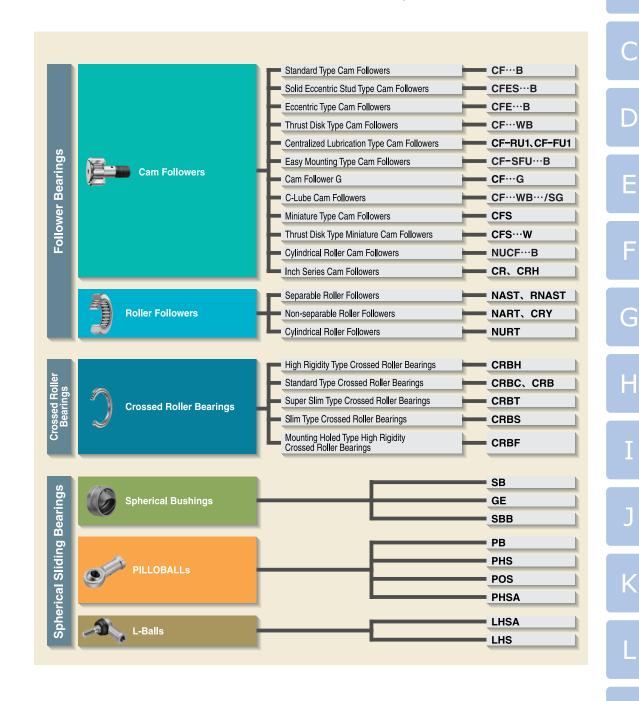
4 Most suited to oscillating motions.

Many rolling elements are arranged at a small spacing pitch, and this configuration is most suited to oscillating motions.



А3

Α4


Types and Features of Bearings

IKO Bearings can be roughly classified into radial bearings and thrust bearings according to applicable load direction. Radial Bearings are grouped into Shell Type Needle Roller Bearings, Machined Type Needle Roller Bearings, and various other types. Thrust Bearings are grouped into Thrust Needle Roller Bearings and Thrust Roller Bearings. Follower Bearings that are used for cam mechanisms and linear motion are grouped into Cam Followers and Roller Followers.

Crossed Roller Bearings are special shape bearings that can simultaneously receive loads in all directions with a single bearing.

Bearings other than rolling bearings, such as self-aligning Spherical Bushings that can support radial loads and axial loads and PILLOBALLs and L-Balls that are used for link mechanisms, are also available.

Α5

A

IKO

В

Shell Type Needle Roller Bearings

Shell Type Needle Roller Bearings are lightweight with the lowest sectional height among needle roller bearings with outer ring, because they employ a shell type outer ring made from a thin special-steel plate which is accurately drawn, carburized and guenched.

Since these bearings are press-fitted into the housing, no axial positioning fixtures are required. They are ideal for use in mass-produced articles that require economy.

Radial Bearings

Page B1

Machined Type Needle Roller Bearings

Machined Type Needle Roller Bearings have an outer ring made by machining, heat treatment, and grinding. The outer ring has stable high rigidity and can be easily used even for light alloy housings.

These bearings are available in various types and optimally selectable for different conditions such as heavy loads, high-speed rotation and low-speed rotation. They are most suitable for general-purpose applications.

Radial Bearing

Page D1

Needle Roller Cages for General Usage

Needle Roller Cages for General Usage are bearings that display excellent rotational performance. Their specially shaped cages with high rigidity and accuracy, precisely guide the needle rollers.

Since needle rollers with extremely small dimensional variations in diameter are incorporated and retained. Needle Roller Cages for General Usage are useful in small spaces when combined with shafts and housing bores that are heat treated and accurately ground as raceway surfaces.

Radial Bearing

Page C1

Needle Roller Bearings with Separable Cage

In Needle Roller Bearings with Separable Cage, the inner ring, outer ring and Needle Roller Cage are combined, and they can be separated easily. This type has a simple structure with high accuracy. In addition, the radial clearance can be freely selected by choosing an assembly combination.

These bearings have excellent rotational performance, because Needle Roller Cages are used.

Radial Bearing Page D95

Needle Roller Cages for Engine Connecting Rods

Needle Roller Gages for Engine Connecting Rods are used for motor cycles, small motor vehicles, outboard marines, snow mobiles, general-purpose engines, highspeed compressors, etc. that are operated under extremely severe and complex operating conditions such as heavy shock loads, high speeds, high temperatures, and stringent lubrication.

Needle Roller Cages for Engine Connecting Rods are lightweight and have high load ratings and high rigidity as well as superior wear resistance.

Radial Bearing Page C17

Roller Bearings

Roller Bearings, in which rollers are incorporated in double rows, are non-separable heavy-duty bearings.

They can withstand not only radial loads but axial loads as well, which are supported at the contacts between the shoulders of inner and outer rings and the end faces of rollers. Therefore, they are most suitable for use at the fixing side of a shaft.

Radial Bearing


Page E1

D

Н

A7

Thrust Bearings

Thrust Bearings consist of a precisely made cage and rollers, and can receive axial loads. They have high rigidity and high load capacities and can be used in small spaces.

Thrust Needle Roller Bearings use needle rollers, while Thrust Roller Bearings use cylindrical rollers.

Thrust Bearing

Page F1

Cam Followers

Cam Followers are bearings with a stud incorporating needle rollers in a thick walled outer ring.

They are designed for outer ring rotation, and the outer rings run directly on mating cam guide surfaces.

Various types of Cam Followers are available. They are widely used as follower bearings for cam mechanisms and for linear motions.

Follower Bearing

Page I1

Combined Type Needle Roller Bearings

Combined Type Needle Roller Bearings are combinations of a radial bearing and a thrust bearing. Caged Needle Roller Bearings are used as radial bearings and Thrust Ball Bearings or Thrust Roller Bearings are used as thrust bearings.

They can be subjected to radial loads and axial loads simultaneously.

Combined Type Bearing

Page G1

Roller Followers

Roller Followers are bearings in which needle rollers are incorporated in a thick walled outer ring.

These bearings are designed for outer ring rotation, and the outer rings run directly on mating cam guide surfaces. They are used as follower bearings for cam mechanisms and for linear motions.

Follower Bearing

Page I71

Inner Rings

Inner Rings are heat-treated and finished by grinding to a high degree of accuracy and are used for Needle Roller Bearings.

In the case of Needle Roller Bearings, normally the shafts are heat-treated and finished by grinding and used as raceway surfaces. However, when it is impossible to make shaft surfaces according to the specified surface hardness or surface roughness, Inner Rings are used.

Component part

Page H1

Crossed Roller Bearings

Crossed Roller Bearings are high-rigidity and compact bearings with their cylindrical rollers alternately crossed at right angles to each other between inner and outer rings. A single Crossed Roller Bearing can take loads from any directions at the same time such as radial, thrust, and moment loads.

These bearings are widely used in the rotating parts of industrial robots, machine tools, medical equipment, etc. which require compactness, high rigidity and high rotational accuracy.

Crossed Roller Bearing

Page J1

NЛ

Α9

A10

′

В

C

D

E

۲

Н

Ι

J

K

L

IKO IKO

Spherical Bushings

Spherical Bushings are self-aligning spherical plain bushings, which have inner and outer rings with spherical sliding surfaces. They can take a large radial load and a bi-directional axial load at the same time.

They are divided into steel-on-steel types that are suitable for applications where there are alternate loads or shock loads, and maintenance-free types which require no lubrication.

Spherical Sliding Bearing

Page K1

Seals for Needle Roller Bearings

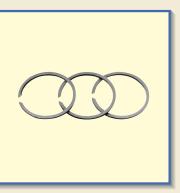
Seals for Needle Roller Bearings have a low sectional height and consist of a sheet metal ring and special synthetic rubber.

As these seals are manufactured to the same sectional height as Needle Roller Bearings, grease leakage and the penetration of foreign particles can be effectively prevented by fitting them directly to the sides of combinable bearings.

Component Part

Page L1

PILLOBALLS


PILLOBALLs are compact self-aligning spherical plain bushings which can support a large radial load and a bidirectional axial load at the same time.

PILLOBALL Rod Ends have either a female thread in the body or a male thread on the body, so they can be easily assembled onto machines.

PILLOBALLs are used in control and link mechanisms in machine tools, textile machines, packaging machines,

Spherical Sliding Bearing Page K29

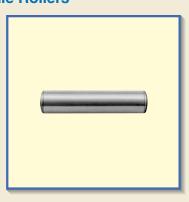
Cir-clips for Needle Roller Bearings

Cir-clips for Needle Roller Bearings have been specially designed for needle roller bearings on which, in many cases, generally available Cir-clips cannot be used. They have a low sectional height and are very rigid.

There are Cir-clips for shafts and for bores, and they are used for positioning to prevent bearing movement in the axial direction.

Component Part Page L17

L-Balls


L-Balls are self-aligning rod-ends consisting of a special zinc die-cast alloy body and a studded ball which has its axis at right-angles to the body.

They can perform tilting movement and rotation with low torque, and transmit power smoothly due to the uniform clearance between the sliding surfaces.

They are used in link mechanisms in automobiles, construction machinery, farm and packaging machines, etc.

Spherical Sliding Bearing Page K45

Needle Rollers

Needle Rollers are used for needle roller bearings and are rigid and highly accurate.

These needle rollers are widely used as rolling elements for bearings, and also as pins and shafts.

Component Part

Page L23

A11 A12

В

D

G

Н

Features of IKU Bearings

Bearing s	series	Appearance	Direction of motion	Load direction and capacity	Allowable rotational speed	Friction	Sectional height	Reference page
Shell Type Needle Roller	Caged type			•	0	0		B1∼
Bearings	Full complement type			†		\triangle		BI
Needle	For general usage		G					C1~
Roller Cages	For engine connecting rods							C17~
Machined Type Needle Roller	Caged type				0		0	D1 -
Bearings	Full complement type			1		\triangle	0	D1~
Needle Roller Bearings with Separable Cage	Caged type						0	D95~
	Caged type				0	0	0	
Roller Bearings	Full complement type				\triangle	\triangle	0	E1~
	For sheaves					\triangle	\triangle	

Bearing s	series	Appearance	Direction of motion	Load direction and capacity	Allowable rotational speed	Friction	Sectional height	Reference page	
Thrust	Needle roller bearings		\bigcirc	•	0	0		F1 ~	
Bearings	Roller bearings		\bigcirc	•	0	0	0	11.1	
	With thrust ball bearing		\bigcirc		0	0	\triangle		
Combined Type Needle Roller	With thrust roller bearing		\bigcirc		0	0	\triangle	G1 ∼	
Bearings	With angular contact ball bearing		6		0	0	0	GI*-	
	With three-point contact ball bearing		\bigcirc		0	0	0		
Cam Followers	Caged type		\bigcirc		0	0	\triangle	I1 ~	
Cam Followers	Full complement type		Θ	1		\triangle	\triangle	11~	
	Separable caged type		Θ		0	0	\triangle		
Roller Followers	Non-separable caged type	9	\bigcirc		0	0	\triangle	I71 ~	
	Non-separable full complement type			1	\triangle	\triangle			

. .

Features of IKU Bearings

Bearing	series	Appearance	Direction of motion	Load direction and capacity	Allowable rotational speed	Friction	Sectional height	Reference page
	Caged type, Separator type		\bigcirc		\triangle	0	0	
Crossed Roller Bearings	Full complement type		\bigcirc	-	\triangle	\triangle	0	J1∼
	Slim type		\bigcirc		\triangle	0		
Spherical	Steel-on-steel type				\triangle	\triangle		K1∼
Bushings	Maintenance-free type				\triangle	\triangle	\triangle	KI
	Insert type, Lubrication type				\triangle	\triangle	\triangle	
PILLOBALLS	Die-casting type, Lubrication type				\triangle	\triangle	\triangle	K29~
	Maintenance-free type				\triangle	\triangle		
L-Balls	Lubrication type				\triangle	\triangle	\triangle	K45~
Symbol Rota	oscilla motion	ating Radial	Axial Li	ght	m Heavy load	Especially excellent	Excellent	△ Normal

Outline of Bearing Selection

IXU Bearings are available in many types and sizes. To obtain satisfactory bearing performance in machines and equipment, it is essential to select the most suitable bearing by carefully studying the requirements for the application. Although there is no particular procedure or rule for bearing selection, an example of a commonly adopted procedure is shown in the figure below.

A15

В

C

D

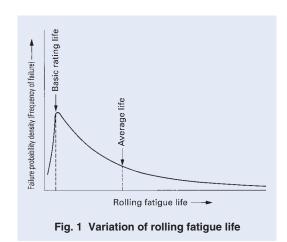
G

Н

I

L

Basic Dynamic Load Rating and Life


Life

Rolling bearings will suffer damage due to various causes during service. Damage such as abnormal wear, seizure, and cracks is caused by improper use, including incorrect mounting, lack of oil, dust intrusion and so on, and can be avoided by remedying these causes. However, bearings will eventually be damaged due to fatigue-flaking even if used properly. When a bearing rotates under load, the raceways and the rolling elements are subjected to repeated stresses concentrated on the part close to the surface. Fatigue, therefore, occurs in the surface layer, producing damage in the form of scaling. This is called flaking (spalling). When this occurs, the bearing can no longer be used.

Bearing Life

Bearing life is defined as the total number of revolutions (or total service hours at a constant rotational speed) before a sign of the first flaking appears on the rolling surface of raceway or rolling elements. However, even when bearings of the same size, structure, material and heat treatment are subjected to the same conditions, the bearing lives will show variation (See Fig. 1.). This results from the statistical nature of the fatigue phenomenon.

In selecting a bearing, it is incorrect to take an average life for all bearings as the design standard. It is more practical to consider a bearing life that is reliable for the greater proportion of bearings used. Therefore, the basic rating life defined in the following is used.

Basic rating life

The basic rating life is defined as the total number of revolutions that 90% of a group of identical bearings can be operated individually under the same conditions free from any material damage caused by rolling fatigue.

For rotation at a constant rotational speed, the basic rating life can be represented by the total service hours

Basic dynamic load rating

The basic dynamic load rating is defined as the constant radial load (in the case of radial bearings) or the constant axial load acting along the bearing central axis (in the case of thrust bearings) that allows a basic rating life of 1,000,000 revolutions.

Calculation of rating life

The relationship among the basic rating life, basic dynamic load rating and dynamic equivalent load (bearing load) of rolling bearings is as follows:

$$L_{10} = \left(\frac{C}{P}\right)^{p} \tag{1}$$

where, L_{10} : Basic rating life, 10⁶ rev.

C: Basic dynamic load rating, N

P: Dynamic equivalent load, N

Exponent, Roller bearing: 10/3

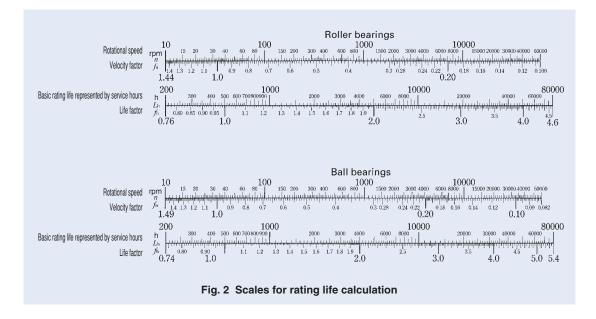
Ball bearing: 3

Accordingly, when the rotational speed per minute is given, the basic rating life is represented as the total service hours according to the following equations:

$$L_{\rm h} = \frac{10^6 L_{10}}{60n} = 500 f_{\rm h}^p$$
(2)

$$f_h = f_n \frac{C}{P}$$
(3)

$$f_{\rm n} = \left(\frac{33.3}{n}\right)^{1/p} \tag{4}$$


where, $L_{\rm h}$: Basic rating life represented by service hours, h

. 5

n : Rotation speed, rpmf_h : Life factor

 f_n : Velocity factor

In addition, the rating life can be calculated by obtaining f_h and f_n from the life calculation scales of Fig. 2.

Bearing life factors for various machines

The required life of the bearing must be determined according to the machine in which the bearing is to be used and the operating conditions.

Table 1 shows reference values of life factors for selecting a bearing for each machine.

Table 1 Life factor of bearings f_h for various machines

Operating conditions		Machine and life factor $f_{ m h}$					
operating conditions	~3	2~4	3~5	4~7	6~		
Occasional or short term usage	Power tools	Agricultural machines					
Infrequent usage but requiring reliable operation		Construction machinery	- Conveyors - Elevators				
Intermittent operation but for comparatively long periods	• Roll neck of rolling mills	Small motors Deck cranes General cargo cranes Passenger cars	Factory motors Machine tools General gear units Printing machines	Crane sheaves Compressors Important gear units			
Operated in excess of 8 hours per day or continuously for an extended time		• Escalators	Centrifugal separators Blowers Wood working machines Plastic extruding machines		Paper making machines		
Continuous use for 24 hours and accidental stops not allowed					Water supply equipment Power station equipment		

Е

F

G

Н

Т

7

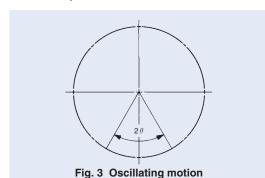
V

L

Life of oscillating bearing

The life of an oscillating bearing can be obtained from equation (5).

$$L_{\rm OC} = \frac{90}{\theta} \left(\frac{C}{P}\right)^p \dots (5)$$


where, $L_{\rm OC}$: Basic rating life of oscillating bearing, 10 $^{\rm 6}$ cycles

 $2\,\theta$: Oscillating angle, deg. (See Fig.3)

P : Dynamic equivalent load, N

Therefore, when the oscillating frequency n_1 cpm is given, the basic rating life as represented by total oscillating hours can be obtained by substituting n_1 for n in equation (2) on page A17.

When 2 θ is small, an oil film cannot be formed easily between the contact surfaces of the raceway and the rolling elements. This may cause fretting corrosion. In this case, please consult **IKD** .

Corrected rating life

When a rolling bearing is used in ordinary applications, the basic rating life can be calculated by equations (1) and (2) mentioned previously.

This basic rating life applies to bearings which require a reliability of 90%, have ordinary bearing properties being made of materials of ordinary quality for rolling bearings, and are used under ordinary operating conditions.

In some applications, however, it is necessary to obtain a rating life that applies to bearings which require high reliability, have special bearing properties or are used under special operating conditions. The corrected rating life for these special cases can be obtained from the following equation by using the

bearing life adjustment factors a_1 , a_2 and a_3 , respectively.

$$L_{\text{na}} = a_1 a_2 a_3 L_{10}$$
 (6)

where, $L_{\rm na}$: Corrected rating life, 10⁶ rev.

 a_1 : Life adjustment factor for reliability

a₂ : Life adjustment factor for special bearing properties

a₃ : Life adjustment factor for operating conditions

Life adjustment factor for reliability a_1

The reliability of rolling bearings is defined as the proportion of bearings having a life equal to or greater than a certain specified value when a group of identical bearings are operated under identical conditions. With respect to individual bearings, it refers to the probability of the life of a bearing being equal to or greater than a certain specified value.

The corrected rating life for a reliability of (100-n)% can be obtained using equation (6). Table 2 shows the values of the life adjustment factor a_1 for various reliabilities.

Table 2 Life adjustment factor for reliability a_1

Reliability %	L_{n}	a_1
90	L_{10}	1
95	L_5	0.62
96	L_4	0.53
97	L_3	0.44
98	L_2	0.33
99	L_1	0.21

Life adjustment factor for special bearing properties a_2

The bearing life is extended or shortened according to the quality of the material, the manufacturing technology of the bearing and its internal design. For these special bearing life properties, the life is corrected by the life adjustment factor for special bearing properties a_2 .

The table of dimensions for **IKD** Bearings shows the values of the basic dynamic load rating which are determined taking into consideration the fact that bearing life has been extended by improved quality of materials and advances in manufacturing technologies. Therefore, the bearing life is calculated using equation (6) usually assuming $a_2 = 1$.

Life adjustment factor for operating conditions a_3

This factor helps take into account the effects of operating conditions, especially lubrication on the bearing. The bearing life is limited by the phenomenon of fatigue which occurs, in general, beneath surfaces subjected to repeated stresses. Under good lubrication conditions where the rolling element and raceway surfaces are completely separated by an oil film and surface damage can be disregarded, a_3 is set to be 1. However, when conditions of lubrication are not good, namely, when the viscosity of the lubricating oil is low or the peripheral speed of the rolling elements is especially low, and so on, a_3 <1 is used.

On the other hand, when lubrication is especially good, a value of $a_3 > 1$ can be used. When lubrication is not good and $a_3 < 1$ is used, the life adjustment factor a_2 cannot generally exceed 1.

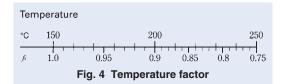
When selecting a bearing according to the basic dynamic load rating, it is recommended that a suitable value for reliability factor a_1 is chosen for each application. The selection should be made using the (C/P) or $f_{\rm h}$ values determined by machine type and based upon the actual conditions of lubrication, temperature, mounting, etc., which have already been experienced and observed in the same type of machines.

Limiting conditions

These bearing life equations are applicable only when the bearing is mounted and lubricated normally without intrusion of foreign materials and not used under extreme operating conditions.

Unless these conditions are satisfied, the life may be shortened. For example, it is necessary to separately consider the effects of bearing mounting errors, excessive deformation of housing and shaft, centrifugal force acting on rolling elements at high-speed revolution, excessive preload, especially large radial internal clearance of radial bearings, etc.

When the dynamic equivalent load exceeds 1/2 of the basic dynamic load rating, the life equations may not be applicable.


Correction of basic dynamic load rating for temperature and hardness

Temperature factor

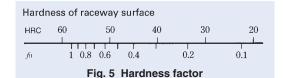
The operating temperature for each bearing is determined according to its material and structure. If special heat treatment is performed, bearings can be used at temperatures higher than +150°C. As the allowable contact stress gradually decreases when the bearing temperature exceeds 150°C, the basic dynamic load rating is lowered and can be obtained by the following equation:

$$C_{\mathsf{t}} = f_{\mathsf{t}} \ C \quad \cdots \qquad (7)$$

 $f_{\rm t}$: Temperature factor (See Fig. 4.) C: Basic dynamic load rating, N

Further, if the bearing is used at high temperature, i.e. 120°C or above, the amount of dimensional displacement gets larger. So special heat treatment is necessary. If needed, please contact **IKU**.

Hardness factor


When the shaft or housing is used as the raceway surface instead of the inner or outer ring, the surface hardness of the part used as the raceway surface should be $58\sim64$ HRC.

If it is less than 58HRC, the basic dynamic load rating is lowered and can be obtained by the following equation:

$$C_{\mathrm{H}} = f_{\mathrm{H}} C \cdots (8)$$

where, $C_{
m H}$: Basic dynamic load rating considering hardness, N

 $f_{\rm H}$: Hardness factor (See Fig. 5.) C : Basic dynamic load rating N

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch C

D

Е

G

Η

_

K

L

A20

Basic Static Load Rating and Static Safety Factor

Basic static load rating

When a bearing at rest sustains a heavy load or a bearing rotating at a relatively low speed receives a heavy shock load, the contact stress may exceed a certain limiting value, producing a local permanent deformation in the raceways or the rolling elements, and subsequently causing noise or vibration or lowering the rotating performance. The basic static load rating is, therefore, determined as a guideline for the maximum allowable load for the bearing at rest, under which the permanent deformation will not exceed a certain limit value, and the lowering of the rotating performance will not occur. Its definition is given as follows.

The basic static load rating is the static load that gives the contact stress shown in Table 3 at the center of the contact area of the rolling element and the raceway receiving the maximum load. A radial load constant in direction and magnitude is used in the case of radial bearings, while an axial load constant in magnitude acting along the bearing central axis is used in the case of thrust bearings.

Table 3

A21

Type of bearing	Contact stress MPa
Roller bearings	4 000
Self-aligning ball bearings	4 600
Other ball bearings	4 200

Static safety factor

The basic static load rating gives the theoretical allowable limit of the static equivalent load. Normally, this limit is corrected by considering the operating conditions and the requirements for the bearing. The correction factor, namely, the static safety factor $f_{\rm s}$ is defined as in the following equation and its general values are shown in Table 4.

$$f_{\rm s} = \frac{C_0}{P_0} \qquad (9)$$

where, C_0 : Basic static load rating, N P_0 : Static equivalent load, N

Table 4 Static safety factor

Operating conditions of the bearing	$f_{ m s}$
When high rotational accuracy is required	≧3
For ordinary operation conditions	≧ 1.5
For ordinary operation conditions not requiring very smooth rotation When there is almost no rotation	≧1

In case of Shell Type Needle Roller Bearings of which outer ring is drawn from a thin steel plate and then carburized and quenched, it is necessary to use a static safety factor of 3 or more.

Calculation of Bearing Loads

The loads acting on bearings include the weight of the machine parts supported by the bearings, the weight of the rotating body, loads produced when operating the machine, loads by belts or gears transmitting power, and various other loads.

These loads can be divided into radial loads perpendicular to the central axis of the bearings and axial loads parallel to the central axis, and they act independently or in combination with other loads. In addition, the magnitude of vibration or shocks on the bearings varies depending on the application of the machine. Thus, theoretically calculated loads may not always be accurate and have to be corrected by multiplying various empirical factors to obtain the actual bearing loads.

Load distribution to bearings

Table 5 shows examples of calculations where static loads are acting in radial direction.

Load factor

Although radial loads and axial loads can be obtained by calculation, it is not unusual for the actual bearing loads to exceed the calculated loads, due to vibration and shocks produced when operating the machine. The actual bearing load is obtained from the following equation, by multiplying the calculated load by the load factor:

$$F = f_{\rm w} F_{\rm c}$$
 ······(10)

where, F: Bearing load, N

 $f_{
m w}$: Load factor (See Table 6.) $F_{
m c}$: Theoretically calculated load, N

Table 6 Load factor

Tuble o Loud Idoloi				
Operating conditions	Example	$f_{ m W}$		
Smooth operation without shocks	Electric motors, Air conditioning equipment, Measuring instruments, Machine tools	1 ~1.2		
Ordinary operation	Reduction gearboxes, Vehicles, Textile machinery, Paper making machinery	1.2~1.5		
Operation subjected to vibration and shocks	Rolling mills, Rock crushers, Construction machinery	1.5~3		

Table 5 Load distribution to bearings

Example	Bearing load
a b F_{i1} K_{i1} K_{i2} F_{i2} G	$F_{r1} = \frac{dK_{r1} + bK_{r2}}{f}$ $F_{r2} = \frac{cK_{r1} + aK_{r2}}{f}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$F_{r1} = \frac{gK_{r1} + bK_{r2} - cK_{r3}}{f}$ $F_{r2} = \frac{aK_{r2} + dK_{r3} - eK_{r1}}{f}$

E

A

D

F

G

1

V

ı

D

Bearing loads in case of belt or chain transmission

When power is transmitted by a belt or chain, the load acting on the pulley or sprocket wheel is obtained from the following equations:

$$T=9550000 \frac{H}{n} \cdots (11)$$

$$K_t = \frac{T}{R}$$
 ·····(12)

where, T: Torque acting on pulley or sprocket wheel, N-mm

 K_{t} : Effective transmitting force of belt or chain, $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$ $\,$

H ∶ Transmitting power, kW

n : Rotation speed, rpm

R: Effective radius of pulley or

sprocket wheel, mm

For belt transmission, the load $K_{\rm r}$ acting on the pulley shaft is obtained from the following equation, multiplying the effective transmitting force $K_{\rm t}$ by the belt factor $f_{\rm h}$ shown in Table 7.

$$K_{\rm r} = f_{\rm b} K_{\rm t}$$
 ·····(13)

Table 7 Belt factor

Type of belt	f_{b}
V-belts	2 ~2.5
Timing belts	1.3~2
Plain belts (with tension pulley)	2.5~3
Plain belts	4 ~5

In the case of chain transmission, a value of 1.2 to 1.5 is taken as the chain factor corresponding to $f_{\rm b}$. The load acting on the sprocket wheel shaft is obtained from equation (13) in the same manner as the belt transmission.

Bearing loads in case of gear transmission

When power is transmitted by gears, the force acting on the gears varies according to the type of gear. Spur gears produce radial loads only, but helical gears, bevel gears and worm gears produce axial loads in addition to radial loads. Taking the simplest case of spur gears as an example, the bearing load is obtained from the following equations:

T=9550000 <u>H</u>	(14	4)
$I = 33300000 _{n}$	(1-	т,

$$K_{\rm t} = \frac{T}{R}$$
 ······(15)

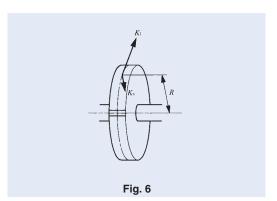
$$K_s = K_t \tan \theta$$
(16)

$$K_c = \sqrt{K_t^2 + K_s^2} = K_t \sec \theta$$
(17)

where, T: Torque applied to gear, N-mm

 K_t : Tangential force acting on gear, N

 $K_{\rm s}$: Radial force acting on gear, N


 K_c : Resultant normal force on gear tooth surface, N

H: Transmitting power, kW

n : Rotational speed, rpm

R: Pitch circle radius of drive gear, mm

 θ : Pressure angle of gear, deg.

In this case, the resultant normal force on the tooth surface acts as the radial force to the shaft and the magnitude of vibration or shocks varies depending on the accuracy and surface finish of the gear. Therefore, the radial load $K_{\rm r}$ applied to the shaft is obtained from the following equation, multiplying the resultant normal force $K_{\rm c}$ on gear tooth surface by the gear factor $f_{\rm z}$ shown in Table 8.

$$K_r = f_z K_c$$
(18)

Table 8 Gear factor

Type of gear	f_{z}	
Precision gears (Pitch error and form error: Less than 0.02mm)	1.05~1.1	
Ordinary machined gears (Pitch error and form error: 0.02 \sim 0.1mm)	1.1 ~1.3	

Mean equivalent load corresponding to fluctuating load

When the load applied to the bearing fluctuates, the bearing life is calculated by using the mean equivalent load $F_{\rm m}$, which is a constant load that will give the bearing a life equal to that produced under the fluctuating load. The mean equivalent load is obtained from the following equation:

$$F_{\rm m} = \sqrt[p]{\frac{1}{N} \int_0^N F_{\rm n}^{\ p} \, dN}$$
(19)

where, $F_{\rm m}$: Mean equivalent load, N

N: Total number of revolutions, rev.

 F_n : Fluctuating load, N

p: Exponent, Roller bearing = 10/3

Ball bearing = 3

Table 9 shows examples of the calculation of mean equivalent loads for various fluctuating loads.

Table 9 Mean equivalent load for the fluctuation load

	Type of fluctuating load	Mean equivalent load $F_{ m m}$
Step load	F F F F N N N N N N N N N N N N N N N N	$F_{\mathrm{m}} = \sqrt[p]{\frac{1}{N}} (F_{1}{}^{p} \ N_{1} + F_{2}{}^{p} \ N_{2} + \dots + F_{n}{}^{p} \ N_{n})$ where, N_{1} : Total number of revolutions under load F_{1} rev. N_{2} : Total number of revolutions under load F_{2} rev. N_{n} : Total number of revolutions under load F_{n} rev.
Monotonously changing load	Frain N	$F_{\rm m} = \frac{1}{3} \ (2F_{\rm max} + F_{\rm min})$ where, $F_{\rm max}$: Maximum value of fluctuating load, N $F_{\rm min}$: Minimum value of fluctuating load, N
Sinusoidally fluctuating load	F _{max} F _m	$F_{\rm m} \doteq 0.65 F_{\rm max}$
	F Fmax Fm	$F_{\rm m} \doteq 0.75 F_{\rm max}$
Stationary load plus rotating load	Fs	$F_{\rm m} = F_{\rm S} + F_{\rm R} - \frac{F_{\rm S} F_{\rm R}}{F_{\rm S} + F_{\rm R}}$ where, $F_{\rm S}$: Stationary load, N $F_{\rm R}$: Rotating load, N

A24

Equivalent load

The loads applied to the bearing are divided into radial loads that are applied perpendicular to the central axis and axial loads that are applied in parallel to the central axis. These loads act independently or in combination with other loads.

Dynamic equivalent load

When both radial load and axial load are applied to the bearing simultaneously, the virtual load, acting on the center of the bearing, that will give a life equal to that under the radial load and the axial load is defined as a dynamic equivalent load.

In the case of needle roller bearings, radial bearings receive only radial loads and thrust bearings receive only axial loads. Accordingly, radial loads are directly used in the life calculation of the radial bearings, while axial loads are directly used for the thrust bearings.

[For radial bearings]

$$P_{\rm r} = F_{\rm r}$$
(20) [For thrust bearings]

$$P_a = F_a$$
 ·····(21)

where, $P_{\rm r}$: Dynamic equivalent radial load, N $P_{\rm a}$: Dynamic equivalent axial load, N

 $F_{\rm r}$: Radial load, N $F_{\rm a}$: Axial load, N

Static equivalent load

When both radial load and axial load are applied to the bearing simultaneously, the virtual load, acting on the center of the bearing, that will produce a maximum contact stress on the contact surface between the rolling element and the raceway equal to that given by the radial load and the axial load is defined as a static equivalent load.

In the case of needle roller bearings, radial bearings receive only radial loads and thrust bearings receive only axial loads. Accordingly, radial loads are directly used for the radial bearings, while axial loads are directly used for the thrust bearings.

[For radial bearings]

$$P_{0r} = F_r \cdots (22)$$

[For thrust bearings]

$$P_{0a} = F_a$$
 ······(23)

where, P_{0r} : Static equivalent radial load, N

 P_{0a} : Static equivalent axial load, N

 $F_{\rm r}$: Radial load, N $F_{\rm a}$: Axial load, N

Boundary Dimensions and Identification Number

Boundary dimensions

Examples of symbols for quantities indicating the boundary dimensions of **IKD** Needle Roller Bearings are shown below. For details, see the table of dimensions for each model.

Machined Type Needle Roller Bearing

d : Nominal bearing bore diameter

D: Nominal bearing outside diameter

B : Nominal inner ring widthC : Nominal outer ring width

 $F_{\rm w}$: Nominal roller set bore diameter

r : Chamfer dimensions of inner and outer rings

 $r_{\rm s\,min}$: Smallest permissible single chamfer

dimensions of inner and outer rings

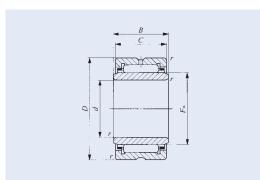
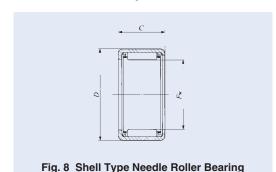
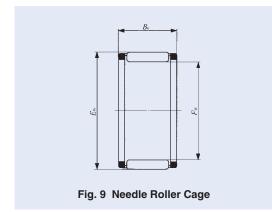



Fig. 7 Machined Type Needle Roller Bearing

Shell Type Needle Roller Bearing

D: Nominal bearing outside diameter $F_{\rm w}$: Nominal roller set bore diameter


C: Nominal outer ring width

Needle Roller Cage

 $E_{
m w}$: Nominal roller set outside diameter $F_{
m w}$: Nominal roller set bore diameter

 B_c : Nominal cage width

Thrust Roller Bearing

 $D_{\rm c}$: Nominal cage outside diameter $d_{\rm c}$: Nominal cage bore diameter $D_{\rm w}$: Nominal roller diameter

Fig. 10 Thrust Roller Bearing

A

В

C

D

F

Е

G

Н

_

J

IV

IKO

Identification Number

The identification number of **IKD** Bearings consists of a model number and supplemental codes. The descriptions of typical codes and their arrangements are shown below. There are many codes other than those described. See the section of identification number of each bearing.

Table 10 Arrangement of identification number of bearing

Tuble to Arrangement of Identification Hamber of bearing		
Model number	Model code	0
	Boundary dimensions	2
Supplemental code	Material symbol	3
	Cage symbol	4
	Shield symbol Seal symbol,	5
	Bearing ring shape symbol	6
	Clearance symbol	7
	Classification symbol	8

1 Model code

The model code represents the bearing series. The features of each bearing series are shown on pages A5 to A15.

Boundary dimensions

One of the following four kinds of presentation methods is used for showing boundary dimensions in the identification number, which vary depending on the bearing series. Table 11 shows the presentation methods of boundary dimensions for each model code.

- (a)Dimension series + Bore diameter number
- (b)Bore diameter or roller set bore diameter +
 Outside diameter or roller set outside diameter +
 Width
- (c)Bore diameter or roller set bore diameter + Width (d)Basic diameter

Material symbol

Symbol	Type of material
F	Stainless steel for bearing rings and rolling elements

4 Cage symbol

Symbol	Descriptions
N	Made of synthetic resin
V	No cage or full complement

Seal or shield symbol

Symbol	Descriptions
Z	With dust cover
ZZ	With shields on both sides
U	With a seal on one side
UU	With seals on both sides
2RS	With seals on both sides

6 Bearing ring shape symbol

Symbol	Descriptions
NR	With stop ring on outer surface of outer ring
OH (1)	With oil hole in bearing ring
J	No oil hole

Note(1) This differs depending on the type of bearing. See the section of each bearing.

Clearance symbol

Symbol	Descriptions
C2	C2 clearance
(None)	CN clearance
C3	C3 clearance
C4	C4 clearance
C5	C5 clearance
T1	Caradal and distributions
C1	Special radial clearance (Applicable to Crossed Roller Bearings)
C2	

3Classification symbol

Symbol	Descriptions
(None)	JIS Class 0
P6	JIS Class 6
P5	JIS Class 5
P4	JIS Class 4

Table 11 Indication of boundary dimensions

Design time	Model number	
Bearing type	Model code	Indication of boundary dimensions
Shell Type Needle Roller Bearings	TA, TLA, YT, YTL	Roller set bore diameter + Outer ring width
Shell Type Needle Holler Dearlings	BA, BHA, YB, YBH	Roller set bore diameter + Outer ring width (1)
Needle Roller Cages for General Usage	KT, KTW	Roller set bore diameter + Roller set outside diameter + Cage width
Needle Roller Cages for Engine Connecting Rods	KT···EG, KTV···EG	Roller set bore diameter + Roller set outside diameter + Cage width
	NA, RNA	Dimension series + Bore diameter number
	TR, TAF, GTR	Roller set bore diameter + Bearing outside diameter + Bearing width
Machined Type Needle Roller Bearings	TRI, TAFI, GTRI	Bearing bore diameter + Bearing outside diameter + Outer ring width
	BR, GBR	Roller set bore diameter + Bearing outside diameter + Bearing width (1)
	BRI, GBRI	Bearing bore diameter + Bearing outside diameter + Outer ring width (1)
Needle Belley Berginser with Consender Cons	RNAF, RNAFW	Roller set bore diameter + Bearing outside diameter + Bearing width
Needle Roller Bearings with Separable Cage	NAF, NAFW	Bearing bore diameter + Bearing outside diameter + Bearing width
Dallas Dassis na	NAU, NAG, NAS	Dimension series + Bore diameter number
Roller Bearings	TRU	Bearing bore diameter + Bearing outside diameter + Bearing width
	NTB, AS, WS, GS	Bearing bore diameter + Bearing outside diameter
Thrust Bearings	AZ	Bearing bore diameter + Bearing outside diameter + Bearing height
	AZK	Bearing bore diameter + Bearing outside diameter + Roller diameter
	NAX, NBX	Roller set bore diameter + Assembled bearing width
Combined Type Needle Roller Bearings	NAXI, NBXI	Innerring bore diameter + Assembled bearing width
	NATA, NATB	Dimensional series + Bore diameter number
Cam Followers	CF, NUCF, CFS	Stud diameter
Cam Followers	CR, CRH	Bearing outside diameter (1)
D. II F. II.	NAST, NART, NURT	Bearing bore diameter
Roller Followers	CRY	Bearing outside diameter (1)
Crossed Roller Bearings	CRBH, CRB, CRBS, CRBT	Bearing bore diameter + Bearing width
Cabasical Bushinsa	SB···A, GE	Inner ring bore diameter
Spherical Bushings	SBB	Inner ring bore diameter (1)
PILLOBALLs	PB,PHS,POS,PHSB,POSB,PHSA	Inner ring bore diameter
L-Balls	LHSA, LHS	Screw size
Seals for Needle Roller Bearings	OS, DS	Shaft diameter + Seal outside diameter + Seal width
Circlina for Manulla Dallar Dansina	WR	Shaft diameter
Cir-clips for Needle Roller Bearings	AR	Bore diameter

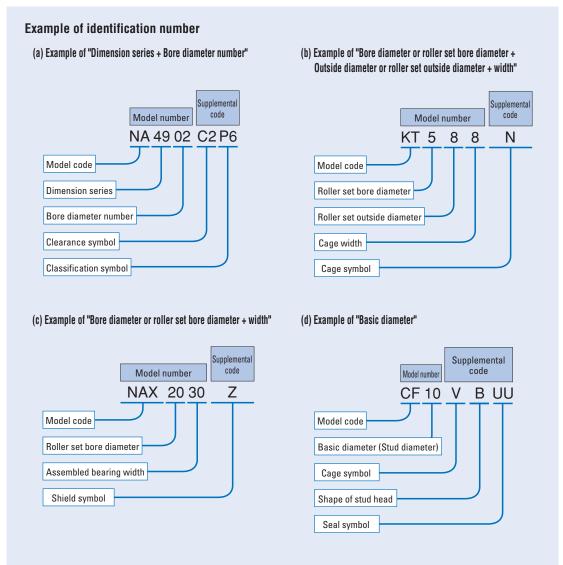
Note(1) The nominal dimensions of inch series bearings are indicated in units of 1/16 inch.

Α

В

D

G


Н

Ι

7

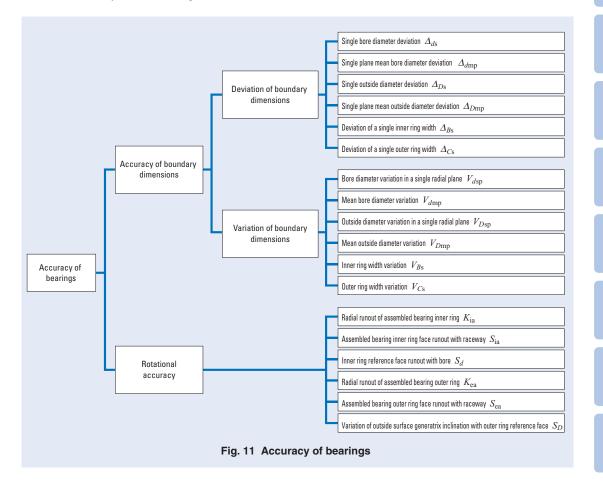
K

М

Accuracy

The accuracy of **IKO** Needle Roller Bearings conforms to JIS B 1514-1~-3:2006 (Rolling bearings - Tolerances of bearings), and the dimensional accuracy and rotational accuracy are specified. The specified items are shown in Fig. 11.

Needle Roller Bearings are classified into 4 classes of accuracy. These classes are represented by the numbers 0, 6, 5 and 4, written in order of increasing accuracy.


Table 12 shows the accuracy for the inner rings of radial bearings, Table 13 shows the accuracy for the outer rings of radial bearings, Table 14 shows the tolerances for the smallest single roller set bore diameter of radial bearings, and Table 15 shows the permissible limit values of chamfer dimensions of radial bearings. For thrust bearings, see the section on accuracy of Thrust Bearings. Note that the series of Shell Type Needle Roller Bearings, Roller Bearings, Cam Followers, Roller Followers, Combined Type Needle Roller Bearings, and Crossed Roller Bearings have special accuracy. For further details, see the section on accuracy of each bearing series.

Remarks

The meanings of the new symbols for quantities used for accuracy of radial bearings are as follows:

- $\bigcirc \Delta$ represents the deviation of a dimension from the specified value.
- ②V represents the variation of a dimension.
- ③Suffixes s, m, and p represent a single (or actual) measurement, a mean measurement, and a measurement in a single radial plane, respectively.

[Example] $V_{d\mathrm{p}}$ means the difference between the largest and the smallest of the bore diameters in a single radial plane (circularity). $V_{d\mathrm{mp}}$ means the difference between the largest and the smallest of the single plane mean bore diameters (cylindricity).

A29

A30

A

D

Е

F

G

Н

Ι

7

/

L

М

Nominal bearing bore diameter

mm

30

80 120

400

500 630

1600 0 - 160

2000

0 0 0

180 0 - 25 0 250 0 - 30 0 315 0 - 35 0

0ver

2.5

10 18

30 50 80

120 180 250

315

400 500

630

800

1000

1250

1600

Table 12 Tolerances for inner ring

Class 0

0 - 8 0 - 7 0 0 - 8 0 - 7 0 0 - 10 0 - 8 0

0 - 40 0 - 30 0 0 - 45 0 - 35 0 - 50 0 - 40

- 12 0 - 15 0 - 20 0

 $\varDelta_{d\mathrm{mp}}$ Single plane mean bore diameter deviation

Incl. | High | Low |

- 10 0 - 12 0 - 15 0

Class 6 Class 5 Class 4

- 18 0 - 13 0 - 22 0 - 15 0 - 25 0 - 18

- 23

- 5 0 - 5 0 - 6 0

- 8 0 - 9 0 - 10 0

IKO

630 800

1000

1250 1600

800

1000

1250

1600

2000

unit: μ m	
---------------	--

D

Е

	Radial runout of Inner ring Assembled bearing Deviation of a single inn assembled bearing reference face inner ring runout with bore runout with raceway					e inne	r ring wi	dth		Inner ring width variation				Nominal bearing bore diameter								
C						Class	Class		CI	ass 0	Cla	ass 6	Cla	ss 5	Cla	ıss 4				Class	mn	า
	0	6 N	5 1ax.	4	5 M	ах.	5 Ma	4 ax.	High	Low	High	Low	High	Low	High	Low	0	6 Ma	5 ax.	4	Over	Incl.
	10 10 13	6 7 8	4 4 4	2.5 2.5 3	7 7 8	3 3 4	7 7 8	3 3 4	000	- 120 - 120 - 120	0 0 0	- 120 - 120 - 120	000	- 40 - 80 - 120	000	- 40 - 80 - 120	15 20 20	15 20 20	5 5 5	2.5 2.5 2.5	2.5 10 18	10 18 30
	15 20 25	10 10 13	5 5 6	4 4 5	8 8 9	4 5 5	8 8 9	4 5 5	000	- 120 - 150 - 200	0 0 0	- 120 - 150 - 200	000	- 120 - 150 - 200	0 0	- 120 - 150 - 200	20 25 25	20 25 25	5 6 7	3 4 4	30 50 80	50 80 120
	30 40 50	18 20 25	8 10 13	6 8	10 11 13	6 7	10 13 15	7 8	0 0 0	- 250 - 300 - 350	0 0 0	- 250 - 300 - 350	0 0 0	- 250 - 300 - 350	0	- 250 - 300	30 30 35	30 30 35	8 10 13	5 6	120 180 250	180 250 315

 $\Delta_{B\mathrm{s}}$

60 30 15 65 35 70 40 400 0 450 0 500 0 - 400 0 - 400 - 450 - 500 40 40 50 45 60 50 315 400 500 15 20 15 400 500 630 0 0

- 750 - 1000

- 1250

1600

- 2000

0

0

0

0

Note(1) Applicable to all series except NAS series

- 200

(2) Applicable to NAS series

800 0 - 75 1000 0 - 100 1250 0 - 125

(3) Applicable to NATA and NATB series

Table 13 Tolerances for outer ring

D Nominal b outside di		Sin	gle plan	ie mea	Δ_{D_1} n outs		ımeter	devia	tion	Singl side	Ds e out- diam-									
											devia- on			C)pen b	earin	g			Bearing with seal or shield
										u		-			8, 9(2)			series		Diameter series 0(3)
mn	า	Class 0		Class 6		Class 5		Class 4		Class 4		Class Class Class Class Class		Class Class Class Class				Class 6		
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low		M	ax.			М	ax.		Max.
2.5 6 18	6 18 30	0 0 0	- 8 - 8 - 9	0 0 0	- 7 - 7 - 8	0 0 0	- 5 - 5 - 6	0 0 0	- 4 - 4 - 5	0 0 0	- 4 - 4 - 5	10 10 12	9 9 10	5 5 6	4 4 5	8 8 9	7 7 8	4 4 5	3 3 4	9 9 10
30 50 80	50 80 120	0 0 0	- 11 - 13 - 15	0 0 0	- 9 - 11 - 13	0 0 0	- 7 - 9 - 10	0 0 0	- 6 - 7 - 8	0 0 0	- 6 - 7 - 8	14 16 19	11 14 16	7 9 10	6 7 8	11 13 19	9 11 16	5 7 8	5 5 6	13 16 20
120 150 180	150 180 250	0 0 0	- 18 - 25 - 30	0 0 0	- 15 - 18 - 20	0 0 0	- 11 - 13 - 15	0 0 0	- 9 - 10 - 11	0 0 0	- 9 - 10 - 11	23 31 38	19 23 25	11 13 15	9 10 11	23 31 38	19 23 25	8 10 11	7 8 8	25 30
250 315 400	315 400 500	0 0 0	- 35 - 40 - 45	0 0 0	- 25 - 28 - 33	0 0 0	- 18 - 20 - 23	0	- 13 - 15	0	- 13 - 15	44 50 56	31 35 41	18 20 23	13 15	44 50 56	31 35 41	14 15 17	10 11	
500 630 800	630 800 1000	0 0 0	- 50 - 75 - 100	0 0 0	- 38 - 45 - 60	0	- 28 - 35					63 94 125	48 56 75	28 35		63 94 125	48 56 75	21 26		
1000 1250 1600 2000	1250 1600 2000 2500	0 0 0	- 125 - 160 - 200 - 250																	

 $V_{d\,{\rm sp}}$ Bore diameter variation in a single radial plane

Diameter series 8, 9(1) Diameter series 0(2)

4 8 4 8 5 10

6 12 7 19 8 25

Max.

5 5 6

8 9 10

23

- 10 31 23 13 - 12 38 28 15 44 31 18

50 38 56 44 63 50

Class Class

Max.

7 7 8 4 4 5

10 15 19

10 31 23 10 12 38 28 12 44 31 14

50 38 18 56 44 63 50

6 5 4 0 6 5 4 0 6 5 4

3

3 4

Single bore diameter deviation

Class 4

- 4 0 - 4 10 9 - 4 0 - 4 10 9 - 5 0 - 5 13 10

- 6 0 - 6 15 13 - 7 0 - 7 19 15 - 8 0 - 8 25 19

- 10 0 - 12 0

 $V_{d \, \mathrm{mp}}$ Mean bore diameter

variation

Max.

5 5 6 6 6 8

14 17 19

30 23 34 26 38 30

19 23 26

12

 K_{ia}

80 90 100

120 140

 S_d

 $S_{ia}(3)$

Classes 0 and 6 are applicable to outer rings without stop rings.

Applicable to all series except NAS series

(3) Applicable to NAS series

(4) Applicable to NATA and NATB series

unit: μ m

70 80 100

120 140

$V_{D{ m mp}}$ Mean outside diameter variation			on					surface generatrix bearing outer inclination with outer ring face runout with raceway		Δ_{Cs} Deviation of a single outer ring width		V_{C8} Outer ring width variation			ation	D Nominal bearing outside diameter			
Class 0	Class 6	Class 5	Class 4	Class 0	Class 6	Class 5	Class 4	Class 5	Class 4	Class 5	Class 4	Class	0, 6, 5, 4	Class 0	Class 6	Class 5	Class 4	mn	n
	M	ax.			M	ax.		M	ax.	М	ax.	High	Low		Ma	х.		Over	Incl.
6 6 7	5 5 6	3 3 3	2 2 2.5	15 15 15	8 8 9	5 5 6	3 3 4	8 8 8	4 4 4	8 8 8	5 5 5					5 5 5	2.5 2.5 2.5	2.5 6 18	6 18 30
8 10 11	7 8 10	4 5 5	3 3.5 4	20 25 35	10 13 18	7 8 10	5 5 6	8 8 9	4 4 5	8 10 11	5 5 6					5 6 8	2.5 3 4	30 50 80	50 80 120
14 19 23	11 14 15	6 7 8	5 5 6	40 45 50	20 23 25	11 13 15	7 8 10	10 10 11	5 5 7	13 14 15	7 8 10	Same tolerai		Same tolerar		8 8 10	5 5 7	120 150 180	150 180 250
26 30 34	19 21 25	9 10 12	7 8	60 70 80	30 35 40	18 20 23	11 13	13 13 15	8 10	18 20 23	10 13	for d o	of $\Delta_{B_{ m S}}$ of the bearing	for d o	of $V_{B{ m s}}$ f the pearing	11 13 15	7 8	250 315 400	315 400 500
38 55 75	29 34 45	14 18		100 120 140	50 60 75	25 30		18 20		25 30						18 20		500 630 800	630 800 1000
				160 190 220 250														1000 1250 1600 2000	1250 1600 2000 2500

1N=0.102kgf=0.2248lbs. A32 1mm=0.03937inch

Table 14 Tolerances for smallest single roller set bore diameter $F_{\text{ws min}}$ unit: μ m unit: μ m

		ws min 🗸	u p				
Nominal roller s	, w et bore diameter m	$\Delta_{F ext{ws min}}$ Deviation of smallest single roller set bore diameter					
Over	Incl.	High	Low				
3	6	+ 18	+ 10				
6	10	+ 22	+ 13				
10	18	+ 27	+ 16				
18	30	+ 33	+ 20				
30	50	+ 41	+ 25				
50	80	+ 49	+ 30				
80	120	+ 58	+ 36				
120	180	+ 68	+ 43				
180	250	+ 79	+ 50				
250	315	+ 88	+ 56				
315	400	+ 98	+ 62				
400	500	+108	+ 68				

Note(1) This is the diameter of the cylinder used instead of the inner ring, where the radial clearance becomes 0 at least in one radial direction.

Table 15 Permissible limit values for chamfer dimensions of radial bearings unit: m

r _{s min} Smallest permissible single		d re diameter	rs max Largest permissible single chamfer dimension						
chamfer dimension	Over	Incl.	Radial direction	Axial direction					
0.1	_		0.55 (2)	0.55 (2)					
0.15	_	_	0.6 (2)	0.6					
0.2	_		0.7 (2)	0.8					
0.3	_	40	0.8 (2)	1					
	40		0.8	1					
0.4 (1)	_	_	0.8	1.2					
0.6	_	40	1.1 (2)	2					
	40	_	1.3	2					
1		50	1.5	3					
	50	-	1.9	3					
1.1	120	120	2 2.5	3.5 4					
	_	120	2.3	4					
1.5	120	_	3	5					
	_	80	3	4.5					
2	80	220	3.5	5					
	220	_	3.8	6					
2.1	_	280	4	6.5					
۷.۱	280	_	4.5	7					
(4)	_	100	3.8	6					
2.5 (1)	100	280	4.5	6					
	280	_	5	7					
3	 280	280	5 5.5	8 8					
4	200		6.5	9					
				_					
5			8	10					
6			10	13					

Note(1) Not specified in JIS.

The numeric value differs from JIS.

Remark Although the exact shape of the chamfer is not specified, its profile in the axial plane must not extend beyond the imaginary circular arc of radius $r_{\rm S~min}$ which is tangential to the inner ring side surface and bearing bore surface or to the outer ring side surface and bearing outside surface. (See Fig. 12.)

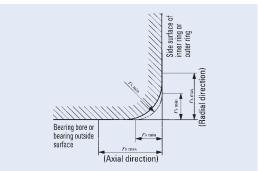


Fig. 12 Permissible values for chamfer dimensions

Methods of Measurement

Measurement of **IKU** Needle Roller Bearings is based on JIS B 1515-1, -2:2006 (Rolling bearings-Tolerances). Tables 16 and 17 show some examples of the methods.

Special methods are used to measure Shell Type Needle Roller Bearings. Therefore, refer to the section on accuracy for these bearings on page B3.

Table 16 Measurement methods of accuracy of boundary dimensions

	Measurement methods		Accuracy and definitions
Bore diameter	In principle, measurements of dimensions are carried out using a two-point measuring instrument for various radial planes.	$d_{ m mp}$ Single plane mean bore diameter	$d_{\rm mp} = \frac{d_{\rm sp\;max} + d_{\rm sp\;min}}{2}$ $d_{\rm sp\;max} : {\rm Maximum\; value\; of\; bore\; diameter\; } (d_{\rm s})$ obtained for a single radial plane $d_{\rm sp\;min} : {\rm Minimum\; value\; of\; bore\; diameter\; } (d_{\rm s})$ obtained for a single radial plane
	1.27. max	$\Delta_{d\mathrm{mp}}$ Single plane mean bore diameter deviation	$\Delta_{d \mathrm{mp}} = d_{ \mathrm{mp}} - d$ d : Nominal bore diameter
	X MIN Y	$V_{d\mathrm{sp}}$ Bore diameter variation in a single radial plane	$V_{dsp} = d_{sp \text{ max}} - d_{sp \text{ min}}$
	This does not apply to the regions within a range of 1.2 times the largest permissible	$V_{d\mathrm{mp}}$ Mean bore diameter variation	$\begin{split} V_{d\text{mp}} &= d_{\text{mp max}} - d_{\text{mp min}} \\ d_{\text{mp max}} &: \text{Maximum value of single plane mean bore} \\ & \text{diameters } d_{\text{mp}} \text{ for various radial planes} \\ d_{\text{mp min}} &: \text{Minimum value of single plane mean bore} \\ & \text{diameters } d_{\text{mp}} \text{ for various radial planes} \end{split}$
	single chamfer dimension from both side- surfaces of the inner ring.	$\Delta_{d{ m s}}$ Single bore diameter deviation	$\Delta_{d{\bf s}} = d_{\bf s} - d$ $d_{\bf s} : \mbox{Any measured bore diameter obtained in any radial plane}$
Outside diameter	In principle, measurements of dimensions are carried out using a two-point measuring instrument for various radial planes.	$D_{ m mp}$ Single plane mean outside diameter	$D_{\rm mp} = \frac{D_{\rm sp\;max} + D_{\rm sp\;min}}{2}$ $D_{\rm sp\;max} : {\rm Maximum\; value\; of\; outside\; diameter\;}(D_{\rm s})$ obtained for a single radial plane $D_{\rm sp\;min} : {\rm Minimum\; value\; of\; outside\; diameter\;}(D_{\rm s})$ obtained for a single radial plane
	12.7. max	$\Delta_{D{ m mp}}$ Single plane mean outside diameter deviation	$\begin{split} & \varDelta_{D\mathrm{mp}} = D_{\mathrm{mp}} - D \\ & D : \mathrm{Nominal\ outside\ diameter} \end{split}$
	THE STATE OF THE S	$V_{D\mathrm{sp}}$ Outside diameter variation in a single radial plane	$V_{D\rm sp} = D_{\rm sp\ max} - D_{\rm sp\ min}$
	This does not apply to the regions within a range of 1.2 times the largest permissible	$V_{D{ m mp}}$ Mean outside diameter variation	$\begin{split} V_{D\mathrm{mp}} &= D_{\mathrm{mp\;max}} - D_{\mathrm{mp\;min}} \\ D_{\mathrm{mp\;max}} &: \text{Maximum value of single plane mean outside} \\ & \text{diameters } D_{\mathrm{mp}} \text{ for various radial planes} \\ D_{\mathrm{mp\;min}} &: \text{Minimum value of single plane mean outside} \\ & \text{diameters } D_{\mathrm{mp}} \text{ for various radial planes} \end{split}$
	single chamfer dimension from both side- surfaces of the outer ring.	Δ_{Ds} Single outside diameter deviation	$\Delta_{Ds}\!=\!D_s\!-\!D$ D_s : Any measured outside diameter obtained in any radial plane

R

C

D

E

G

Н

Ι

J

K

L

М

	Measurement methods		Accuracy and definitions
Roller set bore diameter	In principle, this is measured using a master gauge. The master gauge is fixed on the base with its side surface downward, and the outer ring with needle rollers is fitted onto the gauge. An indicator probe is applied radially to the approximate middle of the outside surface of the outer ring, and a measuring load is applied in that direction inward and outward alternately to obtain the amount of outer ring movement. Measurements are taken at various angular posi-	$\Delta_{F m ws}$ Deviation of a single roller set bore diameter	$\begin{split} \Delta_{F\text{ws}} = & (d_{\text{G}} + \delta_{\text{1m}}) - F_{\text{w}} \\ d_{\text{G}} &: \text{Outside diameter of master gauge} \\ \delta_{\text{1m}} &: \text{Arithmetical mean value of outer ring movement} \\ F_{\text{w}} &: \text{Nominal dimension of roller set bore diameter} \end{split}$
	tions by turning the outer ring. Measuring load load Master gauge	$\Delta_{F m wsmin}$ Deviation of smallest single roller set bore diameter	$\Delta_{F \text{ws min}}\!=\!(d_{\text{G}}+\delta_{1\text{min}})\!-\!F_{\text{w}}$ $\delta_{1\text{min}}: \text{ Minimum value of outer ring movement}$
Inner ring width	The inner ring width is measured between the base and the indicator probe perpendicular to the base.	$\Delta_{B_{ m S}}$ Deviation of a single inner ring width	$\Delta_{Bs} = B_s - B$ $B_s : \text{Single inner ring width}$ $B : \text{Nominal inner ring width}$
		$V_{B{ m S}}$ Inner ring width variation	$V_{Bs} = B_{s \max} - B_{s \min}$ $B_{s \max} : \text{Maximum value of single inner ring width}$ $B_{s \min} : \text{Minimum value of single inner ring width}$
Outer ring width	The outer ring width is measured between the base and the indicator probe perpendicular to the base.	Δ_{Cs} Deviation of a single outer ring width	$\Delta_{Cs} = C_s - C$ $C_s : \text{Single outer ring width}$ $C : \text{Nominal outer ring width}$
		$V_{C\mathrm{s}}$ Outer ring width variation	$V_{Cs} = C_{s \max} - C_{s \min}$ $C_{s \max} : \text{Maximum value of single outer ring width}$ $C_{s \min} : \text{Minimum value of single outer ring width}$
Bearing height	In principle, the height is measured between the base plane on which the back surface of the outer ring is placed and the disk master placed on the back surface of the inner ring. Disk master	$\Delta_{T_{ m S}}$ Deviation of the actual bearing height	$\Delta_{T{ m s}} = T_{ m s} - T$ $T_{ m s} : { m Actual bearing height}$ $T : { m Nominal bearing height}$

Accuracy	Measurement methods	
S_d Inner ring reference face runout with bore	The inner ring reference face runout with bore, in principle, is measured using a tapered arbor. The bearing is correctly fitted to the arbor, which is held by both centers so that it can rotate smoothly without play. An indicator probe is applied axially to the approximate middle of the width of the flat part of the inner ring reference side-surface. The tapered arbor together with the bearing is turned fully once to obtain the runout, which is the difference between the maximum and minimum readings of the indicator.	
S _D Variation of outside surface generatrix inclination with outer ring reference face	The outer ring reference side-surface is placed on a flat base, and the inner ring is left free. Two stoppers are applied to the outside cylindrical surface of the outer ring at a distance of 1.2 times the maximum permissible chamfer dimension ($r_{\rm s}$ max) from the base. Just above one of the stoppers, an indicator probe is applied radially to the outside cylindrical surface of the outer ring at a distance of 1.2 times the maximum permissible chamfer dimension ($r_{\rm s}$ max) from the upper side-surface. The outer ring is turned fully once along the stoppers to obtain the Variation which is the difference between the maximum and the minimum readings of the indicator.	Stopper Stopper
$K_{ m ia}$ Radial runout of assembled bearing inner ring $K_{ m ea}$ Radial runout of assembled bearing outer ring	The radial runout of the inner ring is measured by holding the tapered arbor, to which the bearing is correctly fitted, horizontally by both centers so that it can rotate smoothly without play. An indicator probe is applied radially downward to the approximate middle of the width of the outside-surface of the outer ring. The inner ring, together with the tapered arbor, is turned fully once to obtain the radial runout, which is the difference between the maximum and the minimum readings of the indicator. (The outer ring is not rotated.) The radial runout of the outer ring is measured by holding the tapered arbor, to which the bearing is correctly fitted, horizontally by both centers so that it can rotate smoothly without play. An indicator probe is applied radially downward to the approximate middle of the width of the outside-surface of the outer ring. The outer ring is turned fully once to obtain the radial runout, which is the difference between the maximum and the minimum readings of the indicator. (The inner ring is not rotated.) In the case of needle roller bearings without inner ring, the measurement is carried out by using a cylindrical arbor instead of the inner ring.	
$S_{ m ia}$ Assembled bearing inner ring face runout with raceway	The axial runout of the inner ring is measured by placing the outer ring on a flat base with the center axis of the bearing vertical. An indicator probe is applied axially to the approximate middle of the flat part of the inner ring reference side-surface. The specified measuring weight is applied to the inner ring reference side-surface in the direction of the center axis. The inner ring is turned fully once to obtain the runout, which is the difference between the maximum and the minimum readings of the indicator.	Weight (Measuring load)
S_{ea} Assembled bearing outer ring face runout with raceway	The axial runout of the outer ring is measured by placing the inner ring on the flat base with the center axis of the bearing vertical. An indicator probe is applied axially to the approximate middle of the flat part of the outer ring reference side-surface. The specified measuring weight is applied to the outer ring reference side-surface in the direction of the center axis. The outer ring is turned fully once to obtain the runout, which is the difference between the maximum and the minimum readings of the indicator.	Weight (Measuring load)

Clearance

The clearances between the bearing rings and rolling elements are known as bearing clearances. When either the inner or outer ring is fixed and a specified measuring load is applied to the free bearing ring inward and outward alternately in the radial direction, the displacement of the free bearing is referred to as the radial internal clearance. The amount of measuring load in this case is extremely small, and its values are specified in JIS B 1515-2:2006 (Rolling bearings-Tolerances-Part2:Measuring and gauging principles and methods).

↑ Table 18 shows the radial internal clearances of Needle Roller Bearings with Inner Ring based on JIS B 1520:1995 (Rolling bearings-Radial internal clearance). The radial internal clearances are classified into C2, CN, C3, C4, and C5, with clearances increasing in this order. CN is used under normal operating conditions. When a smaller range in radial internal clearance than the values shown in Table 18 is required, please consult **IKD**.

②In the case of Shell Type Needle Roller Bearings, the correct dimensional accuracy is achieved only after the bearings are press-fitted into the specified housing bore. Therefore, the clearances shown in Table 18 are not applicable. See page B5.

For the radial internal clearances of Cam Followers, Roller Followers and Crossed Roller Bearings, see the relevant section for each bearing.

Table 18 Radial internal clearances of Needle Roller Bearings

Nominal bo					U	assification	or clearanc	es			
m		С	2	С	N	С	:3	С	4	С	5
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
_	10	0	25	20	45	35	60	50	75	_	_
10	24	0	25	20	45	35	60	50	75	65	90
24	30	0	25	20	45	35	60	50	75	70	95
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535

Remark For bearings with CN clearance, no symbol is attached to the identification number. In the case of bearings with C2, C3, C4 and C5 clearances, these symbols are attached to the identification number.

280

310

330

370

410

440

370

410

440

460

510

550

510

565

625

600

665

735

280

310

330

Example NA 4905 C2

100

110

110

190

210

220

190

210

220

400

450

500

355

400

450

A37

Selection of clearance

Radial clearances of needle roller bearings change according to bearing fit, temperature difference between bearing rings and rolling elements, loads, etc., and these factors greatly influence bearing life, accuracy, noise, generation of heat, etc. If radial clearances are too large, noise and vibration will increase, and if they are too small, abnormally great forces are exerted on the contact areas between raceways and rolling elements, resulting in abnormally high heat generation and a decrease in bearing life. Therefore, in the ideal case, the clearance provided before mounting should be such that it will become zero or slightly larger when the bearing has reached steady-state operation and the temperature has become constant (saturation temperature). However, it is difficult to achieve this ideal state for all bearings. Under general operating conditions, bearings with CN clearance are most widely used, and are manufactured to provide satisfactory performance when fitted according to Tables 21 and 22.

When radial internal clearances other than CN are used, refer to Table 19.

Table 19 Examples of selecting radial internal clearances other than CN clearance

orcaranoco otrici triari ort orcaranoc									
Selection of clearance									
C3 or larger clearance									
Go of larger clearance									
C2 or smaller clearance									

Reduction of radial clearances by fit

When the inner or outer rings are interference fitted onto shafts and into housings, respectively, they expand or shrink due to elastic deformation. As the result, the radial clearances are reduced. These reduced radial clearances are called residual (internal) clearances.

The amount of reduction is obtained by the following equation, and it is generally 70 to 90% of the interference amount.

$\Delta_C = \Delta_F + \Delta_F$(24)

where, Δ_C : Amount of reduction of the radial clearance, mm

 \varDelta_F : Amount of expansion of the outside diameter of inner ring, $\,$ mm $\,$

 Δ_E : Amount of shrinkage of the bore diameter of outer ring, mm

①Amount of expansion of the outside diameter of inner ring

· With solid shaft

$$\Delta_F = \Delta_{de} \frac{d}{F}$$
 (25)

· With hollow shaft

$$\Delta_F = \Delta_{de} \frac{d}{F} \frac{1 - (d_i/d)^2}{1 - (d/F)^2 (d_i/d)^2} \cdots (26)$$

where, Δ_{de} : Effective interference of inner ring, mm d: Bore diameter of inner ring, mm F: Outside diameter of inner ring, mm d_i : Bore diameter of hollow shaft, mm

2 Amount of shrinkage of the bore diameter of outer ring

· With steel housing $(D_0 = \infty)$

$$\Delta_E = \Delta_{De} \frac{E}{D} \qquad (27)$$

· With steel housing $(D_0 \neq \infty)$

$$\Delta_E = \Delta_{De} \frac{E}{D} \frac{1 - (D/D_0)^2}{1 - (E/D)^2 (D/D_0)^2} \cdots (28)$$

 $\begin{array}{cccc} \text{where,} & \Delta_{De} & \vdots & \text{Effective interference of outer ring,} & \text{mm} \\ D & \vdots & \text{Outside diameter of outer ring,} & \text{mm} \\ E & \vdots & \text{Bore diameter of outer ring,} & \text{mm} \\ D_0 & \vdots & \text{Outside diameter of housing,} & \text{mm} \\ \end{array}$

Reduction of radial clearances due to temperature differences between inner and outer rings

Frictional heat generated by rotation is dissipated through the shafts and housings as well as through oil and air. Under general operating conditions, heat dissipation is larger on the housing side compared with that on the shaft side, and the temperature of the outer ring is usually lower than that of the inner ring. During operation, the temperature of the rolling elements is the highest, followed by that of the inner ring and that of the outer ring. The amount of thermal expansion, therefore, varies, and the radial clearances are reduced. This reduced radial clearance is called the effective (internal) clearance, and the amount of reduction is obtained by the following equation:

В

D

Е

Н

Ι

L

М

 Δ_t : Temperature difference between the outer ring and the inner ring plus rolling elements considered as one unit, °C E: Bore diameter of outer ring, mm

The temperature difference Δ_t is considered to be 5 \sim 10 °C under normal operating conditions and 15 \sim 20 °C at high rotational speeds. Therefore, when the temperature difference is great, a correspondingly larger radial internal clearance must be selected.

Fit

Purpose of fit

To achieve the best performance of needle roller bearings, it is important that the bearing rings are correctly fitted onto the shaft and into the housing.

The purpose of fit is to provide the appropriate amount of interference required between the inner ring and the shaft or between the outer ring and the housing, to prevent harmful mutual slippage.

If the interference is insufficient, it will cause a harmful relative displacement, known as creep, between the fitted surfaces in the circumferential direction. This may lead to abnormal wear of fitted surfaces, intrusion of wear particles into the bearing, generation of abnormal heat, vibration, etc. Therefore, a suitable fit must be selected.

Table 20 Nature of radial load and fit

	Nature of the load		F	it	
		Rotating conditions	Inner ring	Outer ring	
Rotating load on inner ring		Inner ring : Rotating Outer ring : Stationary Load direction : Fixed	Interference fit	Clearance fit	
Stationary load on outer ring		Inner ring : Stationary Outer ring : Rotating Load direction : Rotating with outer ring			
Rotating load on outer ring		Inner ring: Stationary Outer ring: Rotating Load direction: Fixed			
Stationary load on inner ring		Inner ring : Rotating Outer ring : Stationary Load direction : Rotating with inner ring		Interference fit	
Directionally indeterminate load	The load direction is not fixed, including cases where the load direction is fluctuating or there is an unbalanced load.	Inner ring : Rotating or stationary Outer ring : Rotating or stationary Load direction : Not fixed	Interference fit	Interference fit	

Conditions for determination of fit

When determining a suitable fit for a bearing, it is necessary to consider various conditions such as nature and magnitude of the load, temperature, required rotational accuracy, material/finish grade/thickness of the shaft and housing, ease of mounting and dismounting, etc.

Nature of load and fit

Basically, the appropriate fit depends on whether the load direction is rotational or stationary in relation to the inner and outer rings.

The relationship between the nature of radial loads and the fit is, in general, based on Table 20.

Load amount and interference

The greater the load, the larger the interference must be.

When selecting an interference between the inner ring and the shaft, it is necessary to estimate the reduction of interference due to the radial load. The amount of reduction of interference is obtained by the following equations.

· When $F_r \leq 0.2C_0$

$$\Delta_{dF} = 0.08 \sqrt{\frac{d}{B} F_{\rm r}} \times 10^{-3} \dots (30)$$

· When $F_r > 0.2C_0$

$$\Delta_{dF} = 0.02 \frac{F_r}{R} \times 10^3$$
(31)

where, $F_{\rm r}$: Radial load applied to bearing, N

 C_0 : Basic static load rating, N Δ_{dF} : Amount of reduction of inner

ring interference, mm

d : Bore diameter of inner ring, mm

B : Width of inner ring, mm

3 Temperature conditions and change of interference

The interference of fitted surfaces is also influenced by the temperature difference between the bearing and the shaft and housing. For example, when steam is flowing through a hollow shaft, or when the housing is made of light metal, it is necessary to take into consideration the differences in temperature, the coefficient of linear expansion and other such factors.

Usually, the interference of the inner ring decreases as the bearing temperature increases during operation. If the temperature difference between the inside of the bearing and the outside of the housing is taken

as Δ_T , the temperature difference between the inner ring and the shaft can be estimated to be (0.1 \sim 0.15) Δ_T . Accordingly, the amount of reduction of the inner ring interference is obtained by the following equation.

$$\Delta_{dT} = (0.1 \sim 0.15) \Delta_{T} \alpha d = 0.0015 \Delta_{T} d \times 10^{-3} \cdots (32)$$

where, $\Delta_{d\mathrm{T}}$: Reduction amount of inner ring interference due to temperature difference. mm

 Δ_T : Temperature difference between the inside of the bearing and the outside of the housing, $^{\circ}\mathrm{C}$

α : Coefficient of linear expansion for bearing steel

$$= 12.5 \times 10^{-6} \text{ 1/ }^{\circ}\text{C}$$

d : Bore diameter of inner ring, mm

Shaft finish grade and interference

Since peaks of surface roughness of the fitted surface are crushed down when fitting the bearing, the effective interference becomes smaller than the apparent interference obtained by measurements, and it is generally obtained by the following equations.

· For ground shaft

$$\Delta_{de} = \frac{d}{d+2} \Delta_{df} \cdots (33)$$

· For machined shaft

$$\Delta_{de} = \frac{d}{d+3} \Delta_{df} \cdots (34)$$

where, $\Delta_{d\mathrm{e}}$: Effective interference of inner ring, mm

 $\it \Delta_{df}$: Apparent interference, mm

6 Minimum interference and maximum interference

When the load direction is rotating in relation to the inner ring, the inner ring is fitted with interference to the shaft.

For solid ground steel shafts, the minimum interference (required apparent interference) Δ_{df} is expressed by the following equation which is deduced from equations (30) or (31), (32) and (33).

$$\Delta_{df} \ge \frac{d+2}{d} (\Delta_{dF} + 0.0015 \, \Delta_T d \times 10^{-3}) \, \cdots (35)$$

It is desired that the maximum interference should be less than 1/1000 of the shaft diameter. In the case of the outer ring, the effective interference varies according to the housing material, thickness, shape, etc., so it is determined empirically.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

D

G

Н

IZ

L

IKO

Selection of fit

When selecting a suitable fit, in addition to the various conditions mentioned above, it is necessary to draw on experience and practical results.

Tables 21 and 22 show the most general fit data.

When a thin housing or a hollow shaft is used, the interference is made larger than an ordinary fit.

The fit between needle roller bearings without inner ring and shafts is based on Table 23.

For the fit between Shell Type Needle Roller Bearings and housing bores, see page B5.

For the fit between inner rings for Shell Type Needle Roller Bearings and shafts, see Table 22.

Table 21 Fit between needle roller bearings and housing bores (Not applicable to Shell Type Needle Roller Bearings)

	Operating conditions	Tolerance class of housing bore (1)	Application examples (Reference)
	Heavy load on thin housing, large shock load	P7 (²)	Flywheels
Rotating load on outer ring	Heavy load, normal load	N7 (²)	Wheel bosses, transmission gears
	Light load, fluctuating load	M7	Pulleys, tension pulleys
	Large shock load	M7	Eccentric wheels, pumps
Directionally indeterminate load	Heavy load, normal load	K7	Compressors
	Normal load, light load	J7	Crankshafts, compressors
	Shock load, heavy load	J7	General bearing applications, gear shafts
Stationary load on outer ring	Normal load, light load	H7	General bearing applications
	With heat conduction through shaft	G7	Paper dryers
Light load, normal rotation and high rig	load, requirements of high-precision gidity	K6	Main spindles of machine tools

Notes(1) This table applies to steel or cast iron housings. For lighter metal, a tighter fit should be selected.

For split housings, do not use a fit tighter than J7.

(2) Care should be taken so that the radial internal clearance is not too small.

Remark Light load, normal load and heavy load represent $P \le 0.06C$, $0.06C < P \le 0.12C$, and 0.12C < P, respectively, where P is the dynamic equivalent radial load and C is the basic dynamic load rating of the bearing to be used.

Table 22 Fit between needle roller bearings with inner ring and shafts

Operating conditions		Shaft di	Shaft dia. mm		Application examples
		Over	Incl.	of shaft (1)	(Reference)
Stationary load on inner ring	Heavy load medium rotating speed 1		All shaft diameters		Wheels on dead axles Control lever gears Rope sheaves
	Especially smooth operation and accuracy are required.			h5	Tension pulleys
Rotating load	Light load	- 50 100 200	50 100 200 —	j5 k5 m6 (²) n6 (³)	Electric appliances, Precision machinery Machine tools, Pumps Blowers, Transportation vehicles
on inner ring or Directionally indeterminate load	Normal load	- 50 150 200	50 150 200 —	k5 (⁴) m5, m6 (²) n6 (³) p6 (³)	General bearing applications Pumps, Transmission gearboxes, Wood working machinery, Internal combustion engines
	Heavy load Shock load	_ 150	150 —	n6 (³) p6 (³)	Industrial vehicles, Construction machinery Crushers

Notes(1) This table applies to solid steel shafts.

(2) It is necessary to examine the reduction of radial internal clearances caused by the expansion of inner rings after mounting.

(3) It is necessary to use bearings with radial internal clearances greater than CN clearance.

(4) For NATA and NATB, do not use a tighter fit than k5.

Table 23 Tolerance class of shafts assembled with needle roller bearings without inner ring

$F_{ m W}$		Radial internal clearance		
	et bore diameter m	Smaller than CN clearance	CN clearance	Larger than CN clearance
Over Incl.		Tolerance class of shaft (1)		
-	65 80	k5 k5	h5 h5	g6 f6
65 80	160	k5 k5	g5	f6
160	180	k5	g5	e6
180 200	200 250	j5 j5	g5 f6	e6 e6
250	315	h5	f6	e6
315	_	g5	f6	d6

Note(1) When the housing bore fit is tighter than K7, the shaft diameter is made smaller by considering shrinkage of roller set bore diameter after mounting.

A

В

C

D

F

G

H

T

K

L

180 250

250 315

315 400

0 -30

0 -35

0 -40 -115~-18

400 500 0 -45 -128~-20 -108~0

Table 24 Fit values for radial bearings (JIS Class 0) (Fit with nousing bore)									unit: μ m		
	D	Δ_L	Omp	G7	H7	J7	K6	K7	M7	N7	P7
diar	al outside neter nm	Single pla outside o		Bearing	Bearing	Honsing	Honsing Bearing	Honsing Bearing	Honsing	Housing	Housing Bearing
Over	Incl.	High	Low	1 1 " "		1 1				1 1 " "	1 1
3	6	0	- 8	- 24~- 4	- 20~0	-14~ 6	-10∼ 6	-11∼ 9	- 8∼12	- 4~16	0∼ 20
6	10	0	- 8	- 28~- 5	- 23~0	-16∼ 7	-10∼ 7	-13~10	- 8∼15	- 4~19	1~ 24
10	18	0	- 8	- 32~- 6	- 26~0	-18∼ 8	-10∼ 9	-14~12	- 8∼18	- 3~23	3~ 29
18	30	0	- 9	- 37~- 7	- 30~0	-21∼ 9	-11~11	-15~15	- 9∼21	- 2~28	5~ 35
30	50	0	-11	- 45~- 9	- 36~0	-25~11	-14~13	-18~18	-11~25	- 3~33	6∼ 42
50	80	0	-13	- 53∼-10	- 43~0	-31 ∼ 12	-17~15	-22~21	-13~30	- 4~39	8~ 51
80	120	0	-15	- 62∼-12	- 50~0	-37~13	-19~18	-25~25	-15~35	- 5~45	9~ 59
120	150	0	-18	- 72~-14	- 58∼0	-44~14	-22~21	-30~28	-18~40	- 6∼52	10~ 68
150	180	0	-25	- 79~-14	- 65∼0	-51∼14	-29~21	-37~28	-25~40	-13~52	3∼ 68

 $-35\sim$ 24

 $-40 \sim 27$

 $-47 \sim 29$

 $-53 \sim 32$

 $-60 \sim 16$

-71∼16

 $-79 \sim 18$

-88~20

 $-43 \sim 33$

-51∼36

-57~40

 $-63 \sim 45$

-30~46

 $-35 \sim 52$

-40~57

 $-45 \sim 63$

-16~60

-21~66

 $-24 \sim 73$

-28~80

3~ 79

1~ 88

1~ 98

 $0 \sim 108$

Remark The negative value denotes a clearance and the positive value denotes an interference.

- 97∼0

91~-15 - 76~0

-104~-17 - 87~0

Table 25 Fit values for radial bearings (JIS Class 0) (Fit with shaft) unit: μ m k5 m5 m6 n6 p6 Δ_{dmp} Nominal bore | Single plane me diameter bore diameter mm deviation Over Incl. High Low 3 6 0 -12∼ 4 - 5∼ 8 8~ 24 12~ 28 - 8~ 8 - 2∼11 $1\sim14$ $4\sim17$ 4∼ 20 6 10 0 -14∼ 3 6∼ 8 9~8 - 2∼12 $1 \sim 15$ $6 \sim 20$ $6 \sim 23 \mid 10 \sim 27 \mid 15 \sim 32$ 10 18 0 -17∼ 2 $7\sim$ 23 7~ 26 | 12~ 31 | 18~ 37 8~ 8 -11∼ 8 - 3∼13 $1\sim17$ 18 30 0 -10 -20∼ 3 -13~10 - 4~15 $8\sim$ 27 8~ 31 | 15~ 38 | 22~ 45 - 9∼10 $2\sim21$ 30 50 0 -12 *-*25∼ 3 -11 ~ 12 -16~12 - 5∼18 $2 \sim 25$ $9 \sim 32$ $9 \sim 37 \mid 17 \sim 45 \mid 26 \sim 54$ 50 80 0 -15 -29∼ **5** -13~15 -19~15 · 7~21 $2\sim30$ 11~39 11~ 45 | 20~ 54 | 32~ 66 80 120 0 -20 -34∼ 8 $-15 \sim 20$ -22~20 - 9∼26 $3\sim38$ $13 \sim 48$ 13~ 55 | 23~ 65 | 37~ 79 120 140 140 160 0 -25 -39 ∼ 11 $-18 \sim 25$ $-25 \sim 25$ -11∼32 3~46 15~58 15~ 65 | 27~ 77 | 43~ 93 160 180 180 200 200 225 0 -30 -44~15 $-20\sim30$ -29~30 $-13 \sim 37$ $4\sim54$ $17 \sim 67$ $17 \sim 76 | 31 \sim 90 | 50 \sim 109$ 225 250 250 280 0 -35 -49~18 $-23\sim35$ $-32 \sim 35$ $4\sim62$ 20~78 | 20~ 87 | 34~101 | 56~123 -16~42 280 315 315 355 0 -40 $-54\sim22$ $-25 \sim 40$ $-36 \sim 40$ $-18 \sim 47$ $4 \sim 69$ 21~ 97 | 37~113 | 62~138 355 400 400 450 -45 l $-60 \sim 25$ $-27 \sim 45$ $-40 \sim 45$ -20~52 23~95 | 23~108 | 40~125 | 68~153 $5 \sim 77$ 450 500

Remark The negative value denotes a clearance and the positive value denotes an interference.

Design of Shaft and Housing

Accuracy and roughness of shaft and housing

Accuracy and roughness of fitting surface

Since the bearing rings of needle roller bearings are thin, their performance is easily affected by poor accuracy of shafts or housings. Under general operating conditions, the fitting surfaces of shafts and housings can be finished by lathe turning. However, when the load is great and high accuracy and low noise are required, a grinding finish is required.

Table 26 shows the accuracy and roughness of fitting surfaces for general use.

Accuracy and roughness of raceway surface

In case of needle roller bearings unlike other bearings, mating surfaces such as shaft and housing bore surfaces can be used directly as the raceway surfaces. For such use, accuracy and roughness of the raceway surfaces are important because they will influence bearing life, noise and accuracy.

In general, accuracy and roughness of raceway surfaces are based on Table 26.

Inclination of shaft

Shafts and outer rings may have some inclination between them due to deflection of the shaft, machining accuracy of shafts and housings, errors in mounting, etc.

In this case, the use of two or more bearings in tandem arrangement on a single shaft should be avoided. Instead, a bearing with large load ratings should be used.

It is recommended that inclination of shafts be less than 1/1000.

Table 27 Tolerance class IT values for basic dimensions

Basic di	mension	Т	olerance clas	s
m	mm		IT6	IT7
Over	Incl.	To	lerance μ	m
_	3	4	6	10
3	6	5	8	12
6	10	6	9	15
10	18	8	11	18
18	30	9	13	21
30	50	11	16	25
50	80	13	19	30
80	120	15	22	35
120	180	18	25	40
180	250	20	29	46
250	315	23	32	52
315	400	25	36	57
400	500	27	40	63
500	630	30	44	70

Table 26 Specifications of shafts and housings for radial needle roller bearings

ltem	Sh	aft	Housing bore		
iteiii	Fitting surface Raceway surface		Fitting surface	Raceway surface	
	0.3 × IT6 (1)	0.3 × IT6 (1)	0.3 × IT7 (1)	0.3 × IT7 (1)	
Circularity	or	or	or	or	
	$0.3 \times IT5 (1)$	0.3 × IT5 (1)	0.3 × IT6 (1)	$0.3 \times IT6^{(1)}$	
	0.5 × IT6 (2)	0.3 × IT6 (1)	0.5 × IT7 (2)	$0.3 \times IT7^{(1)}$	
Cylindricity	or	or	or	or	
	0.5 × IT5 (2)	0.3 × IT5 (1)	0.5 × IT6 (2)	0.3 × IT6 (1)	
Surface roughness μ m R_a	0.8	0.2(3)	1.6	0.2(3)	
$(\mu m R_{y})$	(3.2)	(8.0)	(6.3)	(0.8)	
Hardness	-	58~64HRC (⁴)	_	58~64HRC (⁴)	

Notes(1) 30% or less of the dimensional tolerance for shafts or housing bores is recommended.

- 50% or less of the dimensional tolerance for shafts or housing bores is recommended.
- When required accuracy is not critical, a surface roughness within 0.8 μ m R_a (3.2 μ m R_y) is allowable.
- (4) An appropriate thickness of the hardened layer is required.

7 |

В

A

D

F

G

Н

Ι

J

K

Μ

Raceway materials and heat treatment

When using shafts and housings as raceways, the following materials are generally used.

High-carbon chromium bearing steel

0	U	
	SUJ2	JIS G 4805
Carburizing steel	SCM415~421	JIS G 4053
Carburizing steel	SNCM 220	JIS G 4053
Carburizing steel	SCr 420	JIS G 4053
Carburizing steel	SNC 415、815	JIS G 4053
Carburizing steel	S 15 CK	JIS G 4051
In addition, S50C a	nd S55C (JIS G	4051) can be
used after through ha	ardening or inductio	n hardening.

The hardened layer produced by tempering at +160 $\sim +180\,^{\circ}$ C after hardening must have a fine uniform martensite microstructure.

When hardening the raceway surface by case hardening or induction hardening, a surface hardness of $58\sim64$ HRC and an appropriate thickness of the hardened layer must be ensured. The minimum effective thickness of the hardened layer after heat treatment and grinding is defined as the distance from the surface to the depth where the hardness is 550HV, and it is obtained by the following equation.

$$E_{\rm hf} \ge 0.8 D_{\rm w} (0.1 + 0.002 D_{\rm w})$$
 ······(36)

where, $E_{\rm ht}$: Minimum effective thickness of the hardened layer, mm

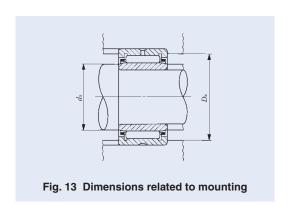
 $D_{\rm w}$: Roller diameter, mm

Generally, the required effective thickness of the hardened layer is at least 0.3 mm.

Dimensions related to mounting of bearings

The dimensions of shaft and housing related to mounting of the needle roller bearings are shown in the table of dimensions for each bearing. (See Fig. 13.)

The minimum value of the shaft shoulder diameter d_a which receives the inner ring, and the maximum value of the housing shoulder diameter D_a which receives the outer ring, represent the effective shoulder diameters (excluding the chamfered part) which make proper contact with the side faces of the inner and outer rings respectively.


Also, the maximum value of the shaft shoulder (or inner ring retaining piece) diameter $d_{\rm a}$ is the dimension related to the ease of mounting/dismounting of the shaft and inner ring to/from the housing and outer ring.

The largest permissible single corner radius $r_{\rm as\ max}$ of the shaft and housing must be smaller than the smallest permissible single chamfer dimension $r_{\rm s\ min}$ of the bearing so that the side surface of the bearing can make proper contact with the shoulder. Table 28 shows the related dimensions.

For dimensions of the fillet relief when finishing the shaft or housing by grinding, the values shown in Table 29 are recommended.

For other dimensions related to mounting, see the related section for each bearing as required.

In addition, for ease in dismounting of bearings, it is convenient to make notches in the shoulder of the shaft or housing to allow the insertion of dismounting hooks.

unit: mm

$r_{ m s\ min}$ Smallest permissible single chamfer	corner radius of shafts and	
dimension	housings	
0.1	0.1	r _{smin} Housing
0.15	0.15	Ps min Housing
0.2	0.2	Pas max
0.3	0.3	
0.4	0.4	
0.6	0.6	
1	1	
1.1	1	Fas max
1.5	1.5	Ps min
2	2	Shaft
2.1	2	
2.5	2	
3	2.5	
4	3	
5	4	

Table 29 Fillet relief dimensions for ground shafts and housings unit: mm

r _{s min} Smallest permissible single chamfer	Fillet re	elief dime	nsions	
dimension	t	$r_{\rm gs}$	b	77
1	0.2	1.3	2	
1.1	0.3	1.5	2.4	
1.5	0.4	2	3.2	
2	0.5	2.5	4	Fs min
2.1	0.5	2.5	4	b
3	0.5	3	4.7	
4	0.5	4	5.9	
5	0.6	5	7.4	
6	0.6	6	8.6	
7.5	0.6	7	10	

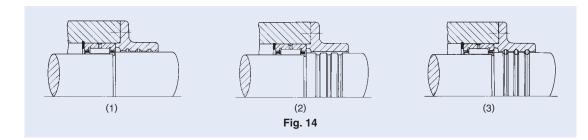
Sealing

To obtain the best performance of rolling bearings, it is necessary to prevent leakage of lubricant and the

entry of harmful foreign substances, such as dirt, dust and water. For this reason, sealing devices must always work effectively to seal and prevent against dust penetration under all operating conditions. Also, when selecting a suitable sealing method, it is necessary to consider such factors as the type of lubricant, peripheral speed of the seal, operating temperature, shaft eccentricity, seal friction, etc. as well as ease of assembly and disassembly.

Sealing methods are of the non-contact and contact types, and it is necessary to select the appropriate type depending on the application.

Non-contact type sealing method


There are many methods of non-contact type sealing, including the use of oil grooves, flingers and labyrinths, which utilize the centrifugal force and narrow gaps.

Since they do not make direct contact with the shaft or housing, it is unnecessary to consider friction and wear, and the non-contact sealing method is suitable for high speed rotation and high operating temperatures. However, because of gaps, this method is not always sufficient in preventing oil leakage and dust entry when the machine is not in operation.

Oil groove

Oil grooves are provided on either the shaft or housing bore, or on both for more effective sealing (See Fig. 14.). The clearance between the shaft and the housing bore should be as small as possible, and the values shown in Table 30 are generally used, taking into consideration errors in machining and assembly, shaft deformation, etc. Three or more grooves are made with a width of $3\!\sim\!5$ mm and a depth of $4\!\sim\!5$ mm. If the grooves are filled with grease, it will be more effective for dust prevention.

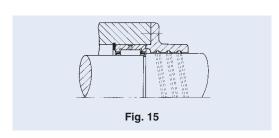
As shown in Fig. 15, helical grooves are suitable for horizontal shafts which have a fixed direction of rotation. Right or left handed grooves are used according to the direction of rotation, and they are used for oil lubrication normally in conjunction with a suitable antidust device.

В

D

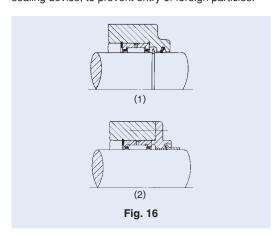
F

G


Н

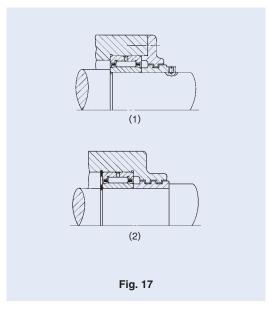
Ι

7


L

Shaft dia.	Clearance
Incl. 50 mm	0.25~0.4
Over 50 mm	0.5 ~1

Flinger


The oil flinger is a disk attached to the shaft which throws off oil due to the centrifugal force of rotation and thus prevents oil leakage and the entry of foreign particles. Fig. 16 (1) shows an example in which the flinger is located inside the housing, mainly to prevent oil leakage. Since it sucks in dust and dirt, it should be used in a dust free environment. Fig. 16 (2) shows an example in which the flinger is located outside the housing, and is used in combination with another sealing device, to prevent entry of foreign particles.

Labyrinth

Although it is a little difficult to make, the labyrinth is very effective in preventing oil leakage especially at high speeds. At low speeds, filling the labyrinth with grease is effective in preventing the entry of dust. In Fig. 17, it is necessary to split the housing or cover plate into two. In Fig. 18, it is easy to assemble, and if combined with an oil seal, it improves the sealing effect.

Table 31 shows the labyrinth clearances generally used.

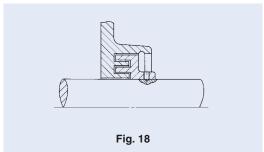


Table 31 Labyrinth clearance

unit: mm

Shaft dia.	Clearance		
Silait ula.	Radial direction	Axial direction	
Incl. 50 mm	0.25~0.4	1~2	
Over 50 mm	0.5 ~1	3~5	

Contact type sealing method

In this type of sealing, the shaft is sealed by the application of pressure resulting from the elasticity of the seal material to the sealing surface of the shaft, which rotates, reciprocates or oscillates. Synthetic rubber, synthetic resin and felt are generally used as sealing materials.

Oil seal

Synthetic rubber oil seals are the most general type of sealing used. The sealing effect is obtained when the elastic lip comes into contact with the shaft. Some lips are spring-loaded to maintain adequate pressing force

The sliding surfaces of the lip and the shaft always show frictional behavior such that the boundary lubrication and fluid lubrication are mixed. If there is an insufficient amount of oil between the contact surfaces, it will cause heat generation, wear and seizure. Conversely, if the oil film is too thick, it may cause oil leakage.

General oil seals are specified in JIS B 2402-1~5:2002. **IKD** Oil Seals for Needle Roller Bearings (See page 486.) have a low sectional height to match the Needle Roller Bearings.

Nitrile rubber is generally used as the material for oil seal lips. Table 32 shows the materials and their operating temperature ranges.

The finished surface of the shaft where the seal lip makes contact must have an appropriate surface roughness, as shown in Table 33, according to the peripheral speed. It must also have accurate circularity, and the shaft eccentricity should be less than 0.05 mm.

To increase wear resistance, the hardness of the sliding part of the shaft must be more than 40HRC. This can be achieved by hard-chrome plating or heat treatment.

Table 32 Seal materials and operating temperatures

	Seal	material	Operating temperature range °C		
	Nitrile rubber		−25~+120		
	Synthetic rubber	Acrylic rubber	− 15 ~+ 130		
		Silicon rubber	−50~+180		
	Fluoro rubber		-10∼+180		
	Tetrafluo	ethylene resin	-50∼+220		

Table 33 Peripheral speed and surface roughness of shaft

Peripheral s	peed m/s	9
Over	Incl.	μ m $R_{\rm a}$ (μ m $R_{\rm y}$)
_	5	0.8(3.2)
5	10	0.4(1.6)
10	_	0.2(0.8)

Pelt seal

Because of their simple structure, felt seals have long been used to protect grease lubrication from dust. Since felt absorbs some grease during operation, it hardly causes heat generation and seizure, but it cannot be used when the peripheral speed of the shaft is high (more than 4 m/s). Where there is a high concentration of dirt and dust, they may become attached to the contact surface of felt, sometimes scratching the shaft surface. To prevent this, two felt seals are placed apart from each other, or a felt seal is used together with a synthetic rubber seal.

A

В

D

Е

F

G

Н

Т

7

V

М

Lubrication

Purpose of Iubrication

The main purpose of bearing lubrication is to reduce friction and wear and to prevent heat generation and seizure. The lubricant and the lubricating method have a big influence on the operating performance of the bearing, and it is therefore necessary to select them suitably for the operating conditions.

The effects of lubrication are as follows.

Reduction of friction and wear

At the contact surfaces between the race rings, rolling elements and cage of the bearing, lubrication prevents metal-to-metal contact, and reduces friction and wear due to sliding and rolling, in the latter of which micro-slips occur by differential slip, skew, spin, or elastic deformation.

Elimination of frictional heat

The lubricant removes the heat generated by friction or transferred from outside, and prevents overheating of the bearing. Circulating lubrication is generally used for this purpose.

1 Influence on bearing life

The bearing life is extended if the rolling contact surfaces between the race rings and rolling elements are separated by an oil film of adequate thickness, and is shortened if the oil film is inadequate due to low oil viscosity, etc.

A Rust prevention

The lubricant prevents rust formation on the inside and outside surfaces of the bearing.

6 Dust prevention

Grease lubrication is particularly effective for dust prevention. Oil circulating or jet lubrication is effective in washing foreign particles away from the area around the bearing.

Methods of Jubrication

Grease lubrication and oil lubrication are generally used for rolling bearings. In special cases, solid lubricants are also used.

In general, grease lubrication requires the simplest sealing device. It is therefore economical, and widely used. Also, once filled with grease, the bearing can be used for a long period without replenishing the grease. However, compared with oil, its heat removal properties and cooling capacity are inferior, since grease has high flow resistance, which causes high

Oil has greater fluidity and superior heat removal properties. It is therefore suitable for high-speed operations. In addition, it is simple to filter out dust and dirt from oil. Thus it can prevent the generation of noise and vibration and increase bearing life. Another advantage of oil lubrication is that it offers the possibility for selecting the appropriate method for particular operating conditions from among various available lubrication methods. However, measures to prevent oil leakage are required. As a guideline for selection, Table 34 compares grease and oil lubrica-

For the lubricants used for IKO Spherical Bushings, see page K2.

Table 34 Comparison between grease lubrication and oil lubrication

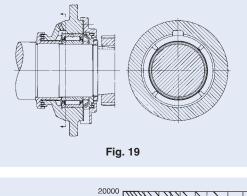
and oil lubrication				
ltem	Grease lubrication (1)	Oil lubrication		
Sealing, Housing structure	Simple	Slightly complicated		
Temperature	High temperature not allowed	High temperature allowed (Cooling effect by circulation)		
Rotational speed	Low and medium speeds	High speed allowed		
Load	Low and medium loads	High load allowed		
Maintenance	Easy	Elaborate (Pay special attention to oil leaks.)		
Lubricant replacement	Slightly complicated	Simple		
Lubrication performance	Good	Very good		
Dust filtration	Difficult	Simple		
Entry of dust and dirt		Dust and dirt can be removed by filtering in circulating lubrication.		

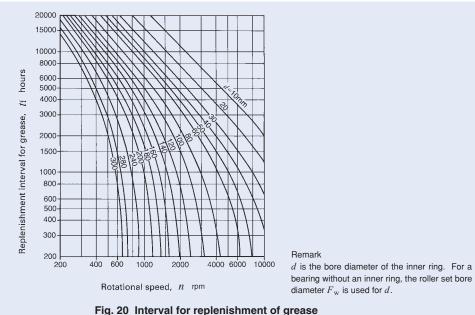
Note(1) This represents bearing grease for general use.

Grease Iubrication

1 Amount of grease to be filled

The amount of grease to be filled depends on the housing structure, dimensions, type of grease used and atmosphere. Generally, filling about 1/3 to 1/2 of the free space inside of the bearing and the housing is considered to be appropriate. Too much will cause a rise in temperature, and care should be taken especially at high speed rotations.


In Fig. 19, several grease pockets are provided by the grease sectors on one side of the bearing. Even if the filled grease is dispersed by the centrifugal force at high rotational speeds, it is trapped by the grease pockets and diverted back into the bearing again. Old grease accumulates in the space on the opposite side of the bearing, and this can be removed periodically by taking off the cover.


Fig. 19

Replenishment of grease

The life of grease depends on its type and quality, the type and dimensions of the bearing, operating conditions, temperature, amount of wear, penetration of foreign particles and water, etc.

Fig. 20 shows the replenishment intervals for grease, and is used as a general guideline. The values obtained from this diagram apply to cases in which the load condition is normal, the machine body is stationary, and the operating temperature on the outer surface of bearing outer ring is less than +70 °C. If the temperature exceeds +70 °C, as a general rule, the replenishment interval is halved for every 15°C increase.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

A

D

Н

Oil lubrication

Oil bath lubrication

This is the most commonly used oil lubrication method, and is used for medium and low speeds. If the amount of oil is too large, heat will be generated by churning, and if the amount is too small, seizure will occur. Therefore, the correct amount of oil must be maintained. When the machine is stationary, the correct oil level in the case of a bearing mounted on a horizontal shaft, is near the center of the lowest rolling element. In the case of a vertical shaft, about 50% of the surfaces of the rolling elements should be submerged in oil.

It is desirable to provide an oil gauge so that the oil level can be easily checked while the machine is stationary or running.

Oil drip lubrication

Oil drips, which are fed down from a sight-feed oiler or along a fiber string, become an oil spray due to wind pressure generated by the rotating cage, shaft, nut, etc., or they strike the rotating parts and form an oil spray, which fills up the housing and every required part. Because oil spray removes frictional heat, this method has a more effective cooling effect than the oil bath method, and is widely used for high-speed rotation and medium load conditions.

In the case of the sight-feed oiler (Fig. 21), the number of drips can be adjusted. However, this is difficult using the string-feed method. The number of drips depends on the bearing type, rotational speed, etc., but $5\sim6$ drips per minute is generally used.

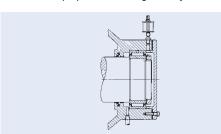


Fig. 21 Oil drip lubrication

3 Oil splash lubrication

In this method, oil is splashed in all directions by the rotation of the gear or disk. This can be used for considerably high-speed rotations without soaking the bearing directly in oil.

In the gear case where shafts and bearings are lubricated with the same oil, wear particles may be introduced into the bearing as they might get mixed with the oil. In this case, a permanent magnet is provided at the bottom of the gear case to collect metal particles, or a shield plate is installed next to the bearing. Fig. 22 shows another method in which the splashed

oil flows along the grooves in the case and accumulates in the oil pockets, keeping the oil level constant. So the oil is steadily supplied to the bearing.

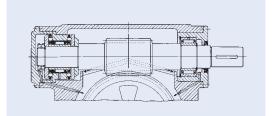


Fig. 22 Oil splash lubrication

4 Oil circulating lubrication

When automatic lubrication is more economical because lubrication is required at many points, or when cooling is required for high rotational speed, this method is used. The oil is supplied with a pump, which can control the oil pressure, and a filter or cooler, etc. can be set up in the circulation system, making this an ideal method of lubrication. As shown in Fig. 23, the oil supply and discharge ports are located opposite to each other, and the discharge port is made large to prevent the accumulation of oil.

ing. 25 On circulating lubilicat

Oil mist lubrication

After dirt and dust are removed by a filter, the oil is turned into a spray by dry compressed air, and this lubricates the bearing. When the air and oil pass through the bearing, the air cools the bearing and the oil lubricates it. In addition, because the air inside the housing is at a higher pressure than the outside air, the entry of water and foreign particles is prevented. There are many other advantages of this method, and it is suitable for high rotational speed applications such as high speed internal grinding spindles.

Oil jet lubrication

This is a highly reliable lubrication method and is used under severe conditions such as ultra-high rotational speeds and high temperatures. The speed of the oil jet should be more than 20% of the peripheral speed of the inner ring raceway surface, since the air around

the bearing rotates together with the bearing forming an air wall. As shown in Fig. 24, the jet from the nozzle blows directly into the space between the inner ring and the cage. Due to the large amount of oil being used, it is more effective to make the discharge port larger, and use the forced discharge.

When the $d_m n$ value (mean value of the bearing outside and bore diameters in millimeter x rotational speed in revolutions per minute) is more than 1,000,000, the speed of the jet should be $10\,{\sim}\,20$ m/s, the nozzle diameter should be about 1 mm, oil supply pressure should be $0.1\,{\sim}\,0.5$ MPa, and the oil supply amount should be about 500 cc/min or greater. When the rotational speed is higher, the oil supply pressure and the oil amount should be higher.

Lubricants

For rolling bearings, lubricating grease or oil is generally used. For special applications, solid lubricants are used.

Lubricating grease

Grease is a semi-solid lubricant made by mixing base oil (liquid lubricant) and a thickener under heat and adding additives as required.

There are many types of grease according to various combinations of base oil, thickeners and additives. Grease is usually classified by thickeners and base oil. Table 35 shows the general properties of each type of grease.

Table 35 Properties of various types of grease

Name (Common name)	Calcium grease	Sodium grease	Aluminum grease	Mixed base grease	Barium grease				Non-soap base grease (Non-soap grease)	
Item	(Cup grease)	(Fiber grease)	(Mobile grease)				(Diester grease)	(Silicon grease)	(Bentone grease)	
Base oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Mineral oil	Diester oil	Silicon oil	Mineral oil	Synthetic oil
Thickener	Ca soap	Na soap	Al soap	Na + Ca soap, Li + Ca soap	Ba soap	Li soap	Li soap	Li soap	Bentone	Silica gel. Polyurea, etc.
Appearance	Buttery	Fibrous and buttery	Stringy and buttery	Fibrous and buttery	Fibrous and buttery	Buttery	Buttery	Buttery	Buttery	Buttery
Pour point ℃	80~90	150~180	70~90	160~190	150~180	170~190	170~190	200~250	200~	None
Operating temperature range °C	-10~+70	-20~+120	-10~+80	-10~+100	-10~+135	-20~+120	-50~+120	−50~+180	-10~+150	~+200
Pressure resistance	Strong to weak	Strong to medium	Strong	Strong	Strong to medium	Medium	Medium	Weak	Medium to weak	Medium
Water resistance	Good	Poor	Good	Good, poor for Na+ Ca soap grease	Good	Good	Good	Good	Good	Good
Mechanical stability	Fair	Good	Poor	Good	Poor	Excellent	Excellent	Excellent	Good	Good to poor
Features and application	Contains about 1% water. When the temperature rises to more than +80 °C, the water evaporates and the grease separates into oil and soap. This is used for medium loads.	grease cannot withstand high speeds, but has good pres- sure resis- tance proper- ties. Short fibrous grease is compara-	It has water and rust resis- tant proper- ties, and adheres easily to metal sur- face.	Usable at fairly high speeds.	It has water and heat resis- tant proper- ties. This is an all-purpose grease.	This is the best all-purpose grease among soap based greases.	Excellent under low temperature conditions and has superior frictional properties. Suitable for small bearings used in mea- suring instru- ments.	Mainly used for high tem- peratures. Not suited to high speeds and heavy loads.	Generally good heat resistance. Grease having a mineral base oil is for general use. Grease having a synthetic base oil is suitable for special use where superior heat and chemical resistance properties are required.	

F

A

В

 \Box

G

Н

Ι

7

K

M

A52

As the lubricating performance of grease depends mainly on that of base oil, the viscosity of the base oil is an important property. In general, low viscosity is suitable for light-load and high-speed rotations, and high viscosity for heavy-load and low-speed rotations. Synthetic lubricants of the diester or silicon series are used instead of lubricants of the petroleum series in consideration of the pour point and high temperature stability.

2 Thickener

As shown in Table 35, metal soap bases are mostly used as thickeners. In particular, Na-soap is water-soluble and emulsifies easily, and it cannot be used in damp or wet areas. The type of thickener and the pour point of grease have a close relationship. In general, the higher the pour point, the higher the maximum usable temperature of grease. However, even when the grease uses a thickener having a high pour point, its upper operating temperature limit is low if its base oil has low heat resistance.

Occupance Occupance

This represents the hardness grade of grease. Grease becomes harder in proportion to the amount of thickener if the same thickener is used.

Immediately after grease has been stirred (usually 60 times), a depression is formed in the grease in a specified time using a specified cone. The consistency (combined consistency) is expressed by the value of depth of depression (mm) multiplied by 10.

This value gives an estimate of the fluidity during operation with a greater value for softer grease.

Table 36 shows the consistency number of grease and the relationship between the consistency and operating conditions.

Table 36 Consistency and operating conditions of grease

NLGI consistency number	Combined consistency	Application
0	$385\sim355$	For centralized lubrication,
1	340 ~ 310	For oscillating motion
2	$295\sim265$	For general use
3	$250\sim220$	For general use, For high temperature
4	$205\sim175$	For sealing with grease

Additives

Additives include various types of substances, which are added to grease in small quantities to improve its characteristics. For example, when a bearing is kept

running for long periods of time, its temperature rises. This results in oxidation of the lubricant and formation of oxides, which lead to corrosion of the bearing.

Thus, when a bearing is to be operated for long periods of time without regreasing, antioxidants are added. In addition, grease containing extreme pressure additives is suitable for use in places that are subjected to heavy loads.

6 Miscibility of different greases

In principle, it is desirable to use grease of the same brand. However, when the mixing of different greases is unavoidable, greases with the same type of thickener and with a similar type of base oil should be used.

It should be noted that if different types of grease are mixed, they may interact with each other and the consistency will become softer than that for the individual greases.

Lubricating oil

For rolling bearings, refined mineral oil or synthetic oil is used. To improve its properties, antioxidant additives, extreme pressure additives and detergent additives are added as required.

When selecting lubricating oil, it is important to select oil which has adequate viscosity under operating temperatures. If the viscosity is too low, the formation of the oil film will be insufficient, causing abnormal wear and seizure. On the other hand, if the viscosity is too high, it will generate excessive heat or increase power loss due to viscous resistance. As a general standard, oil having higher viscosity should be used for heavier loads and oil having lower viscosity should be used for higher rotational speeds.

Under conditions of normal use for various bearings, the values of viscosity shown in Table 37 will be a guideline.

The relationship between viscosity and temperature can be obtained from Fig. 25. Also, Table 38 shows examples of selecting lubricating oil according to the conditions of bearing use.

Table 37 Bearing series and required viscosity of lubricating oil

Bearing series	Kinematic viscosity at operating temperatures
Needle roller bearings Roller bearings	13 mm ² /s or more
Crossed roller bearings	20 mm ² /s or more
Thrust needle roller bearings Thrust roller bearings	32 mm ² /s or more

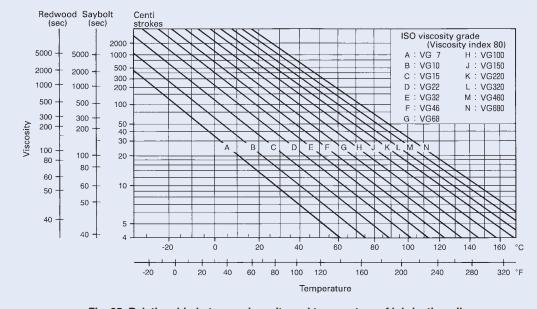
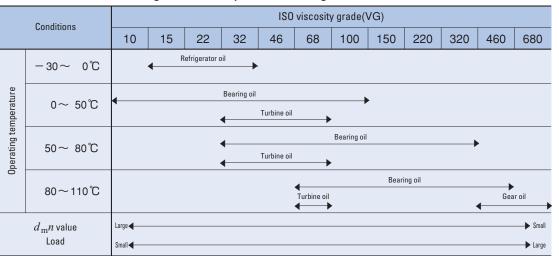



Fig. 25 Relationship between viscosity and temperature of lubricating oil

Table 38 Conditions of bearing use and examples of lubricating oil selection

Remarks · Lubricating oils are based on JIS K 2211:1992 (Refrigerating machine oils), JIS K 2239:2006 (Bearing Oil), JIS K 2213:2006 (Turbine Oil), and JIS K 2219:2006 (Gear Oil).

- · The method of lubrication in these cases is mainly oil bath lubrication or circulating lubrication.
- · When the temperature is on the high side within the operating temperature range, oils of high viscosity are used.
- $d_{\rm m}n$ represents the mean value of the bore and outside diameters (mm) of the bearing multiplied by the rotational speed (rpm).

A

В

C

D

G

Н

Ι

7

K

L

C-Lube Bearing

IKO C-Lube Bearing is a bearing that is lubricated with a newly developed thermosetting solid-type lubricant. A large amount of lubricating oil and fine particles of ultra high molecular weight polyolefin resin are solidified by heat treatment to fill the inner space of the bearing. As the bearing rotates, the lubricating oil oozes out onto the raceway in proper quantities, maintaining the lubrication performance for a long period of time.

C-Lube Bearing is available in all Needle Roller Bearing series. Also, C-Lube Bearing with food grade oil is available For Food machinery. When required, please consult **IKO** for further information.

Features of C-Lube Bearing

- · Most suitable for preventing grease dry-up in applications where lubrication is difficult.
- · Great reduction of maintenance work by extending the lubrication interval.
- Elimination of oil contamination, making this bearing most suitable for applications that would be adversely affected by oil.

Cautions for using C-Lube Bearing

- Never wash C-Lube Bearing with organic solvent and/or white kerosene which have the ability to remove fat, or leave the bearing in contact with these agents.
- The operating temperature range is -15 ~ +80 ° C.
 For continuous operation, the recommended operating temperature is +60 ° C or less.

- To ensure normal rotation of the bearing, apply a load of 1% or more of the basic dynamic load rating at use
- The allowable rotational speed is different from that of the general needle roller bearings. See the values shown in Table 39.

Table 39 Allowable rotational speed of C-Lube Bearing

Representative model	$d_{m}n(1),d_{1}n(2)$	
	Main model code	$u_{\rm m}n(),u_{\rm l}n()$
C-Lube Machined type needle roller bearing	TAF ···/SG	20 000
C-Lube cam follower	CF ···/SG	10 000
Machined type needle roller bearing	NA、TR、NAF	20 000
Shell type needle bearing	TA···Z、TLA···Z	20 000

otes(1) $d_{\rm m}n$ = (bore diameter of bearing [mm] + outside diameter of bearing [mm]) /2 × rotational speed [rpm]

(2) $d_1 n = \text{stud diameter [mm]} \times \text{rotational speed [rpm]}$

Friction and Allowable Rotational Speed

Friction

Compared with sliding bearings, the starting (static) friction for rolling bearings is small, and the difference between the starting (static) friction and the kinetic friction is also small. The loss of power and temperature rise in machines are thus reduced, improving the mechanical efficiency.

Frictional torque is influenced by the bearing type, bearing load, rotational speed, lubricant characteristics, etc. It varies according to the lubricant when operated under light-loads and high-speed conditions, and according to the load when operated under heavy-loads and low-speed conditions.

Frictional torque of rolling bearings is complicated because it is influenced by various factors, but for convenience, it can be expressed approximately by the following equations.

• Radial bearings
$$M = \mu P \frac{d}{2}$$
 ······(37)

Thrust bearings
$$M = \mu P \frac{d_{\rm m}}{2}$$
(38)

where, M: Frictional torque, N-mm

 μ : Coefficient of friction P : Bearing load, N

d : Bearing bore diameter, mm

 $d_{\rm m}$: Mean value of bearing bore and outside diameters, mm

The approximate coefficients of friction of **IKD** Bearings under operating conditions, in which lubrication and mounting are correct and where loads are relatively large and stable, are shown in Table 40.

Table 40 Coefficient of friction

Bearing series	μ	
Needle roller bearings with cage	$0.0010 \sim 0.0030$	
Full complement needle roller bearings	$0.0030 \sim 0.0050$	
Thrust needle roller bearings	$0.0030 \sim 0.0040$	
Thrust roller bearings	$0.0030 \sim 0.0040$	

Allowable rotational speed

As the rotational speed of rolling bearings is increased, the bearing temperature also increases due to the heat generated at the contact surfaces between the cage, raceways and rolling elements, until it finally leads to bearing seizure. It is therefore necessary to maintain the rotational speed of a bearing below a certain limit value to ensure safe operation for long periods. This limit value is called the allowable rotational speed.

Since the amount of heat generated is approximately proportional to the sliding speed at the contact area, this sliding speed is an approximate guide indicating the limit of the bearing rotational speed.

The allowable rotational speed of bearings thus varies according to the bearing type, size, bearing load, method of lubrication, radial clearance, and other such factors.

The allowable rotational speeds shown in the table of dimensions are empirical values. They are not absolute values and can be changed according to the bearing use conditions. Depending on the structure and accuracy around the bearing, the lubricant and the lubrication method, it is possible for some bearings to be operated at more than twice the allowable rotational speed given in the table without trouble.

Α

IKO

В

C

D

E

G

Т

_

K

L

М

Operating Temperature Range

The allowable operating temperature range for needle roller bearings is generally -20 \sim +120 $^{\circ}$ C.

When operating at temperatures outside this range, the operation may be limited by the allowable temperature range of prepacked grease, seal, cage material, etc. Further, if the bearing is used at high temperature, i.e. 120 °C or above, the amount of dimensional displacement gets larger. So special heat treatment is necessary.

The operating temperature range for some types of bearings is different from the above. See the section for each bearing.

Handling of Bearings

Precautions in handling

Since the bearing is a high-accuracy mechanical element, special attention must be paid to its handling. The following precautions should be noted when handling the bearings.

① Bearings and their surrounding parts should be kept clean. Bearings and their surrounding parts must be kept clean paying special attention to dust and dirt. Tools and the working environment should also be cleaned.

2 Bearings should be handled carefully.

A shock load during handling may cause scratches, indentations and even cracks or chips on the raceway surfaces and rolling elements.

3 Bearings should be mounted or dismounted with proper tools. When mounting and dismounting, tools suitable for the bearing type should be used.

4 Bearings should be protected against corrosion.

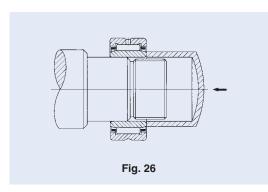
Bearings are treated with anti-corrosive oil. However, when handling them with bare hands, sweat from the hands may result in future rust formation. Gloves should be worn, or hands should be dipped in mineral oil

Mounting

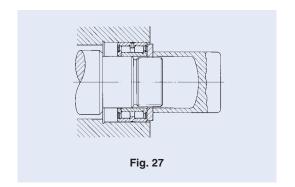
Preparation

Before mounting the bearing, the dimensions and fillets of the shaft and housing should be checked to ensure that they conform to specifications.

Bearings should be unwrapped just before mounting. In case of grease lubrication, bearings should be filled with grease without cleaning the bearings. Even in the case of oil lubrication, it is normally unnecessary to clean the bearings. However, when high accuracy is required or when using at high speeds, the bearings should be cleaned using cleaning oil to remove thoroughly oily contents. The cleaned bearings should not be left alone without anti-corrosive precautions, because bearings can easily be corroded after anti-corrosive agents are removed.


Lubricating grease is prepacked in some types of bearings. Therefore, refer to the relevant section for each bearing.

Methods of mounting


Mounting methods of bearings are different according to the type of bearing and the fit. In general, mounting of needle roller bearings is comparatively easy. However, non-separable bearings with large interferences should be handled with great care.

Mounting by press fit

Small and medium bearings with small interferences require a small pressing-in force for mounting, and they are mounted using a press at room temperature. The bearing should be pressed in carefully, applying a force evenly to the bearing with a fitting tool as shown in Fig. 26. For separable bearings, the inner and outer rings can be mounted separately, and the mounting work is simple. However, when installing the shaft and inner ring assembly into the outer ring, care should be taken not to damage the raceway surfaces and rolling elements.

When mounting non-separable bearings, the inner and outer rings are pressed in simultaneously by applying a cover plate as shown in Fig. 27. It must never happen that the inner ring is press-fitted to the shaft by striking the outer ring, or the outer ring by striking the inner ring, because the raceway surfaces and rolling elements will be scratched or indented.

When press fitting, the friction of the fitting surfaces can be reduced by applying high viscosity oil over the fitting surfaces.

The pressing-in or pulling-out force to be applied to the bearing is given on page A59.

Mounting by shrink fitting

This method is used when the interference is great or when a large bearing is to be fitted. The housing is heated and thermally expanded when fitting the outer ring to the housing and the inner ring is heated and expanded when fitting it to the shaft allowing the bearing to be set easily within a short time. The maximum allowable temperature for the shrink fit is +120 °C, and heating should be performed appropriately. Pure non-corrosive mineral oil is recommended as the heating oil for shrink fit, and insulation oil for transformers is considered to be the best. During cooling, the bearing also shrinks in the axial direction. Therefore, to ensure that there is no clearance between the bearing and the shoulder, an axial force must be applied continuously to the bearing until it has cooled.

When the interference between the outer ring and the housing is great, an expansion fit method in which the bearing is cooled using dry ice or other cooling agent before fitting can be used. Immediately after fitting, however, moisture from the air easily condenses on the bearing. Therefore, it is necessary to take preventive measures against corrosion.

A

В

C

D

G

H

Ι

7

K

Pressing force and pulling force

Guidelines for the pressing force when pressing in the inner ring to the shaft and the pulling force when pulling it out are obtained from the following equation.

$$K = f_k \frac{d}{d+2} \Delta_{df} B \left\{ 1 - \left(\frac{d}{F}\right)^2 \right\} \qquad \cdots (39)$$

where, K: Pressing or pulling force, N

 f_k : Resistance factor determined by the coefficient of friction When pressing in inner ring to shaft, f_k =4 \times 10⁴ When pulling out inner ring from shaft, f_k =6 \times 10⁴

d : Bore diameter of inner ring, mm

 Δ_{df} : Apparent interference, mm B: Width of inner ring, mm

F : Outside diameter of inner ring, mm

The actual pressing force or pulling force may be greater than the calculated value due to mounting errors. When designing a puller, it is necessary that the puller has the strength (rigidity) to withstand more than 5 times the calculated value.

Running test

After mounting the bearing, a running test is carried out to check whether the mounting is normal. Usually, it is first checked by manual turning. Then, it is operated by power gradually from no-load and low-speed up to normal operating conditions to check for abnormalities.

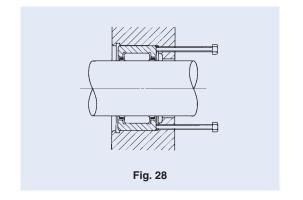
Noise can be checked by using a soundscope or similar instrument. In this test, checks are carried out for the following abnormalities.

Manual turning

- (a) Uneven torque ····· Improper mounting
- (b) Sticking and rattling ··· Scratches or indentations on the raceway surface
- (c) Irregular noise ··· Penetration of dust or foreign particles

Power running

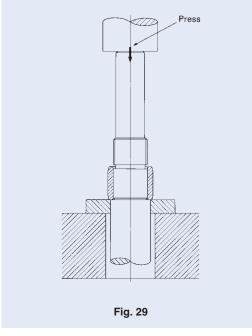
- (a) Abnormal noise or vibration ··· Indentations on the raceway surface, too great clearance
- (b) Abnormal temperature ··· Unsuitable lubricant, improper mounting, too small clearance

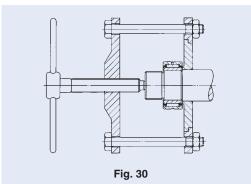

Dismounting

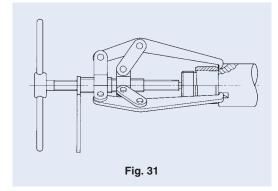
Dismounting of the bearings is carried out for the periodic inspection or repairs of machines. By inspecting the bearing, related parts or mechanisms, lubrication, etc., important data is obtained. In the same manner as in mounting, care should be taken to prevent damage to the bearing or other parts.

A suitable dismounting method should be selected according to the type of the bearing, fit, etc. Bearings mounted by interference fit are especially difficult to dismount, and it is necessary to give due consideration to the structure around the bearing during the design stage.

Dismounting of outer ring

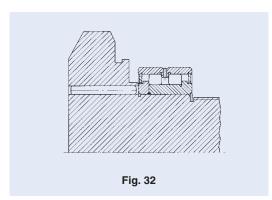

Outer rings mounted by interference fit are dismounted as shown in Fig. 28, by screwing in the push-out bolts evenly through several screw holes provided at places corresponding to the side face of the outer ring.

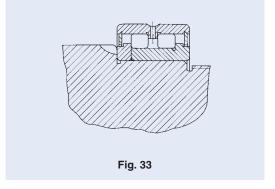



Dismounting of inner ring

In the case of bearings such as needle roller bearings in which the inner and outer rings are separable, the simplest way to press out the inner ring is by using a press as shown in Fig. 29.

The puller shown in Fig. 30 is also generally used. This is designed according to the bearing size. In addition, there are a 3-hook puller (Fig. 31) and a 2-hook puller for wide-range use.





In addition to these, when it is difficult to remove the inner ring due to high shoulders, several holes for removal pins are made through the shoulder, or several hook grooves are cut in the shoulder as shown in Fig. 32 and Fig. 33.

When a bearing is not to be used again after removal, it may be removed by heating with a torch lamp.

В

A

C

D

Е

 \overline{C}

Н

Τ

1/

IKO

Inspection of bearing

Cleaning of bearing

When inspecting a bearing after removal, the appearance of the bearing should be recorded first. Then, after the residual amount of lubricant is checked and a sample of lubricant is collected, the bearing should be cleaned.

For cleaning, light oil or kerosene is commonly used. Cleaning is divided into rough cleaning and final cleaning, and wire gauze is set as a raised bottom in a container to prevent the bearing from touching the bottom of the container.

Lubricating grease and adhering substances such as foreign particles are removed with a brush, etc., using oil for rough cleaning. Care should be taken during this process, because if the bearing is turned with foreign particles attached, the raceway surfaces may be scratched.

Final cleaning is carried out by turning the bearing in cleaning oil. It is desirable that the cleaning oil is kept clean by filtering. Immediately after cleaning, the bearing must be protected against corrosion.

Inspection and evaluation of bearing

The judgement as to whether the removed bearing is reusable depends on the inspection after cleaning. Conditions of the raceway surfaces, rolling elements and fitting surfaces, wear condition of the cage, increase of bearing clearance, dimensions, rotational accuracy, etc. should be checked for damage and abnormalities.

The evaluation is performed based on the experience taking into consideration the degree of damage, machine performance, importance of the machine, operating conditions, period until the next inspection, and other such factors.

Maintenance and inspection

Maintenance and inspection

Maintenance and inspection are carried out to maintain good performance of bearings installed in the machine.

Maintenance is performed by checking the machine operating conditions, checking and replenishing or replacing the lubricant, checking the bearing and related parts by periodic disassembly and other such procedures.

Items for inspection of a running bearing in a machine include the bearing temperature, noise, vibration and condition of lubricant.

When any abnormality is found during operation, the cause should be investigated and measures taken by referring to the section on running test on page 62. When removing a bearing, refer to the section on dismounting on page A59.

Damage, causes and corrective action

Rolling bearings can generally be used fully up to their rolling fatigue life if they are properly selected, mounted, operated and maintained. However, they may actually be damaged earlier than their expected lifetimes creating problems or accidents. Common causes of damage include improper mounting or handling, insufficient lubrication and penetration of foreign particles.

It may be difficult to determine the exact cause of a problem by checking only the damaged bearing. The conditions of the machine before and after the occurrence of the damage, the location and the operating and ambient conditions of the bearing, the structure around the bearing, etc. should also be examined. It then becomes possible to assess the cause of the damage by linking the conditions of the damaged bearing to the probable causes arising from the machine operation, and to prevent the recurrence of similar problems.

Common types of damage, causes and corrective action are listed in Table 41.

Table 41 Damage, causes and corrective action

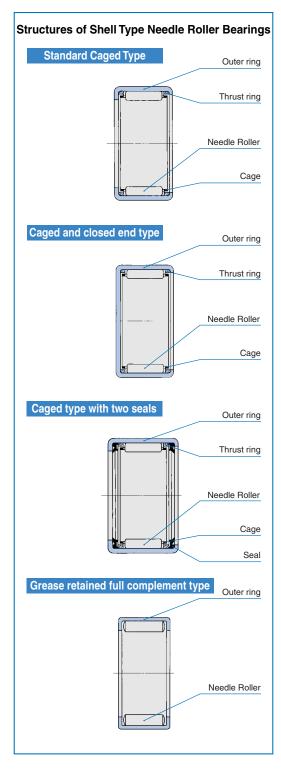
Condition of bearing damage		Cause	Corrective action		
	Flakings at opposite circumferential positions on raceway surfaces	Improper roundness of housing bore	Correction of housing bore accuracy		
Flaking	Flakings in the vicinity of raceway surface edges and roller ends	Improper mounting, Shaft deflection, Poor centering, Poor accuracy of shaft or housing	Careful mounting, Careful centering, Correction of shoulders of shaft and housing for right angles		
	Flakings on raceway surfaces with an interval corresponding to roller pitch	Great shock load when mounting, Rusting during machine stoppage	Careful mounting, Protection against rust for long periods of machine stoppage		
	Early flaking on raceway surfaces and rolling elements	Too small clearance, Too great load, Poor lubrication, Rusting, etc.	Correct selection of fit and clearance Correct selection of lubricant		
Galling	Galling on raceway surfaces and rolling surfaces of rollers	Poor lubrication in early stage Grease consistency too hard High acceleration at start	Selection of softer grease, Avoiding quick acceleration		
Ğ	Galling between roller end faces and collar guide surfaces	Poor lubrication, Poor mounting, Large axial load	Correct selection of lubricant Correct mounting		
er.	Cracks in outer or inner ring	Excessive shock load, Too much interference. Poor cylindricity of shaft. Too large fillet radius, Development of thermal cracks, Development of flaking	Reevaluation of load conditions, Correction of fit, Correction of machining accuracy of shaft or sleeve, Making fillet radius smaller than the chamfer dimension of bearing		
Breakage	Cracked rolling elements, broken collar	Development of flaking Shock to collar when mounting, Dropped by careless handling	Careful handling and mounting		
	Broken cage	Abnormal load to cage by poor mounting, Poor lubrication	Minimizing mounting errors, Study of lubricating method and lubricant		
Dent	Indentations on raceway surfaces at an interval corresponding to the pitch between rolling elements (brinelling)	Shock load applied when mounting, Excessive load while stopping	Careful handling		
De	Indentation on raceway surfaces and rolling surfaces of rollers	Biting of foreign substances such as metal chips and sands	Cleaning of housing, Improvement of sealing, Use of clean lubricant		
	False brinelling (Phenomenon like brinelling)	Vibration when the bearing is stationary such as during transportation, Oscillating motion with small amplitude	Fixing of shaft and housing, Use of lubricating oil, Application of preload to reduce vibration		
Abnormal wear	Fretting Localized wear of fitted surfaces accompanied by red-brown wear particles	Sliding between fitted surfaces	Increase of interference, Application of oil		
Abno	Wear on raceway surfaces, collar surfaces, rolling surfaces of rollers, cages, etc.	Penetration of foreign particles, Poor lubrication, Rust	Improvement of sealing, Cleaning of housing Use of clean lubricant		
	Creep Wear on fitted surfaces	Sliding between fitted surfaces, Insufficient tightening of sleeve	Increase of interference, Correct tightening of sleeve		
Seizure	Discoloration of rolling elements and/or raceway surfaces and/or flange surfaces, Adhesion and welding, Discoloration of cage	Poor lubrication, Too small clearance, Poor mounting	Supply of proper amount of proper lubricant, Rechecking of fit and bearing clearance Rechecking of mounting dimensions and related parts		
Electric corrosion	Ripples on raceway surfaces	Melting by sparks due to electric current	Insulation of bearing, Grounding to avoid electric current		
Rust, corrosion	Rust or corrosion on bearing inside surfaces or on fitted surfaces	Condensation of vapor in air, Penetration of corrosive substances	Careful storage if under high temperature and high humidity, Protection against rust, Improvement of sealing		

Е

Description of Each Series & Table of Dimensions

Sileli Type Needle Ruller Dearligs	IA.ITA.BA.BHA
Needle Roller Cages for general usage	KT ————————————————————————————————————
Needle Roller Cages for engine connecting rods	KT···EG·KTV···EG C17
Machined Type Needle Roller Bearings	NA·TAFI·TRI·BRI D1
C-Lube Machined Type Needle Roller Bearings	TAF···/SG D91
Needle Roller Bearings with separable cage	NAF D95
Roller Bearings	NAG·NAU·TRU·NAS E1
Thrust Bearings	NTB·AS·AZK·WS·GS F1
Combined Type Needle Roller Bearings	NAX·NBX·NATA·NATB G1
Inner Rings	IRT·IRB·LRT·LRB H1
Cam Followers	CF·NUCF·CFS·CR I1
Roller Followers	NAST·NART·NURT I71
Crossed Roller Bearings	CRBF·CRBH·CRBC·CRB·CRBS·CRBT J1
Spherical Bushings	SB·GE·SBB K1
Pilloballs	PB·PHS·POS·PHSB·POSB·PHSA K29
L-balls	LHSA·LHS K45
Super Flexible Nozzles	SNA·SNM·SNPT K55
Parts For Needle Roller Bearings	OS·DS·WR·AR·Needle Roller L1

- Shell Type Caged Needle Roller Bearings
- Shell Type Grease Retained Full Complement Needle Roller Bearings



Structure and features

IKO Shell Type Needle Roller Bearings are lightweight bearings with large load ratings. They employ a shell type outer ring made from a thin special-steel plate which is accurately drawn, carburized and quenched, thus providing the lowest sectional height among the needle roller bearings.

There are two types of bearings available in this series; the caged type and the full complement type. The appropriate type can be selected according to the operating conditions. The caged type has a structure in which the needle rollers are accurately guided by the cage and thrust rings. It is useful for applications at high-speed rotation. The full complement type needle roller bearing, on the other hand, is suitable for heavy-load applications at low-speed rotation.

Since these bearings are press-fitted into the housing, no fixtures for axial positioning are needed. They are ideal for use in mass-produced articles that require economy, and have a wide variety of applications.

B1 B2

TLA

ВА

вна

Tvpes

Numerous varieties of Shell Type Needle Roller Bearings are available as shown in Table 1.

Table 1 Type of bearing

	Туре		Caged		Full complement
Series		Standard	Closed end	With seals (1)	Grease retained
Metric series	_	TLA ···Z	TLAM	$TLA\cdotsUU$	YTL
WELLIG SELIES	Heavy duty	TA ···Z	TAM	_	YT
Inch series	_	BA ···Z	BAM	_	YB
men series	Heavy duty	BHA ··· Z	BHAM	_	YBH

Note(1) When the heavy duty type with seals or the closed end type with one seal is required, please consult **IXC**.

Remark A "W" is added to the model code to indicate that the rolling elements are of the double-row type.

Example TAW 5045 Z

Shell Type Caged Needle Roller Bearings

Standard type

This type has a narrow gap between the bore of the marked-side flange of the outer ring (brand, bearing number, etc. are marked) and the shaft, which prevents grease leaks and the entry of foreign particles. This type has wide applications.

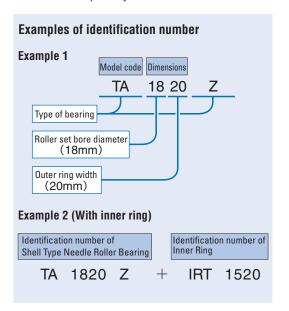
Closed end type

This type is completely closed on one side of the outer ring, and is ideal for use when perfect closing of shaft ends is desired.

The shape of the closed end surface of the outer ring is divided into two types, and the dimensions t_1 and t_2 in the illustrations shown in the dimension tables apply to the bearings with the roller set bore diameters, $F_{\rm w} > 22$ and $F_{\rm w} \le 22$, respectively.

Type with seals at both sides

This type has a wider outer ring than the standard type and is installed with seals consisting of a reinforcing ring and special synthetic rubber to prevent grease leaks and the entry of foreign particles.


Shell Type Grease Retained Full Complement Needle Roller Bearings

This type has full complement rollers which extend to the full width of the outer ring raceway. It can, therefore, withstand heavy bearing loads and is most suitable for low and medium rotational speeds as well as rocking motions. As lubricating grease is prepacked with the rollers, the bearing can be operated immediately after being fitted.

Identification Number

The identification number of Shell Type Needle Roller Bearings consists of a model code and dimensions. Examples of the arrangement are shown below.

When using with inner rings, the assembled inner rings shown in the dimension tables are used. An example in this case is also shown below. Inner rings are delivered separately.

Accuracy

The outer rings of Shell Type Needle Roller Bearings are thin and therefore cannot avoid deformation due to heat treatment. It is thus not appropriate to take direct measurements of the bearing. The roller set bore diameter is measured using a plug gauge or tapered gauge after press-fitting the bearing to a suitable ring gauge. The gauge specifications are shown in Tables 2.1 and 2.2.

Tolerances of outer ring width ${\cal C}$ are shown in Table 3

Table 2.1 Measuring gauges for metric series bearings unit: mm

Non-interest TA···Z(1) TLA···Z(2) Go No-go	$F_{ m W}$	Ring (gauge	Plug	gauge
5 — 8.981 5.004 5.016 6 — 9.981 6.004 6.016 7 — 10.977 7.005 7.020 8 14.992 11.977 8.005 8.020 9 15.992 12.977 9.005 9.020 10 16.992 13.977 10.005 10.020 12 18.991 17.977(3) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 25.972 20.007 20.028 21 28.991(5) 27.972 22.007 22.028 24 30.989(6) </th <th></th> <th>TA Z(1)</th> <th>TLA Z(2)</th> <th>Go</th> <th>No-go</th>		TA Z(1)	TLA Z(2)	Go	No-go
6 — 9.981 6.004 6.016 7 — 10.977 7.005 7.020 8 14.992 11.977 8.005 8.020 9 15.992 12.977 9.005 9.020 10 16.992 13.977 10.005 10.020 12 18.991 15.977(3) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991(4) 27.991(4) 25.972 20.007 20.028 21 28.991(5) 27.972 22.007 22.028 24 30.989(6) — 24.007 24.028 25 32.989 31.967 25.007 25.028	4	_	7.981	4.004	4.016
7 — 10.977 7.005 7.020 8 14.992 11.977 8.005 8.020 9 15.992 12.977 9.005 9.020 10 16.992 13.977 10.005 10.020 12 18.991 15.977(3) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 (4) 25.972 20.007 20.028 21 28.991 (5) 27.972 22.007 22.028 22 28.991 (5) 27.972 22.007 22.028 24 30.989 (6) 31.987 (25.007 25.028 25	5	_	8.981	5.004	5.016
8 14.992 11.977 8.005 8.020 9 15.992 12.977 9.005 9.020 10 16.992 13.977 10.005 10.020 12 18.991 15.977(3) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.991(5) 25.972 20.007 20.028 21 28.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) — 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 <t< td=""><td>6</td><td>_</td><td>9.981</td><td>6.004</td><td>6.016</td></t<>	6	_	9.981	6.004	6.016
9 15.992 12.977 9.005 9.020 10 16.992 13.977 10.005 10.020 12 18.991 15.977(3) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.991(4) 25.972 20.007 20.028 21 28.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) — 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028	7	_	10.977	7.005	7.020
10 16.992 13.977 10.005 10.020 12 18.991 15.977(3) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 (4) 25.972 20.007 20.028 20 26.991 (4) 25.972 20.007 20.028 21 28.991 (5) 27.972 22.007 22.028 24 30.989 (6) — 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989	8	14.992	11.977	8.005	8.020
12 18.991 15.977(³) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(⁴) 27.991(⁵) 25.972 20.007 20.028 21 28.991(⁵) 29.991(⁵) 27.972 22.007 22.028 24 30.989(⁶) 31.989(⁶) — 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 3	9	15.992	12.977	9.005	9.020
12 18.991 17.977(³) 12.006 12.024 13 — 18.972 13.006 13.024 14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(⁴) 27.991(⁵) 29.991(⁵) 25.972 29.991(⁵) 20.007 20.028 24 30.989(⁶) 31.989(⁶) — 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034	10			10.005	10.020
14 21.991 19.972 14.006 14.024 15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.972 20.007 20.028 21 28.991 — 21.007 21.028 22 28.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) 31.989 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35	12	18.991		12.006	12.024
15 21.991 20.972 15.006 15.024 16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.991 25.972 20.007 20.028 21 28.991 (5) 29.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) 31.989(7) 25.007 25.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 50.009 50.034 55 66.988 62.961 55.010 55.040 <td>13</td> <td>-</td> <td>18.972</td> <td>13.006</td> <td>13.024</td>	13	-	18.972	13.006	13.024
16 23.991 21.972 16.006 16.024 17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.991(4) 25.972 20.007 20.028 21 28.991 5 27.972 22.007 21.028 22 28.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) 31.987 25.007 25.028 25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 —	14	21.991	19.972	14.006	14.024
17 23.991 22.972 17.006 17.024 18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.972 20.007 20.028 21 28.991 — 21.007 21.028 22 28.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.987 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009	15	21.991	20.972	15.006	15.024
18 24.991 23.972 18.006 18.024 19 26.991 — 19.007 19.028 20 26.991(4) 27.991(4) 25.972 20.007 20.028 21 28.991 — 21.007 21.028 22 28.991(5) 29.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) 31.987 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65	16	23.991	21.972	16.006	16.024
19 26.991 — 19.007 19.028 20 26.991(4) 27.991(4) 25.972 20.007 20.028 21 28.991 — 21.007 21.028 22 28.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) 31.987 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 55.010 55.040 50 61.988 57.961	17	23.991	22.972	17.006	17.024
20 26.991(4) 27.991(4) 25.972 20.007 20.028 21 28.991 — 21.007 21.028 22 28.991(5) 29.991(5) 27.972 22.007 22.028 24 30.989(6) 31.989(6) 31.989(6) 31.989 — 26.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 50.009 50.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	18	24.991	23.972	18.006	18.024
20 27.991(4) 20.007 20.028 21 28.991 (5) 27.972 22.007 21.028 22 28.991(5) 27.972 22.007 22.028 24 30.989(6) - 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 - 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 - 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 - 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 - 37.009 37.034 38 47.989 - 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 50.009 50.034 50 61.988	19		_	19.007	19.028
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20		25.972	20.007	20.028
22 29.991(5) 27.972 22.007 22.028 24 30.989(6) - 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 - 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 - 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 - 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 - 37.009 37.034 38 47.989 - 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 - 60.010 60.040 62 73.988 - 62.010 62.040 65 76.988 - 65.010 65.040 70 81.987 - 70.010 <td< td=""><td>21</td><td></td><td>_</td><td>21.007</td><td>21.028</td></td<>	21		_	21.007	21.028
24 30.989(6) - 24.007 24.028 25 32.989 31.967 25.007 25.028 26 33.989 - 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 - 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 - 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 - 37.009 37.034 38 47.989 - 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 - 60.010 60.040 62 73.988 - 62.010 62.040 65 76.988 - 65.010 65.040 70 81.987 - 70.010 70.040	22		27.972	22.007	22.028
25 32.989 31.967 25.007 25.028 26 33.989 — 26.007 26.028 28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 65.010 65.040 70 81.987	24	30.989 ⁽⁶⁾	_	24.007	24.028
28 36.989 34.967 28.007 28.028 29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	25		31.967	25.007	25.028
29 37.989 — 29.007 29.028 30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	26	33.989	_	26.007	26.028
30 39.989 36.967 30.007 30.028 32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	28	36.989	34.967	28.007	28.028
32 41.989 — 32.009 32.034 35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	29	37.989	_	29.007	29.028
35 44.989 41.967 35.009 35.034 37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	30	39.989	36.967	30.007	30.028
37 46.989 — 37.009 37.034 38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	32	41.989	_	32.009	32.034
38 47.989 — 38.009 38.034 40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	35	44.989	41.967	35.009	35.034
40 49.989 46.967 40.009 40.034 45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	37	46.989	_	37.009	37.034
45 54.988 51.961 45.009 45.034 50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	38	47.989	_	38.009	38.034
50 61.988 57.961 50.009 50.034 55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	40	49.989	46.967	40.009	40.034
55 66.988 62.961 55.010 55.040 60 71.988 — 60.010 60.040 62 73.988 — 62.010 62.040 65 76.988 — 65.010 65.040 70 81.987 — 70.010 70.040	45	54.988	51.961	45.009	45.034
60 71.988 - 60.010 60.040 62 73.988 - 62.010 62.040 65 76.988 - 65.010 65.040 70 81.987 - 70.010 70.040	50	61.988	57.961	50.009	50.034
62 73.988 - 62.010 62.040 65 76.988 - 65.010 65.040 70 81.987 - 70.010 70.040	55	66.988	62.961	55.010	55.040
65 76.988 - 65.010 65.040 70 81.987 - 70.010 70.040	60	71.988	-	60.010	60.040
70 81.987 - 70.010 70.040	62	73.988	-	62.010	62.040
	65	76.988	_	65.010	65.040
		81.987	_	70.010	70.040

Notes(1) Also applicable to TAM and YT

- (2) Also applicable to TLAM, YTL, TLA...UU
- (3) The upper value is for TLA 1210Z model, and the lower value is for TLA 1212Z model.
- (4) The lower value is for TA 202820Z model, and the upper value is for models other than TA 202820Z model.
- (5) The lower value is for TA 223016Z and TA 223020Z models, and the upper value is for models other than those models.
- (6) The lower value is for TA 243216Z and TA 243220Z models, and the upper value is for models other than those models.

Table 2.2 Measuring gauges for inch series bearings unit

	Dearings drint. Illi											
F_{W}		gauge	Plug	gauge								
Nominal roller set bore diameter	BA Z(1)	BHA Z(2)	Go	No-go								
3.969	7.155	_	3.990	4.016								
4.762	8.730	_	4.783	4.808								
6.350	11.125	_	6.388	6.414								
7.938	12.713	14.300	7.976	8.001								
9.525	14.300	15.888	9.563	9.588								
11.112	15.888	17.475	11.151	11.176								
12.700	17.475	19.063	12.738	12.764								
14.288	19.063	20.650	14.326	14.351								
15.875	20.650	22.238	15.913	15.938								
17.462	22.238	23.825	17.501	17.526								
19.050	25.387	26.975	19.063	19.088								
20.638	26.975	28.562	20.650	20.676								
22.225	28.562	30.150	22.238	22.263								
23.812	30.150	_	23.825	23.851								
25.400	31.737	33.325	25.413	25.438								
26.988	33.325	_	27.000	27.026								
28.575	34.912	38.087	28.588	28.613								
30.162	38.087	_	30.175	30.201								
31.750	38.087	41.262	31.763	31.788								
33.338	41.262	_	33.350	33.378								
34.925	41.262	44.437	34.938	34.966								
38.100	47.612	_	38.113	38.143								
41.275	50.787	_	41.288	41.318								
44.450	53.962	57.137	44.463	44.496								
47.625	57.137	_	47.638	47.671								
50.800	60.312	_	50.815	50.848								
52.388	_	64.280	52.413	52.451								
53.975	63.487	_	53.990	54.028								
57.150	66.662	_	57.165	57.203								
66.675	76.187	_	66.700	66.738								
69.850	79.362	_	69.875	69.914								
Notoc(1) Ale	a applicable	to DAM and V	D									

Notes(1) Also applicable to BAM and YB

(2) Also applicable to BHAM and YBH

Table 3 Tolerances of outer ring width C unit: mm

	•
Series	Tolerance
Metric	0~-0.20
Inch	0~-0.25

As the outer ring is thin, the correct dimensions and accuracy of Shell Type Needle Roller Bearings are obtained only after they have been press-fitted into the housing bore. Bearing accuracy is directly affected by housing dimensions, shape and rigidity. This should be taken into account when considering fit and accuracy. The radial clearance after fitting the bearing to the shaft and the housing bore varies with their tolerances.

Table 4 shows the recommended fit for Shell Type Needle Roller Bearings.

Table 5 shows a calculation example of radial clearance after fitting. This calculation applies to bearings without inner ring to be fitted into rigid steel or cast iron housings. When the housing is made of light alloy or a thin steel pipe, it is necessary to check dimensions by actual measurement.

Generally, when making the radial clearance smaller, it is recommended that the shaft diameter be increased, without decreasing the housing bore diam-

Table 4 Recommended fit

			Tolerance class		
Type of bearing	Housing material	Shat	ft (¹)	Housing bore	
		Without inner ring	With inner ring	riousing bore	
TA…Z, BA…Z, BHA…Z, TAM, BAM, BHAM,	Steel Cast iron	h6	k5(j5)	J7	
YT, YB, YBH	Light alloy (Thin steel pipe)	h6	k5(j5)	M7(N7)	
TLA ···Z, TLAM, YTL,	Steel Cast iron	h6	k5(j5)	N7	
TLA····UU	Light alloy (Thin steel pipe)	h6	k5(j5)	R7(S7)	

Note(1) When housings are made of light alloy or a thin steel pipe, the roller set bore diameter is greatly affected by the housing thickness and shape. Therefore, before mass-production assembly, assembly tests should be carried out to confirm the amount of dimensional change and to determine the tolerance of the shaft which will give normal clearances.

Table 5 Calculation example of radial clearance after fitting

rable 3 Calculation example of radial clearance after fitting unit: mm										
	Calculation procedure	Example of TLA 2020 Z								
5 //////	$ \begin{array}{c} \bullet \text{Dimension of roller set bore diameter of bearing after it has been press-fitted into the ring gauge.} \\ \text{Dimension of ring gauge } (D_0) \text{: See Tables 2.1 and 2.2 on page B4.} \\ \text{Max. value of roller set bore dia.} (F_{\text{w max}}) \text{: No-go dimension of plug gauge Min. value of roller set bore dia.} (F_{\text{w min}}) \text{: Go dimension of plug gauge} \\ \end{aligned} $	$\begin{array}{l} \text{From Table 2.1 on page B4} \\ D_0 &= 25.972 \\ F_{\text{w max}} = 20.028 \\ F_{\text{w min}} = 20.007 \end{array}$								
(L)	$\ensuremath{\mathbf{Q}}$ Dimension of housing bore (D_{\max}) : See the dimension table. Min. value of housing bore (D_{\min}) : See the dimension table.	From the dimension table on page B14, $D_{\rm max} = 25.993$ $D_{\rm min} = 25.972$								
	$ \textbf{3} \ \text{Dimension of roller set bore diameter of bearing after it has been press-fitted into the housing bore Max. value of roller set bore dia. \\ (F_{\text{we max}}) = (D_{\text{max}} - D_0) + F_{\text{w max}} \\ \text{Min. value of roller set bore dia.} \\ (F_{\text{we min}}) = (D_{\text{min}} - D_0) + F_{\text{w min}} \\)$	From the equations, $F_{\rm we\ max} = 20.049$ $F_{\rm we\ min} = 20.007$								
///////λ	$ \begin{tabular}{ll} \hline Φ Dimension of shaft \\ Max. value of shaft dia. $(F_{\rm max})$: See the dimension table. \\ Min. value of shaft dia. $(F_{\rm min})$: See the dimension table. \\ \end{tabular} $	From the dimension table on page B14, $F_{\rm max} = 20.000$ $F_{\rm min} = 19.987$								
$\begin{array}{ll} D & \text{: Housing bore diameter} \\ F_{\text{w}} & \text{: Roller set bore diameter} \\ F & \text{: Shaft diameter} \\ G_{\text{r}} & \text{: Radial clearance} \end{array}$		From the equations, $G_{\rm rmax}=0.062$ $G_{\rm rmin}=0.007$ The radial clearance after mounting becomes 0.007~0.062 mm.								

Lubrication

Bearings with prepacked grease are shown in Table 6. ALVANIA GREASE S2 (SHOWA SHELL SEKIYU K.K.) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication for use. If the bearings are operated without lubrication, the wear of the roller contact surfaces will increase and the bearing life will be shortened.

Table 6 Bearings with prepacked grease

Oil Hole

For Shell Type Needle Roller Bearings with an oil hole, "OH" is appended to the end of the identification

Example TA 2525 Z OH

The symbol "OH" is not marked on the bearing itself, but is shown on its packaging, etc. When bearings with multiple oil holes are required, please consult IKO.

O: With prepacked grease X: Without prepacked grease

	Bearing type		Full complement		
Series		Standard	Closed end	With seals	Grease retained
Metric series	TLA, TLAM, YTL	×	×	0	0
	TA, TAM, YT	×	×	_	0
Inch series	BA, BAM, YB	×	×	_	0
	BHA, BHAM, YBH	×	×	_	0

Static Safety Factor

Since Shell Type Needle Roller Bearings employ an outer ring made from a thin steel plate which is drawn, carburized and quenched, excessively large loads must be avoided. The required static safety factor is usually more than 3.

Specifications of shaft and housing

Shell Type Needle Roller Bearings are commonly used without an inner ring. In such cases, the surface hardness of the raceway surface should be 58~ 64HRC and the surface roughness should not exceed $0.2 \mu mR_a$. However, when the operating condition is not severe, a surface roughness $0.8 \mu mR_a$ or less can be used.

If the surface hardness is low, the load rating must be corrected by the hardness factor shown on page A20. When the shaft cannot be heat treated and finished by grinding, the use of IKO Inner Rings for Shell Type Needle Roller Bearings (See page H1.) is recommended.

Mounting

Shell Type Needle Roller Bearings should be pressed into the housings gently using the appropriate tool as shown in Fig. 1, with their marked end surface up. As the outer ring is thin, it must never be struck directly with a hammer.

Since the outer rings of Shell Type Needle Roller Bearings are firmly fitted to housing bores with interference, it is unnecessary to fix them axially. Fig. 2 shows mounting examples.

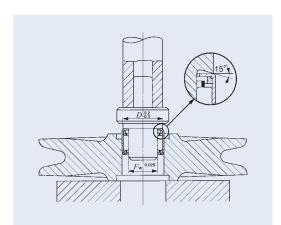
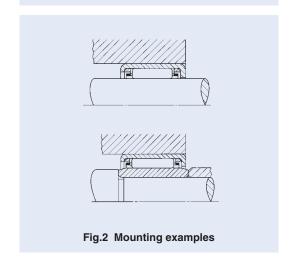



Fig.1 Example of mounting tool

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

B6

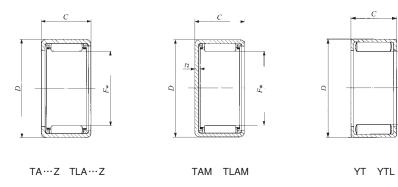
В

TLA

ВА

вна

SHELL TYPE NEEDLE ROLLER BEARINGS



Shaft dia. 4 – 10 mm

Shaft	Identification number												
dia.	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)			
4	_ _		_	_	TLA 48 Z 1.54 TLAM 48		1.67	 YTL 48	1.73				
5			_ _	_	TLA 59 Z	1.9	TLAM 59	2 —	 YTL 59	2.4			
6	_	_	_	_	TLA 69 Z	2.2	TLAM 69	2.3	_				
7	_	_	_	_	TLA 79 Z	2.5	TLAM 79	2.7	_	_			
	_	_	_	_	TLA 810 Z	3.1	TLAM 810	3.3	_	_			
8	TA 810 Z 6.7 TA 815 Z 9.7 TA 820 Z 12.9		TAM 810 7. TAM 815 10. TAM 820 13.		_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _			
		_		_	_		_		YT 810	7.7			
		_ _	_ _	_ _	TLA 910 Z TLA 912 Z	3.4 4	TLAM 910 TLAM 912	3.6 4.3		_ _			
9	TA 912 Z TA 916 Z	8.7 11.4	TAM 912 TAM 916	9.2	_ _ _	_ _	_ _	_ _	 YT 912	 10.1			
					TLA 1010 Z	3.7	TLAM 1010	4		10.1			
	_ _	_	_	_ _	TLA 1012 Z TLA 1015 Z	4.4 5.5	TLAM 1012 TLAM 1015	4.8 5.9	_ _	_			
10	TA 1010 Z 7.9 TA 1012 Z 9.3 TA 1015 Z 11.5 TA 1020 Z 15.4		TAM 1010 8.5 TAM 1012 10 TAM 1015 12.2 TAM 1020 16				_ _ _ _		_ _ _ _				

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

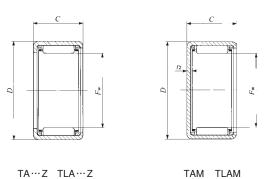
Bou		dime	ensions	S	tandard	mounting	g dimensi	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
E	D		t_2	Shaft h		J	Housing	bore dia. N		C	C_0	speed(1)	
F_{w}	D	С	Max.	Max.	Min.	Max.	Min.	Max.	Min.	N	N	rpm	
4 4	8	8	1	4.000	3.992	_	_	7.996	7.981	1 350 3 010	1 010 2 900	75 000 40 000	
5 5	9	9	1	5.000	4.992	_	_	8.996	8.981	1 880 4 320	1 600 4 750	65 000 30 000	_ _
6	10	9	1	6.000	5.992	_	_	9.996	9.981	2 100	1 900	55 000	
7	11	9	1	7.000	6.991	_	_	10.995	10.977	2 490	2 450	50 000	_
8	12	10	1	8.000	7.991	_	_	11.995	11.977	3 320	3 670	45 000	_
8 8 8	15 15 15 15	10 15 20 10	1.3 1.3 1.3	8.000	7.991	15.010	14.992	_	_	3 470 5 780 8 340 7 530	2 880 5 570 8 920 7 950	45 000 45 000 45 000 19 000	
9	13 13	10 12	1 1	9.000	8.991	_	_	12.995	12.977	3 500 4 460	4 040 5 510	45 000 45 000	
9 9 9	16 16 16	12 16 12	1.3 1.3 —	9.000	8.991	16.010	15.992		_	5 140 6 960 9 690	4 880 7 210 11 200	45 000 45 000 17 000	_ _ _
10 10 10	14 14 14	10 12 15	1 1 1	10.000	9.991	_	_	13.995	13.977	3 870 4 920 6 390	4 740 6 460 9 040	40 000 40 000 40 000	IRT 710 IRT 712 IRT 715
10 10 10 10	17 17 17 17	10 12 15 20	1.3 1.3 1.3 1.3	10.000	9.991	17.010	16.992	_	_	4 150 5 590 6 920 9 990	3 780 5 540 7 300 11 700	40 000 40 000 40 000 40 000	IRT 710 IRT 712 IRT 715 —

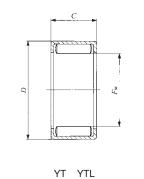
В8

B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS




Shaft dia. 12 – 15 mm

					Identification n	umber				
Shaft dia. mm	Standard	andard Mass Closed end (Ref.) g		Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
	_ _		_ _	_	TLA 1210 Z —	4.3	TLAM 1210 —	4.7 —	 YTL 1210	— 5.1
		_	_	_	TLA 1212 Z	8.6	TLAM 1212	9.4	_	
12	TA 1212 Z TA 1215 Z TA 1220 Z	10.5 13.1 17.3	TAM 1212 TAM 1215 TAM 1220	11.5 14 18.3		_	_	_	_	_
	TA 1220 Z	21.5	TAM 1225	22.5	_		_		_	
			_	_	_	_	_	_	YT 1212	12.8
13	_	_	_	_	TLA 1312 Z	9.2	TLAM 1312	10.1	_	_
		_	_	_	TLA 1412 Z TLA 1416 Z	9.8 13.2	TLAM 1412 TLAM 1416	10.8 14.3	_	
14	TA 1416 Z	18.4	TAM 1416	19.6	_	_	_	_	_	
	TA 1420 Z	23	TAM 1420	24	_		<u> </u>	_	_	
	_	_	_	_	TLA 1512 Z TLA 1516 Z	10.4 14	TLAM 1512 TLAM 1516	11.5 15.2	_	
	_	_	_	_	TLA 1522 Z	19.1	TLAM 1522	20.5	_	_
15	TA 1510 Z	10.8	TAM 1510	12.3	_	_	_	_	_	_
	TA 1512 Z TA 1515 Z	12.9 15.9	TAM 1512 TAM 1515	14.3	_	_	_	_	_	_
	TA 1513 Z	21	TAM 1513	22.5	_		_		_	
	TA 1525 Z	25	TAM 1525	26.5	_	_	_	_	_	_

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

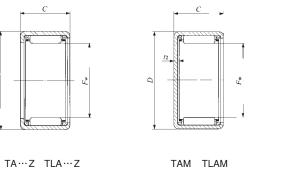
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

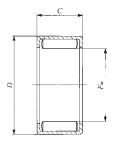
Bou		dime	ensions	S	standard	mounting	g dimensi	ions mn	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
				Shaf			Housing	bore dia.		C	C_0	speed(1)	
F_{w}	D	C	t ₂ Max.	h Max.	6 Min.	J Max.	J7 N7 Min. Max. Min.		N	N	rpm		
12 12	16 16	10 10	1 —	12.000	11.989	_	_	15.995	15.977	4 350 7 470	5 810 11 800	35 000 13 000	IRT 810 IRT 810
12	18	12	1.3	12.000	11.989	_	_	17.995	17.977	6 420	7 490	35 000	IRT 812
12 12 12 12 12	19 19 19 19 19	12 15 20 25 12	1.3 1.3 1.3 1.3	12.000	11.989	19.012	18.991	_	_	6 000 7 440 10 700 13 800 11 800	6 310 8 320 13 300 18 300 15 200	35 000 35 000 35 000 35 000 13 000	IRT 812 IRT 815 — — IRT 812
13	19	12	1.3	13.000	12.989	_	_	18.993	18.972	6 760	8 170	30 000	IRT 1012
14 14	20 20	12 16	1.3 1.3	14.000	13.989	_	_	19.993	19.972	7 080 8 950	8 840 12 000	30 000 30 000	IRT 1012-2 IRT 1016-2
14 14	22 22	16 20	1.3 1.3	14.000	13.989	22.012	21.991	_	_	10 500 13 900	12 000 17 200	30 000 30 000	IRT 1016-2 IRT 1020-2
15 15 15	21 21 21	12 16 22	1.3 1.3 1.3	15.000	14.989	_	_	20.993	20.972	7 380 9 330 13 600	9 520 12 900 20 900	25 000 25 000 25 000	IRT 1212 IRT 1216 IRT 1222
15 15 15 15 15	22 22 22 22 22 22	10 12 15 20 25	1.3 1.3 1.3 1.3 1.3	15.000	14.989	22.012	21.991	_	_	5 290 7 120 8 830 12 700 16 300	5 680 8 310 11 000 17 600 24 200	25 000 25 000 25 000 25 000 25 000	IRT 1010-1 IRT 1012-1 IRT 1015-1 IRT 1020-1 IRT 1025-1

B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS




Shaft dia. 16 — 19mm

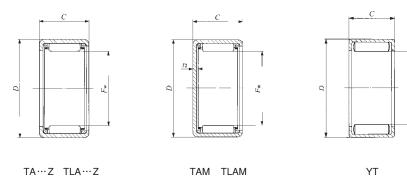
					Identification n	umber				
Shaft dia. mm	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
16	_ _ _	_ _ _	_ _ _	_ _ _	TLA 1612 Z TLA 1616 Z TLA 1622 Z	10.9 14.8 20	TLAM 1612 TLAM 1616 TLAM 1622	12.2 16.1 21.5	_ _ _	_ _ _
	TA 1616 Z TA 1620 Z	20 25	TAM 1616 TAM 1620	22 27	_	_	_	_		_
		_	_	_	TLA 1712 Z	11.5	TLAM 1712	13	_	_
17	TA 1715 Z TA 1720 Z TA 1725 Z	17.6 23.5 29	TAM 1715 TAM 1720 TAM 1725	19.5 25 31	_ _	_ _		_		_ _
	IA 1725 Z — —			— —	_ _ _	_ _ _	_ _ _	_ _ _	YT 1715 YT 1725	20.5 35.5
	_ _	_	_ _	_	TLA 1812 Z TLA 1816 Z	12 16.2	TLAM 1812 TLAM 1816	13.7 17.9	_	_
18	TA 1813 Z TA 1815 Z TA 1817 Z TA 1819 Z TA 1820 Z	16.4 18.5 21 23.5 24.5	TAM 1813 TAM 1815 TAM 1817 TAM 1819 TAM 1820	18.5 20.5 23 25.5 26.5	_ _ _ _ _		_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _
19	TA 1825 Z	30.5	TAM 1825	32.5 25.5		_		_		_
	TA 1920 Z	29	TAM 1920	31	_	_	_	_		_

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

ΥT

Bou		dime	ensions	S	tandard	mounting	g dimens	ions mn	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
F_{w}	D	C	t ₂	Shaf h Max.		J Max.	U	bore dia. N Max.		C N	C_0 N	speed(1)	
16 16 16	22 22 22	12 16 22	1.3 1.3 1.3	16.000	15.989	_	_	21.993	21.972	7 670 9 700 14 200	10 200 13 800 22 400	25 000 25 000 25 000	IRT 1212-1 IRT 1216-1 IRT 1222-1
16 16	24 24	16 20	1.3 1.3	16.000	15.989	24.012	23.991		_	11 100 14 700	13 300 19 100	25 000 25 000	IRT 1216-1 IRT 1220-1
17	23	12	1.3	17.000	16.989	_	_	22.993	22.972	7 960	10 900	25 000	_
17 17 17 17 17	24 24 24 24 24	15 20 25 15 25	1.3 1.3 1.3 —	17.000	16.989	24.012	23.991	_	_	9 660 13 900 17 900 16 600 27 200	12 700 20 400 28 100 26 000 49 000	25 000 25 000 25 000 9 000 9 000	IRT 1215-2 IRT 1220-2 IRT 1225-2 IRT 1215-2 IRT 1225-2
18 18	24 24	12 16	1.3 1.3	18.000	17.989	_	_	23.993	23.972	8 230 10 400	11 500 15 600	20 000 20 000	IRT 1512 IRT 1516
18 18 18 18 18	25 25 25 25 25 25 25	13 15 17 19 20 25	1.3 1.3 1.3 1.3 1.3	18.000	17.989	25.012	24.991			9 100 10 100 11 900 13 700 14 500 18 600	12 000 13 600 16 900 20 200 21 800 30 000	20 000 20 000 20 000 20 000 20 000 20 000	IRT 1513 IRT 1515 IRT 1517 IRT 1519 IRT 1520 IRT 1525
19 19	27 27	16 20	1.3 1.3	19.000	18.987	27.012	26.991	_	_	12 200 16 100	15 700 22 600	20 000 20 000	IRT 1516-1 IRT 1520-1



Shaft dia. 20 – 21mm

					11 (6 (
Shaft					Identification n	umber				
dia.	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
		 		_ _ _ _	TLA 2012 Z TLA 2016 Z TLA 2020 Z TLA 2030 Z	13.2 17.8 22 33	TLAM 2012 TLAM 2016 TLAM 2020 TLAM 2030	15.2 19.9 24 35	_ _ _ _	_ _ _ _
20	TA 2015 Z TA 2020 Z TA 2025 Z TA 2030 Z	TA 2020 Z 26.5 TAM 202 TA 2025 Z 33 TAM 202		22.5 29 35.5 42		_ _ _ _				
	TA 202820 Z	TA 202820 Z 30 TAM 202820		32.5	_ _	_ _		_ _	YT 202820	 37.5
21	TA 2116 Z TA 2120 Z	25 31.5 — —	TAM 2116 TAM 2120	28 34.5 — —	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	YT 2116 YT 2120	31 39

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

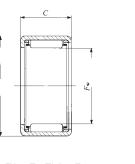
Bou		dime	ensions	S	Standard	mounting	g dimensi	ions mn	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
				Shaf	t dia.	ı	Housing	bore dia.			C_0	speed(1)	illilei illig
F_{w}	D	C	t_2	h	6	J	7	N	7		v		
			Max.	Max.	Min.	Max.	Min.	Max.	Min.	N	N	rpm	
20	26	12	1.3							8 740	12 900	20 000	_
20	26	16	1.3	20.000	19.987	_	_	25.993	25.972	11 100	17 500	20 000	IRT 1716
20 20	26 26	20	1.3 1.3							14 500 22 300	24 700 42 900	20 000	IRT 1720
	-	30										20 000	IRT 1730
20	27	15	1.3							10 400	14 600	20 000	IRT 1515-2
20 20	27 27	20 25	1.3							15 000 19 200	23 400 32 200	20 000 20 000	IRT 1520-2 IRT 1525-2
20	27	30	1.3 1.3	20.000	19.987	27.012	26.991	_	_	23 100	41 000	20 000	IRT 1530-2
20	27	15	_							18 400	30 900	7 500	IRT 1515-2
20	27	25	_							30 000	58 300	7 500	IRT 1525-2
20	28	20	1.3							16 900	24 300	20 000	IRT 1520-2
20	28	20	_	20.000	19.987	28.012	27.991	_	_	26 800	44 600	7 500	IRT 1520-2
21	29	16	1.3							13 300	18 100	19 000	IRT 1716-1
21	29	20	1.3	21 000	20.007	20.012	20 001			17 600	25 900	19 000	IRT 1720-1
21	29	16	_	21.000	20.967	29.012	26.991	_	_	22 100	35 200	7 000	IRT 1716-1
21	29	20	_							27 500	46 800	7 000	IRT 1720-1

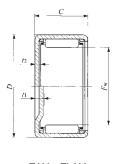
B14

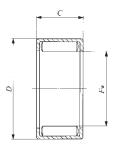
B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS




Shaft dia. 22 – 24mm


Shaft					Identification n	umber				
dia.	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
	_ _ _	_ _ _	_ _ _	_ _ _	TLA 2212 Z TLA 2216 Z TLA 2220 Z	15.6 21.5 26.5	TLAM 2212 TLAM 2216 TLAM 2220	18.1 24 29	_ _ _	_ _ _
22	TA 2210 Z TA 2215 Z TA 2220 Z TA 2225 Z TA 2230 Z	21.5 29 35.5	TAM 2210 TAM 2215 TAM 2220 TAM 2225 TAM 2230	18.1 24.5 32 38.5 45.5	_ _ _ _	_ _ _ _ _	_ _ _ _	_ _ _ _ _	_ _ _ _	_ _ _ _
	TA 223016 Z TA 223020 Z		TAM 223016 TAM 223020	29 35.5 —		_ _ _ _	_ _ _ _	_ _ _	YT 223016 YT 223020	32 40.5
	TA 2420 Z TA 2428 Z		TAM 2420 TAM 2428	35 47 —		_ _ _		_ _ _	 	 54
24	TA 243216 Z TA 243220 Z		TAM 243216 TAM 243220	32 39	_ _ _	_ _ _		_ _ _	 YT 243216	 34.5
		_	_	_	_	_	_	_	YT 243220	43.5

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

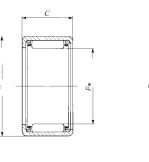
Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

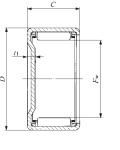
TA…Z TLA…Z

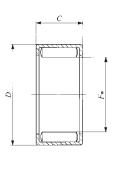
TAM TLAM $t_1 (F_w \ge 24)$ $t_2 (F_w \le 22)$

YT

Bou		/ dim	ensions			mounting				Basic dynamic load rating	Basic static load rating	Allowable rotational speed(1)	Assembled inner ring
F_{w}		C	t_1, t_2		t dia. 6		Housing 7	bore dia.			C_0	speed()	
T W	D		Max.	Max.	Min.	Max.	Min.	Max.	Min.	N	N	rpm	
22 22 22	28 28 28	12 16 20	1.3 1.3 1.3	22.000	21.987	_	_	27.993	27.972	9 230 11 700 15 300	14 300 19 300 27 300	18 000 18 000 18 000	 IRT 1716-2 IRT 1720-2
22 22 22 22 22 22	29 29 29 29 29	10 15 20 25 30	1.3 1.3 1.3 1.3	22.000	21.987	29.012	28.991	_	_	6 650 11 100 16 000 19 700 23 800	8 500 16 400 26 300 34 300 43 700	18 000 18 000 18 000 18 000 18 000	IRT 1710-2 IRT 1715-2 IRT 1720-2 IRT 1725-2 IRT 1730-2
22 22 22 22	30 30 30 30	16 20 16 20	1.3 1.3 —	22.000	21.987	30.012	29.991	_	_	13 200 17 500 22 600 28 200	18 200 26 100 36 800 48 900	18 000 18 000 7 000 7 000	IRT 1716-2 IRT 1720-2 IRT 1716-2 IRT 1720-2
24 24 24	31 31 31	20 28 28	3.4 3.4 —	24.000	23.987	31.014	30.989	_	_	17 000 24 500 36 800	29 200 46 700 79 900	16 000 16 000 6 500	IRT 2020 IRT 2028 IRT 2028
24 24 24 24	32 32 32 32	16 20 16 20	3.4 3.4 —	24.000	23.987	32.014	31.989	_	_	14 200 18 800 23 700 29 500	20 500 29 400 40 100 53 200	16 000 16 000 6 500 6 500	IRT 2016 IRT 2020 IRT 2016 IRT 2020






Shaft dia. 25 – 28 mm

					Identification n	umber				
Shaft										
dia.	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
mm		g		g		g		g g		g
	_	_	_	_	TLA 2512 Z	19.7	TLAM 2512	23.5	_	
	_	_	_	_	TLA 2516 Z	26	TLAM 2516	29.5	_	_
	_	_	_	_	TLA 2520 Z	32	TLAM 2520	36	_	_
	_	_	_	_	TLA 2526 Z	41.5	TLAM 2526	45.5	_	_
	_	_	_	—	TLAW2538Z	58.5	TLAMW2538	62	_	_
		_		_	_	_	_		YTL 2526	51.5
	TA 2510 Z	19.1	TAM 2510	23	_	_	_	_	_	_
25	TA 2515 Z	28.5	TAM 2515	32.5	_	_	_	_	_	_
	TA 2520 Z	36.5	TAM 2520	40.5	_	_	_	_	_	_
	TA 2525 Z	45.5	TAM 2525	49	_	_	_	_	_	_
	TA 2530 Z	54.5	TAM 2530	58.5	_	_	_	_	_	
	_	_	_	_	_	_	_	_	YT 2510	22.5
	_	_	_	_	_	_	_	_	YT 2515	33
	_	_	_	_	_	_	_	_	YT 2520	45
	_	_	_	_	_	_	_	_	YT 2525	57
	TA 2616 Z	30.5	TAM 2616	34.5	_	_	_	_	_	_
26	TA 2620 Z	38	TAM 2620	42.5	_	_	_	_	_	_
_0	_	_	_	_	_	_	_	_	YT 2616	37
	_	_	_	_	_		_		YT 2620	46.5
	_	_	_	_	TLA 2816 Z	28.5	TLAM 2816	33.5		_
	—	_	_	_	TLA 2820 Z	35.5	TLAM 2820	40.5	_	_
28	TA 2820 Z	45	TAM 2820	50		_	_		_	
	TA 2830 Z	67.5	TAM 2830	72.5	_	_	_	_	_	_
	_	_	_	_	_	_	_	_	YT 2820	56.5

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

TA···Z TLA···Z TAM TLAM

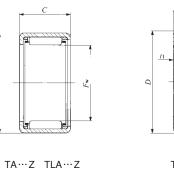
Bou	,	/ dim mm	ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			,		t dia.		_	bore dia.		C	C_0	speed(1)	
F_{w}	D	C	t ₁ Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
25 25 25 25 25 25 25	32 32 32 32 32 32 32	12 16 20 26 38 26	2.8 2.8 2.8 2.8 2.8	25.000	24.987	_	_	31.992	31.967	9 440 12 800 16 900 22 600 28 900 35 000	13 900 20 500 29 300 42 500 58 500 75 800	15 000 15 000 15 000 15 000 15 000 6 000	IRT 2020-1 IRT 2026-1 IRT 2038-1 IRT 2026-1
25 25 25 25 25	33 33 33 33 33	10 15 20 25 30	3.4 3.4 3.4 3.4 3.4	25.000	24.987	33.014	32.989	_	_	7 990 13 400 19 500 24 100 29 100	9 900 19 300 31 100 40 800 52 000	15 000 15 000 15 000 15 000 15 000	IRT 2010-1 IRT 2015-1 IRT 2020-1 IRT 2025-1 IRT 2030-1
25 25 25 25	33 33 33 33	10 15 20 25	_ _ _ _	25.000	24.987	33.014	32.989	_	_	15 500 22 700 30 200 37 200	23 600 38 300 55 400 72 500	6 000 6 000 6 000 6 000	IRT 2010-1 IRT 2015-1 IRT 2020-1 IRT 2025-1
26 26 26 26	34 34 34 34	16 20 16 20	3.4 3.4 —	26.000	25.987	34.014	33.989	_	_	15 200 20 100 24 700 30 800	22 900 32 800 43 300 57 500	15 000 15 000 6 000 6 000	IRT 2216 IRT 2220 IRT 2216 IRT 2220
28 28	35 35	16 20	2.8 2.8	28.000	27.987	_	_	34.992	34.967	13 800 18 300	23 500 33 600	13 000 13 000	 IRT 2220-1
28 28 28	37 37 37	20 30 20	3.4	28.000	27.987	37.014	36.989	_	_	21 200 33 000 34 700	32 300 56 900 61 700	13 000 13 000 5 500	IRT 2220-1 IRT 2230-1 IRT 2220-1

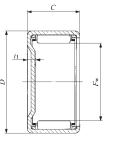
B18

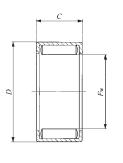
B

TLA BA BHA

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.






Shaft dia. 29 — 35mm

CL - 4					Identification n	umber				
Shaft dia. mm	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
29	TA 2920 Z TA 2930 Z	47 70	TAM 2920 TAM 2930	52 75.5	_ _ _	_ _ _		_	 	 58.5
30	— — — — — — — TA 3013 Z		— — — — — — TAM 3013		TLA 3012 Z TLA 3016 Z TLA 3018 Z TLA 3020 Z TLA 3026 Z TLAW3038 Z	30.5 34.5 38 49	TLAM 3012 TLAM 3016 TLAM 3018 TLAM 3020 TLAM 3026 TLAMW3038	29 36 40 43.5	— — — — — —	
	TA 3015 Z TA 3020 Z TA 3025 Z TA 3030 Z	54.5 54.5 68 80	TAM 3015 TAM 3020 TAM 3025 TAM 3030	47.5 60 73.5 85.5	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _
32	TA 3220 Z TA 3230 Z	57.5 86 —	TAM 3220 TAM 3230	63.5 97.5 —	_ _ _	— — —		_ _ _	 	71.5
	_ _ _	_ _ _		_ _ _	TLA 3512 Z TLA 3516 Z TLA 3520 Z		TLAM 3512 TLAM 3516 TLAM 3520	34.5 42.5 51		_ _ _
35	TA 3512 Z TA 3515 Z TA 3520 Z TA 3525 Z TA 3530 Z	38.5 48 62.5 78 97	TAM 3512 TAM 3515 TAM 3520 TAM 3525 TAM 3530	46 56 70 85.5 105	_ _ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _ _	_ _ _ _

Note(¹) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

Z	TLA…Z	TAM	TLAM	YΤ

Bou	,	/ dime	ensions	S	Standard	mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			_	Shaf			U	bore dia.		C	C_0	speed(1)	
F_{w}	D	С	t ₁ Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
29 29 29	38 38 38	20 30 20	3.4 3.4 —	29.000	28.987	38.014	37.989	_	_	22 000 34 200 35 500	34 200 60 300 64 100	13 000 13 000 5 000	IRT 2520 IRT 2530 IRT 2520
30 30 30 30 30 30	37 37 37 37 37 37	12 16 18 20 26 38	2.8 2.8 2.8 2.8 2.8 2.8	30.000	29.987	_	_	36.992	36.967	10 400 14 100 16 400 18 600 24 800 31 900	16 600 24 500 29 800 35 100 50 900 70 200	12 000 12 000 12 000 12 000 12 000 12 000	IRT 2520-1 IRT 2526-1 IRT 2538-1
30 30 30 30 30	40 40 40 40 40	13 15 20 25 30	3.4 3.4 3.4 3.4 3.4	30.000	29.987	40.014	39.989	_	_	13 500 16 800 24 500 31 600 36 700	16 800 22 400 36 300 50 300 60 700	12 000 12 000 12 000 12 000 12 000	IRT 2515-1 IRT 2520-1 IRT 2525-1 IRT 2530-1
32 32 32	42 42 42	20 30 20	3.4 3.4 —	32.000	31.984	42.014	41.989	_	_	25 400 39 500 39 900	38 600 68 400 70 100	11 000 11 000 4 500	IRT 2820 IRT 2830 IRT 2820
35 35 35	42 42 42	12 16 20	2.8 2.8 2.8	35.000	34.984	_	_	41.992	41.967	11 600 15 700 20 700	20 000 29 600 42 300	10 000 10 000 10 000	IRT 3012 — IRT 3020
35 35 35 35 35	45 45 45 45 45	12 15 20 25 30	3.4 3.4 3.4 3.4 3.4	35.000	34.984	45.014	44.989	_	_	14 800 18 500 27 000 34 800 40 600	19 900 26 500 43 100 59 700 72 600	10 000 10 000 10 000 10 000 10 000	IRT 3012 IRT 3015 IRT 3020 IRT 3025 IRT 3030

B20

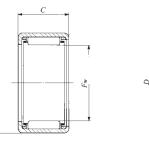
TLA

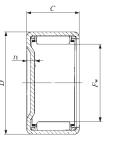
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

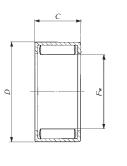
B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS






Shaft dia. 37 – 45mm

Shaft					Identification n	umber				
dia.	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
37	TA 3720 Z TA 3730 Z	64.5 101 —	TAM 3720 TAM 3730	73 110 —	_ _ _	_ _ _			 	— — 81
38	TA 3815 Z TA 3820 Z TA 3825 Z TA 3830 Z TAW 3845 Z	51 65.5 82.5 104 149	TAM 3815 TAM 3820 TAM 3825 TAM 3830 TAMW 3845	60 74.5 96 114 159	_ _ _ _ _	_ _ _ _	_ _ _ _		_ _ _ _	_ _ _ _
40	TA 4015 Z TA 4020 Z TA 4025 Z TA 4030 Z TA 4040 Z	54 69.5 86.5 110 144	TAM 4015 TAM 4020 TAM 4025 TAM 4030 TAM 4040	63.5 79 102 120 154	TLA 4012 Z TLA 4016 Z TLA 4020 Z	30 39 49	TLAM 4012 TLAM 4016 TLAM 4020	40 49 58.5 — — — — —	— — — — — — — YT 4015 YT 4025	
45	TA 4520 Z TA 4525 Z TA 4530 Z TA 4540 Z	77 102 122 161 —	TAM 4520 TAM 4525 TAM 4530 TAM 4540	90 115 135 174	TLA 4516 Z TLA 4520 Z	43.5 54.5 — — — — —	TLAM 4516 TLAM 4520	56 67 — — — —		

Note(¹) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

TA…Z TLA…Z

TAM TLAM

YT

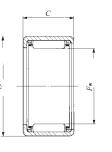
Bou		/ dime	ensions	S	standard	mounting	g dimensi	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
			1	Shaf	t dia.		Housing	bore dia.		C	C_0	speed(1)	
F_{w}	D	С	t ₁ Max.	h Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
37 37 37	47 47 47	20 30 20	3.4 3.4 —	37.000	36.984	47.014	46.989	_	_	27 800 41 800 43 300	45 400 76 700 81 300	9 500 9 500 4 000	IRT 3220 IRT 3230 IRT 3220
38 38 38 38 38	48 48 48 48 48	15 20 25 30 45	3.4 3.4 3.4 3.4 3.4	38.000	37.984	48.014	47.989	_	_	19 000 27 700 35 600 43 100 55 700	28 000 45 600 63 100 80 600 112 000	9 000 9 000 9 000 9 000 9 000	IRT 3215-1 IRT 3220-1 IRT 3225-1 IRT 3230-1 IRT 3245-1
40 40 40	47 47 47	12 16 20	2.8 2.8 2.8	40.000	39.984	_	_	46.992	46.967	12 400 16 700 22 100	22 800 33 700 48 200	8 500 8 500 8 500	 IRT 3520
40 40 40 40 40 40	50 50 50 50 50 50	15 20 25 30 40 15 25	3.4 3.4 3.4 3.4 	40.000	39.984	50.014	49.989		_	19 500 28 400 36 600 44 300 56 700 33 400 55 300	29 400 47 800 66 200 84 600 116 000 59 800 114 000	8 500 8 500 8 500 8 500 8 500 4 000 4 000	IRT 3515 IRT 3520 IRT 3525 IRT 3530 IRT 3540 IRT 3515 IRT 3525
45 45	52 52	16 20	2.8 2.8	45.000	44.984	_	_	51.991	51.961	17 800 23 400	37 800 54 000	7 500 7 500	 IRT 4020
45 45 45 45 45 45	55 55 55 55 55 55	20 25 30 40 20 25	3.4 3.4 3.4 3.4	45.000	44.984	55.018	54.988	_	_	30 600 39 400 47 700 61 300 47 800 59 100	54 600 75 600 96 600 133 000 98 200 129 000	7 500 7 500 7 500 7 500 3 500 3 500	IRT 4020 IRT 4025 IRT 4030 IRT 4040 IRT 4020 IRT 4025

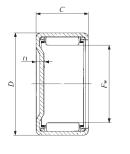
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS





					Identification n	umber				
Shaft dia. mm	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
	_	_	_	_	TLA 5020 Z	69	TLAM 5020	84.5	_	_
		_	_	_	TLA 5025 Z	86	TLAM 5025	107	_	
	TA 5012 Z	62.5	TAM 5012	78	_	_	_	_	_	_
	TA 5015 Z	78	TAM 5015	98.5	_	_	_	_	_	_
50	TA 5020 Z		TAM 5020	123	_	_	_	_	_	_
	TA 5025 Z	l	TAM 5025	150	_	_	_	_	_	_
	TA 5030 Z			178	_	_	_	_	_	_
	TA 5040 Z			230	_	_	_	_	_	_
	TAW 5045 Z	230	TAMW 5045	245	_		_	_	_	
	_	_	_	_	TLA 5520 Z	75	TLAM 5520	98.5	_	_
	_	_		_	TLA 5525 Z	98.5	TLAM 5525	118	_	_
	TA 5520 Z	116	TAM 5520	136	_	_	_	_	_	_
55	TA 5525 Z			165		_		_		_
	TA 5530 Z	175	TAM 5530	195	_	_		_	_	_
	TA 5540 Z	230	TAM 5540	250	_	_	_	_	_	_
	TAW 5545 Z	250	TAMW 5545	270	_	_	_	_	_	_
	TAW 5550 Z	280	TAMW 5550	300	_	_	_	_	_	_
	TA 6025 Z	158	TAM 6025	182	_	_	_	_	_	_
	TA 6030 Z			215	_	_		_	_	_
60	TA 6040 Z	250	TAM 6040	275	_	_	_	_	_	_
	TAW 6045 Z	270	TAMW 6045	295	_	_	_	_	_	_
	TAW 6050 Z	305	TAMW 6050	330	_	_	_	_	_	_
62	TA 6212 Z	78	TAM 6212	107	_	_	_	_	_	_
	02.22									

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

TA…Z TLA…Z

TAM TLAM

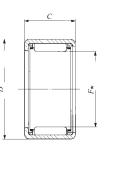
Bou		/ dime	ensions			mounting	g dimens	ions mr	n	Basic dynamic load rating	Basic static load rating	Allowable	Assembled inner ring
			_		t dia.		Housing			C	C_0	speed(1)	
F_{w}	D	С	t ₁ Max.	Max.	6 Min.	J Max.	7 Min.	Max.	7 Min.	N	N	rpm	
50 50	58 58	20 25	2.8 2.8	50.000	49.984	_	_	57.991	57.961	28 800 36 900	64 100 88 400	6 500 6 500	IRT 4520 IRT 4525
50 50 50 50 50 50 50	62 62 62 62 62 62 62	12 15 20 25 30 40 45	3.4 3.4 3.4 3.4 3.4 3.4 3.4	50.000	49.984	62.018	61.988	_	_	17 700 25 800 38 000 49 100 59 500 76 500 76 700	24 000 39 000 64 000 89 000 114 000 157 000 158 000	6 500 6 500 6 500 6 500 6 500 6 500 6 500	IRT 4512 IRT 4515 IRT 4520 IRT 4525 IRT 4530 IRT 4540 IRT 4545
55 55	63 63	20 25	2.8 2.8	55.000	54.981	_	_	62.991	62.961	29 800 38 300	69 400 95 700	5 500 5 500	IRT 5020-1 IRT 5025-1
55 55 55 55 55 55	67 67 67 67 67	20 25 30 40 45 50	3.4 3.4 3.4 3.4 3.4 3.4	55.000	54.981	67.018	66.988	_	-	39 600 51 200 62 000 80 000 79 900 91 500	69 700 97 000 124 000 172 000 172 000 205 000	5 500 5 500 5 500 5 500 5 500 5 500	IRT 5020-1 IRT 5025-1 IRT 5030-1 IRT 5040-1 IRT 5045-1 IRT 5050-1
60 60 60 60 60	72 72 72 72 72 72	25 30 40 45 50	3.4 3.4 3.4 3.4 3.4	60.000	59.981 61.981	72.018 74.018	71.988 73.988	_	_	54 700 66 300 85 700 85 400 97 800 20 100	108 000 139 000 193 000 193 000 229 000 30 300	5 000 5 000 5 000 5 000 5 000 4 500	IRT 5025 IRT 5030 IRT 5040 IRT 5045 IRT 5050

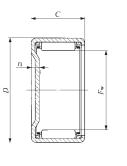
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS





Shaft dia. 65 – 70mm

01. 1							Identification n	umber				
Shaft dia.		ndard	Mass (Ref.)		d end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
mm			g			g		g		g		g
65	TA TA TAW	6525 Z 6530 Z 6545 Z	205	TAM TAM TAMW	6525 6530 6545	230	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _
	TAW	6550 Z	330	TAMW	6550	355	_	_		_		_
	TA	7025 Z	181	TAM	7025	215	_	_	_	_	_	_
70	TA	7030 Z		TAM	7030		_	_	_	_	_	_
. 0	TA	7040 Z		TAM	7040		_	_	_	_	_	_
	TAW	7050 Z	350	TAMW	7050	380	_	_	_	_	_	_

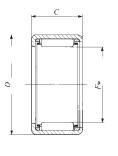
Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

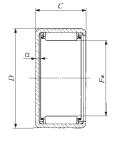
TA···Z TAM

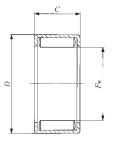
Boui		dime	ensions			mounting				Basic dynamic load rating	Basic static load rating	Allowable rotational speed(1)	Assembled inner ring
$F_{\rm w}$	D	C	t_1	h		J		N	7	C	C_0		
			Max.	Max.	Min.	Max.	Min.	Max.	Min.	N	N	rpm	
65	77	25	3.4							56 500	116 000	4 000	IRT 5525
65 65	77 77	30 45	3.4 3.4	65.000	64.981	77.018	76.988	_	_	68 500 88 300	149 000 207 000	4 000 4 000	IRT 5530 IRT 5545
65	77	50	3.4							101 000	246 000	4 000	IRT 5550
70	82	25	3.4							58 500	124 000	3 500	IRT 6025
70	82	30	3.4	70 000	69 981	82.022	81 987		_	70 900	159 000	3 500	IRT 6030
70	82	40	3.4	70.000	05.501	02.022	01.507			92 000	222 000	3 500	IRT 6040
70	82	50	3.4							105 000	262 000	3 500	IRT 6050

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

Inch Series




Shaft dia. 3.969 — 9.525mm


Shaft dia.					Identification n	number				
mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
3.969 (⁵ / ₃₂)		_ _	_ _	_	_ _			_ _	YB 2.5 2.5 YB 2.5 4	0.64 0.96
4.762 (³ ⁄ ₁₆)	_	_	_	_	_	_	_	_	YB 34	1.6
	BA 44	2.1	_	_	_	_	_	_	_	
6.350	BA 45 Z	2.5	BAM 45	2.7	_	-	_	_	_	_
$(\frac{1}{4})$	BA 47 Z	3.5	BAM 47	3.7	_	_	_	_		_
	_	_							YB 45 YB 47	3.2 4.6
									10 4/	4.0
	BA 55 Z BA 56 Z	3 3.6	BAM 55 BAM 56	3.3		_	_	_	_	_
7.938	BA 57 Z	4.3	BAM 57	4.6	_		_			
$(\frac{5}{16})$	BA 59 Z	5.4	BAM 59	5.7	_	_	_	_	_	_
1/16/	_	_	_	_	_	_	_	_	YB 55	3.8
	_	_	_	_	BHA 57 Z	6.3	BHAM 57	6.6	_	_
	BA 65 Z	3.5	BAM 65	3.9	_	_	_	_	_	
	BA 66 Z	4.2	BAM 66	4.6	_	_	_	_	_	_
	BA 68 Z	5.7	BAM 68	6.1	_	_	_	_	_	_
	BA 69 Z	6.3	BAM 69	6.7	_	_	_	_	_	_
9.525	BA 610 Z	7	BAM 610	7.4	_	_		_	_	
(3/8)	_	_	_	_	_	_	_	_	YB 64	3.4
	_	_	_	_	_	_	_	_	YB 66	5.3
	_	_	_	_	_	-	_	_	YB 68	7.2
		_							YB 610	9.1
	_	_	_	_	BHA 68 Z	8.2	BHAM 68	8.6	_	

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BA···Z BHA···Z

BAM BHAM

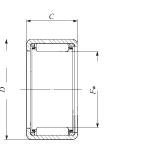
YB

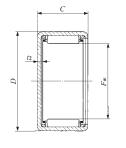
Bound	ary dimensio	ns mm(inch	1)	Standard	mounting	dimension	is mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
F_{w}	D	C	t ₂		t dia. 6 Min.	Housing J Max.	bore dia. 7 Min.	C N	C_0 N	speed(1)	
3.969 (½) 3.969 (½)	7.144(%) 7.144(%)	3.96(.156) 6.35(.250)	_ _	3.969	3.961	7.152	7.137	1 350 2 320	1 220 2 440	40 000 40 000	_ _
4.762 (3/16)	8.731 (11/32)	6.35(.250)	_	4.762	4.754	8.739	8.724	2 770	2 700	30 000	_
$6.350 (\frac{1}{4}) \\ 6.350 (\frac{1}{4}) \\ 6.350 (\frac{1}{4}) \\ 6.350 (\frac{1}{4}) \\ 6.350 (\frac{1}{4})$	$\begin{array}{c} \textbf{11.112} (\frac{1}{16}) \\ \textbf{11.112} (\frac{1}{16}) \\ \textbf{11.112} (\frac{1}{16}) \\ \textbf{11.112} (\frac{1}{16}) \\ \textbf{11.112} (\frac{1}{16}) \end{array}$	6.35(.250) 7.92(.312) 11.13(.438) 7.92(.312) 11.13(.438)		6.350	6.341	11.122	11.104	1 770 1 510 2 650 4 450 6 320	1 390 1 120 2 310 4 870 7 650	55 000 55 000 55 000 25 000 25 000	— — — —
$\begin{array}{c} 7.938 (\mathring{\slash}_{16}) \\ 7.938 (\mathring{\slash}_{16}) \\ 7.938 (\mathring{\slash}_{16}) \\ 7.938 (\mathring{\slash}_{16}) \\ 7.938 (\mathring{\slash}_{16}) \end{array}$	12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½)	7.92(.312) 9.52(.375) 11.13(.438) 14.27(.562) 7.92(.312)		7.938	7.929	12.710	12.692	1 880 2 620 3 310 4 190 5 110	1 560 2 390 3 220 4 360 6 090	45 000 45 000 45 000 45 000 20 000	_ _ _ _
7.938 (1/3)	14.288 (%)	11.13(.438)	1.3	7.938	7.929	14.298	14.280	4 150	3 730	45 000	_
$\begin{array}{c} 9.525 \left(\frac{3}{2}\right) \\ 9.525 \left(\frac{3}{2}\right) \\ 9.525 \left(\frac{3}{2}\right) \\ 9.525 \left(\frac{3}{2}\right) \\ 9.525 \left(\frac{3}{2}\right) \end{array}$	14.288 (%6) 14.288 (%6) 14.288 (%6) 14.288 (%6) 14.288 (%6)	7.92(.312) 9.52(.375) 12.70(.500) 14.27(.562) 15.88(.625)		9.525	9.516	14.298	14.280	2 220 3 090 4 190 4 940 5 660	2 010 3 080 4 560 5 630 6 700	40 000 40 000 40 000 40 000 40 000	
$\begin{array}{c} 9.525(\frac{7}{8}) \\ 9.525(\frac{7}{8}) \\ 9.525(\frac{7}{8}) \\ 9.525(\frac{7}{8}) \\ 9.525(\frac{7}{8}) \\ \end{array}$	$\begin{array}{c} 14.288 (\%_{6}) \\ 14.288 (\%_{6}) \\ 14.288 (\%_{6}) \\ 14.288 (\%_{6}) \\ 15.875 (\%_{8}) \end{array}$	6.35(.250) 9.52(.375) 12.70(.500) 15.88(.625) 12.70(.500)	 1.3	9.525 9.525	9.516 9.516	14.298 15.885	14.280 15.867	4 470 6 920 9 210 11 300 4 880	5 360 9 410 13 600 17 800 4 740	16 000 16 000 16 000 16 000 40 000	

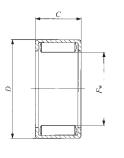
B28

TLA BA

Inch Series




Shaft dia. 11.112 — 12.700mm


					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
11.112 (¾6)	BA 76 Z BA 77 Z BA 78 Z BA 710 Z	4.8 5.6 6.4 7.9 —	BAM 76 BAM 77 BAM 78 BAM 710	5.3 6.2 7 8.5 —	BHA 78 Z	9.3	BHAM 78		YB 78	 8.2 10.5
	BA 85 Z BA 86 Z BA 87 Z BA 88 Z BA 810 Z BA 812 Z	4.4 5.3 6.3 7.2 8.9 10.6	BAM 85 BAM 86 BAM 87 BAM 88 BAM 810 BAM 812	5.2 6.1 7 7.9 9.6 11.3	— — — —		— — — — —		— — — —	_ _ _ _ _
12.700 (½)	 							_ _ _ _	YB 84 YB 86 YB 87 YB 88 YB 810 YB 812	4.3 6.7 7.9 9.1 11.5 13.9
	- - - -			_ _ _ _	BHA 87 Z BHA 88 Z BHA 810 Z BHA 812 Z	9.1 10.4 12.5 15	BHAM 88 BHAM 810 BHAM 812	9.9 11.3 13.3 15.8		 16

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BA···Z BHA···Z

BAM BHAM

YB YBH

Bounda	ry dimensior	ns mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
$F_{ m w}$	D	C	t_2 Max.		t dia. 6 Min.	Housing J Max.		C N	C_0 N	speed(1)	
$\begin{array}{c} \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6})\\ \textbf{11.112}(\%_{\!6}) \end{array}$	15.875 (5/8) 15.875 (5/8) 15.875 (5/8) 15.875 (5/8) 15.875 (5/8)	9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 12.70(.500)	1	11.112	11.101	15.885	15.867	3 290 4 150 4 460 6 020 10 100	3 470 4 680 5 130 7 550 15 900	35 000 35 000 35 000 35 000 14 000	— — — —
11.112 (½6) 11.112 (½6)	17.462 (1½) 17.462 (1½)	12.70(.500) 12.70(.500)	1.3	11.112	11.101	17.472	17.454	5 680 12 500	5 970 15 800	35 000 14 000	_ _
12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½)	17.462 (1½6) 17.462 (1½6) 17.462 (1½6) 17.462 (1½6) 17.462 (1½6) 17.462 (1½6)	7.92(.312) 9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750)	1 1 1 1	12.700	12.689	17.472	17.454	2 490 3 470 4 380 4 710 6 350 7 840	2 510 3 850 5 190 5 700 8 380 11 000	30 000 30 000 30 000 30 000 30 000 30 000	 IRB 58
12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½)	$\begin{array}{c} 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \\ 17.462({}^{1}\!\!/_{\!6}) \end{array}$	6.35(.250) 9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750)		12.700	12.689	17.472	17.454	5 260 8 150 9 530 10 800 13 400 15 800	7 150 12 600 15 300 18 100 23 700 29 300	12 000 12 000 12 000 12 000 12 000 12 000	 IRB 58
12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½)	19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750) 15.88(.625)	1.3 1.3	12.700	12.689	19.062	19.041	5 670 6 040 8 830 11 100 16 300	6 120 6 650 10 900 14 500 23 500	30 000 30 000 30 000 30 000 12 000	IRB 58 — — —

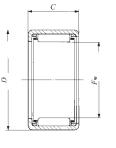
B30

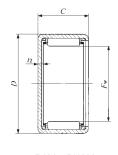
B

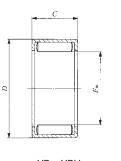
TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS

Inch Series




Shaft dia. 14.288 — 15.875mm


					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
14.288 (%)16)	BA 95 Z BA 96 Z BA 97 Z BA 98 Z BA 910 Z BA 912 Z	4.9 5.9 6.9 7.9 9.9 11.7 — —	BAM 95 BAM 96 BAM 97 BAM 98 BAM 910 BAM 912	5.8 6.8 7.8 8.9 10.8 12.6 — —	BHA 98 Z BHA 910 Z BHA 910 Z	l	BHAM 98 BHAM 910 BHAM 912		YB 98 YB 910 YB 912	10.1 12.7 15.4
15.875 (5/8)	BA 105 Z BA 107 Z BA 108 Z BA 1010 Z BA 1014 Z BA 1016 Z ————————————————————————————————————	5.3 7.6 8.7 10.8 12.9 15.1 17.3 — — —	BAM 105 BAM 107 BAM 108 BAM 1010 BAM 1012 BAM 1014 BAM 1016	6.5 8.7 9.9 12 14 16.2 18.4 — —	BHA 108 Z BHA 1010 Z BHA 1016 Z		BHAM 108 BHAM 1010 BHAM 1012 BHAM 1016			

Note(¹) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

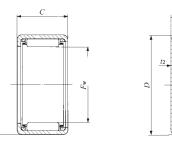
Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BAM BHAM

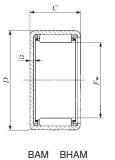
YB YBH

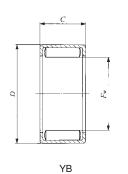
Bounda	Boundary dimensions mm(inch)					dimension	ns mm	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
$F_{ m w}$	D	C	t ₂		t dia. 6 Min.	Housing J Max.		C N	C_0	speed(1)	
14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%)	19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	7.92(.312) 9.52(.375) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750) 12.70(.500)	1.3 1.3 1.3 1.3 1.3			19.062		2 760 3 850 4 860 5 220 7 050 8 690 11 600	2 970 4 560 6 140 6 740 9 910 13 000 20 400	30 000 30 000 30 000 30 000 30 000 30 000 11 000	IRB 68
14.288 (%)6) 14.288 (%)6)	19.050 (¾) 19.050 (¾)	15.88(.625) 19.05(.750) 12.70(.500)	_					14 300 16 800 6 380	26 700 33 000 7 330	11 000 11 000 11 000	IRB 612
14.288 (%) 14.288 (%) 14.288 (%)	20.638 (13/16) 20.638 (13/16) 20.638 (13/16)	15.88(.625) 19.05(.750)	1.3 1.3	14.288	14.277	20.650	20.629	9 280 11 600	11 900 15 900	30 000	IRB 612
$\begin{array}{c} 15.875 \left(\frac{7}{8}\right) \\ 15.875 \left(\frac{7}{8}\right) \end{array}$	$\begin{array}{c} 20.638 (\frac{1}{16}) \\ 20.638 (\frac{1}{3})_{6} \end{array}$	7.92(.312) 11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000) 7.92(.312) 12.70(.500) 19.05(.750)	1.3 1.3 1.3 1.3 1.3 -	15.875	15.864	20.650	20.629	2 870 5 040 5 420 7 320 9 020 10 700 12 300 7 580 12 300 17 800	3 220 6 660 7 310 10 700 14 100 17 500 20 800 12 200 22 700 36 600	25 000 25 000 25 000 25 000 25 000 25 000 25 000 9 500 9 500 9 500	IRB 68-1 IRB 612-1 IRB 714 IRB 716 — IRB 68-1 IRB 612-1
15.875 (\$\hat{\gamma}_8\) 15.875 (\$\hat{\gamma}_8\) 15.875 (\$\hat{\gamma}_8\) 15.875 (\$\hat{\gamma}_8\) 15.875 (\$\hat{\gamma}_8\)	22.225 (½) 22.225 (½) 22.225 (½) 22.225 (½) 22.225 (½)	12.70(.500) 15.88(.625) 19.05(.750) 25.40(1.000) 12.70(.500)	1.3 1.3	15.875	15.864	22.237	22.216	6 680 10 200 12 700 17 400 15 000	8 020 13 800 18 500 27 600 22 400	25 000 25 000 25 000 25 000 9 500	IRB 68-1 IRB 612-1 IRB 716 IRB 68-1

Inch Series



Shaft dia. 17.462 — 19.050mm


Shaft dia.	Identification number										
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g	
17.462 (11/16)	BA 116 Z BA 118 Z BA 1110 Z BA 1112 Z	7 9.5 11.8 14 —	BAM 116 BAM 118 BAM 1110 BAM 1112	8.4 10.8 13.2 15.4	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	— — — — YB 1112	 	
(/ 16 /	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	BHA 117 Z BHA 118 Z BHA 1110 Z BHA 1112 Z	13.7 16	BHAM 117 BHAM 118 BHAM 1110 BHAM 1112	13.5 15.3 17.6 21	_ _ _ _	_ _ _ _	
19.050	BA 126 Z BA 128 Z BA 1210 Z BA 1212 Z BA 1214 Z BA 1216 Z	10 13.5 17 20.5 23.5 27	BAM 126 BAM 128 BAM 1210 BAM 1212 BAM 1214 BAM 1216	11.7 15.2 18.6 22 25 28.5	— — — —		— — — —		— — — —	_ _ _ _ _	
(3/4)		_ _ _	_ _ _ _	_ _ _	_ _ _ _	_ _ _	_ _ _ _	_ _ _	YB 124 YB 128 YB 1210 YB 1212	8.5 17.8 22.5 27	
	_	_	_	_	BHA 1212 Z	26.5	BHAM 1212	28.5	_	_	


Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BA···Z BHA···Z

Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic load rating	Basic static	Allowable rotational	Assembled inner ring
_			t_2	Shaf		Housing		C	C_0	speed(1)	
F_{w}	D	C	Max.	h Max.	6 Min.	Max.	7 Min.	N	N	rpm	
17.462 (1½) 17.462 (1½)	22.225(½) 22.225(½)	9.52(.375) 12.70(.500)						4 530 6 140	5 980 8 850	25 000 25 000	IRB 86 IRB 88
17.462 (1½) 17.462 (1½) 17.462 (1½)	22.225(1/8)	15.88(.625) 19.05(.750) 19.05(.750)	1.3	17.462	17.451	22.237	22.216	8 280 10 200 18 700	13 000 17 000 40 300	25 000 25 000 8 500	IRB 812 IRB 812
17.462 (½6) 17.462 (½6) 17.462 (½6) 17.462 (½6)	$23.812(\ ^{1}\!\!\frac{1}{16}) \\ 23.812(\ ^{1}\!\!\frac{1}{16})$	11.13(.438) 12.70(.500) 15.88(.625) 19.05(.750)	1.3 1.3	17.462	17.451	23.824	23.803	6 860 7 320 10 500 13 200	8 530 9 270 14 900 19 900	25 000 25 000 25 000 25 000	IRB 88 — IRB 812
19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)		9.52(.375) 12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000)	1.3 1.3 1.3 1.3	19.050	19.037	25.412	25.391	5 040 6 910 9 500 11 900 14 200 16 300	5 850 8 780 13 200 17 700 22 200 26 500	20 000 20 000 20 000 20 000 20 000 20 000	IRB 88-1 IRB 810-1 IRB 812-1 IRB 814-1 IRB 816-1
19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	25.400(1) 25.400(1) 25.400(1) 25.400(1)	6.35(.250) 12.70(.500) 15.88(.625) 19.05(.750)	_	19.050	19.037	25.412	25.391	7 820 16 600 20 500 24 100	10 200 26 900 35 300 43 400	8 000 8 000 8 000 8 000	IRB 88-1 IRB 810-1 IRB 812-1
19.050 (¾)	26.988 (1 ½)	19.05(.750)	1.3	19.050	19.037	27.000	26.979	16 600	22 600	20 000	IRB 812-1

B34

B

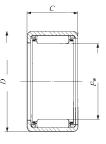
TLA BA BHA

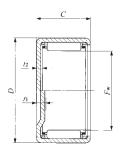
B

TLA ВА вна

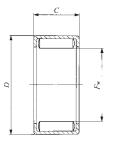
SHELL TYPE NEEDLE ROLLER BEARINGS

Inch Series




Shaft dia. 20.638 — 22.225mm

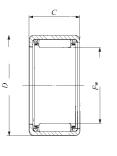
	Identification number										
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g	
20.638 (13/16)	BA 136 Z BA 138 Z BA 1310 Z BA 1312 Z BA 1314 Z BA 1316 Z BA 1320 Z	10.7 14.5 18.2 22 25 28.5 35.5 —	BAM 136 BAM 1310 BAM 1312 BAM 1314 BAM 1316 BAM 1320	12.6 16.4 20 23.5 27 30.5 37.5 —	— — — — — — — — — — — —		— — — — — — — — — — — — —				
	_ _ _ _	_ _ _ _	_ _ _ _	_ _ _ _	BHA 1310 Z BHA 1312 Z	1	BHAM 1310 BHAM 1312	25.5 30.5 —	YBH 1310 YBH 1312	30.5 37	
22.225 (½)	BA 146 Z BA 148 Z BA 1412 Z BA 1414 Z BA 1416 Z BA 1418 Z BA 1422 Z	11.5 15.6 23.5 27 31 34.5 42.5 —	BAM 146 BAM 148 BAM 1412 BAM 1414 BAM 1416 BAM 1422	13.8 17.8 26 29.5 33.5 37 44.5 —	BHA 1410 Z BHA 1416 Z BHA 1416 Z	30	BHAM 1410 BHAM 1412 BHAM 1416				
	_	_	_		— —	— —	— —	4Z —	YBH 1412	39	

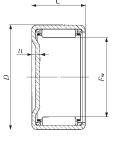

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remark
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

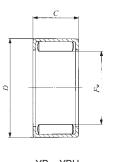
DA NE	
	İ
	Fw
VR VRH	

Bounda	ry dimension		Standard	mounting	dimension	ıs mm	Basic dynamic	Basic static	Allowable	Assembled	
F			$\begin{vmatrix} t_1 \\ t_2 \end{vmatrix}$	Shaf h		Housing		load rating $$	load rating C_0	rotational speed(1)	inner ring
F_{w}	D	C	Max.	Max.	Min.	J Max.	Min.	N	N	rpm	
20.638 (3%) 20.638 (3%) 20.638 (3%) 20.638 (3%) 20.638 (3%) 20.638 (3%) 20.638 (3%)	26.988 (1 ½6) 26.988 (1 ½6) 26.988 (1 ½6) 26.988 (1 ½6)	9.52(.375) 12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000) 31.75(1.250) 9.52(.375)	1.3 1.3 1.3 1.3	20.638	20.625	27.000	26.979	5 230 7 170 9 870 12 400 14 700 16 900 21 200 13 000	6 300 9 450 14 200 19 000 23 800 28 500 38 100 20 100	19 000 19 000 19 000 19 000 19 000 19 000 7 500	IRB 98 IRB 910 IRB 912 IRB 914 IRB 916 IRB 920
20.638 (¹³ / ₁₆) 20.638 (¹³ / ₁₆) 20.638 (¹³ / ₁₆)	26.988 (1 ½) 28.575 (1 ½)	12.70(.500) 12.70(.500) 15.88(.625)						17 400 9 500 13 800	29 200 11 200 18 200	7 500 19 000 19 000	IRB 98 IRB 98 IRB 910
20.638 (¹ / ₁₆) 20.638 (¹ / ₁₆) 20.638 (¹ / ₁₆) 20.638 (¹ / ₁₆)	28.575 (1 ½) 28.575 (1 ½)	19.05(.750) 15.88(.625) 19.05(.750)		20.638	20.625	28.587	28.566	17 300 22 900 27 200	24 400 36 300 45 300	19 000 7 500 7 500	IRB 912 IRB 910 IRB 912
$\begin{array}{c} 22.225 \left(\frac{7}{8} \right) \\ 22.225 \left(\frac{7}{8} \right) \end{array}$	$\begin{array}{c} 28.575 (1 \frac{1}{9}) \\ 28.575 (1 \frac{1}{9}) \end{array}$	9.52(.375) 12.70(.500) 19.05(.750) 22.22(.875) 25.40(1.000) 28.58(1.125) 34.92(1.375) 12.70(.500) 19.05(.750) 25.40(1.000)	2.8 2.8 2.8 2.8 2.8	22.225	22.212	28.587	28.566	5 430 7 440 12 800 15 300 17 600 19 800 24 100 18 100 26 300 33 800	6 740 10 100 20 400 25 500 30 500 35 600 45 700 31 400 50 700 70 200	18 000 18 000 18 000 18 000 18 000 18 000 7 000 7 000 7 000	IRB 106 IRB 108 IRB 1012 IRB 1014 IRB 1016 IRB 1022 IRB 108 IRB 1012 IRB 1016
$\begin{array}{c} 22.225 (\frac{7}{8}) \\ 22.225 (\frac{7}{8}) \\ 22.225 (\frac{7}{8}) \\ 22.225 (\frac{7}{8}) \end{array}$	30.162 (1 ¾ ₆) 30.162 (1 ¾ ₆) 30.162 (1 ¾ ₆)	15.88(.625) 19.05(.750) 25.40(1.000) 19.05(.750)	3.4	22.225	22.212	30.176	30.151	14 300 18 000 23 600 28 200	19 500 26 100 36 900 49 000	18 000 18 000 18 000 7 000	IRB 1012 IRB 1016 IRB 1012

Inch Series




Shaft dia. 23.812 — 26.988mm


Shaft dia.	Identification number									
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
23.812	BA 158 Z	16.5	BAM 158	19	_	_	_		_	_
$\binom{15}{16}$	BA 1510 Z BA 1516 Z	20.5 33	BAM 1510 BAM 1516	23 35.5	_	_	_	_	_	
	BA 166 Z	13.1	BAM 166	16	_	_	_	_	_	
	BA 167 Z	15.4	BAM 167	18.3	_	_		_	_	_
	BA 168 Z	17.7	BAM 168	20.5	_	_	_	_	_	_
	BA 1610 Z	22	BAM 1610	25	_	_		_	_	_
	BA 1612 Z	26.5	BAM 1612	29.5	_	_	_	_	_	_
	BA 1614 Z	31	BAM 1614	33.5	_	_	_	_	_	_
	BA 1616 Z	35.5	BAM 1616	38	_	_	_	_	_	_
	BA 1620 Z	44	BAM 1620	46.5	_	_		_		_
	_				_	_	_		YB 168 YB 1612	23
25.400	_	_	_		_	_	_	_	YB 1616	34.5 46.5
(1)	_	_	_		BHA 168 Z	24	BHAM 168	27	_	_
	_	_	_	_	BHA 1610 Z	28	BHAM 1610	31	_	_
	_	_	_	_	BHA 1612 Z	33.5	BHAM 1612	37	_	_
	_	_	_	_	BHA 1614 Z	39.5	BHAM 1614	42.5	_	_
	_	_	_	_	BHA 1616 Z	45	BHAM 1616	48	_	_
	_	_	_	_	BHA 1620 Z	56.5	BHAM 1620	59.5	_	_
	_	_	_	—	BHA 1624 Z	67.5	BHAM 1624	71		_
	_	_	_	_	_	_	_	_	YBH 168	29
									YBH 1612 YBH 1616	44.5 59.5
06.000	DA 4740 7	20.5	DAM 4740	00.5					10111010	33.3
26.988 $(1\frac{1}{16})$	BA 1710 Z BA 1716 Z	23.5	BAM 1710	26.5	_	_	_	_	_	_
(1/16)	DA 1/10 Z	37	BAM 1716	40.5	_	_	_	_	_	

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BAM BHAM

YB YBH

Bounda	Boundary dimensions mm(inch)					dimensions mm Basic dynamic load rating			Basic static	Allowable rotational	Assembled inner ring
			$ _{t_1}$			Housing		C	C_0	speed(1)	
F_{w}	D	С	Max.	h Max.	6 Min.	Max.	7 Min.	N	N	rpm	
23.812 (15/16)		12.70(.500)						8 000	11 400	16 000	_
23.812 ($^{15}\!\!/_{16}$)		15.88(.625)		23.812	23.799	30.176	30.151	11 000	17 100	16 000	IRB 1110
23.812 (15/16)	30.162 (1 ¾ ₁₆)	25.40(1.000)	2.8					18 900	34 300	16 000	IRB 1116
25.400 (1)	31.750(1½)	9.52(.375)	2.8					6 010	8 020	15 000	_
25.400 (1)	31.750 (1 ½)	11.13(.438)	2.8					7 720	11 100	15 000	_
25.400 (1)	31.750 (1 ½)	12.70(.500)	2.8					8 240	12 000	15 000	IRB 128
25.400 (1)	31.750 (1 ½)	15.88(.625)	2.8					11 300	18 100	15 000	_
25.400 (1)		19.05(.750)						14 200	24 300	15 000	IRB 1212
25.400 (1)		22.22(.875)		25.400	25.387	31.764	31.739	16 900	30 400	15 000	IRB 1214
25.400 (1)		25.40(1.000)						19 400	36 300	15 000	IRB 1216
25.400 (1)		31.75(1.250)						24 400	48 500	15 000	IRB 1220
25.400 (1)		12.70(.500)						19 400	36 000	6 000	IRB 128
25.400 (1)		19.05(.750)						28 200	58 000	6 000	IRB 1212
25.400 (1)	31.750 (1 ½)	25.40(1.000)	_					36 300	80 300	6 000	IRB 1216
25.400 (1)	33.338 (1 ½)	12.70(.500)	3.4					10 200	13 100	15 000	IRB 128
25.400 (1)		15.88(.625)						15 300	22 100	15 000	_
25.400 (1)	33.338 (1 ½)	19.05(.750)	3.4					19 300	29 700	15 000	IRB 1212
25.400 (1)		22.22(.875)						23 000	37 200	15 000	IRB 1214
25.400 (1)		25.40(1.000)		25.400	25.387	33.352	33.327	26 400	44 500	15 000	IRB 1216
25.400 (1)		31.75(1.250)						33 200	59 600	15 000	IRB 1220
25.400 (1)		38.10(1.500)						39 400	74 400	15 000	_
25.400 (1)		12.70(.500)						20 900	34 100	6 000	IRB 128
25.400 (1)		19.05(.750)						30 700	56 100	6 000	IRB 1212
25.400 (1)	33.338 (1 ½)	25.40(1.000)	_					39 900	78 400	6 000	IRB 1216
26.988 (1 ½)	33.338 (1 ½)	15.88(.625)	2.8	26.988	26.975	33.352	33.327	11 600	19 200	14 000	_
26.988 (1 ½)		25.40(1.000)						20 000	38 300	14 000	_
- 10											

B38

B

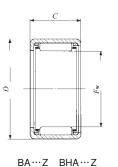
TLA BA BHA

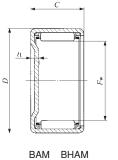
B

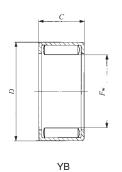
TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS

Inch Series




Shaft dia. 28.575 — 30.162mm


Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.) g
28.575 (1½)	BA 186 Z BA 188 Z BA 1812 Z BA 1816 Z BA 1820 Z	14.5 19.5 29.5 39 48.5 — — —	BAM 186 BAM 1812 BAM 1816 BAM 1820	18.1 23 33 42.5 52 — — —	BHA 1812 Z BHA 1816 Z BHA 1818 Z		BHAM 1812 BHAM 1816 BHAM 1818	64 71.5	YB 188 YB 1812 YB 1816	
30.162 (1 ³ / ₁₆)	BA 1910 Z BA 1916 Z —	32.5 52	BAM 1910 BAM 1916	37.5 57 —	BHA 1820 Z	73.5	BHAM 1820 — — —	78 — — —	— — YB 1910	

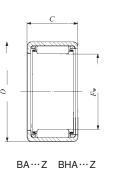
Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

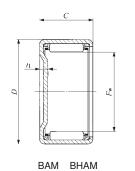
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

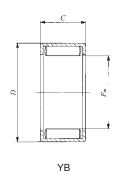
٠٠Z	$BHA \cdots Z$	

Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic	Basic static	Allowable	Assembled
		1		01 (load rating	load rating	rotational speed(1)	inner ring
	-	~	t_1	Snar h	t dia.	Housing J		C	C_0	speeu()	
F_{w}	D	C	Max.	Max.	Min.	Max.	/ Min.	N	N	rpm	
20 E7E (1 1/)	24 02F (1 3/)	0.52/.275\	20					6 330	8 910	13 000	
	34.925 (1 ³ / ₈)									1 1	IDD 140
		12.70(.500)						8 680 15 000	13 400 26 900	13 000 13 000	IRB 148
		19.05(.750) 25.40(1.000)						20 500	40 300	13 000	IRB 1412
-	-			28.575	28.562	34.939	34.914	25 700	53 900	13 000	IRB 1416
-	-	31.75(1.250)	2.0							1 1	IRB 1420
		12.70(.500)						20 700	40 500	5 500	IRB 148
-	-	19.05(.750)						30 000	65 300	5 500	IRB 1412
28.5/5(1 1/8)	34.925(1%)	25.40(1.000)						38 700	90 400	5 500	IRB 1416
28.575 (1 ½)	38.100 $(1\frac{1}{2})$	19.05(.750)	3.4					22 500	32 200	13 000	IRB 1412
28.575 (1 ½)	38.100 (1 ½)	25.40(1.000)	3.4	20 575	20 562	38.114	20 000	30 900	48 600	13 000	IRB 1416
28.575 (1 ½)	38.100 (1 ½)	28.58(1.125)	3.4	20.575	20.302	30.114	30.009	34 900	56 600	13 000	_
28.575 (1 ½)	$38.100(1{}^{1\!\!/}_2\!)$	31.75(1.250)	3.4					37 100	61 100	13 000	IRB 1420
30.162 (1 %)	38 100(1½)	15.88(.625)	28					15 000	22 500	12 000	_
30.162 (1 3/6)		25.40(1.000)		30.162	30.146	38.114	38.089		45 300	12 000	_
30.162 (1 3/6)		15.88(.625)						28 400	53 600	5 000	_
(1710)	331133 (172)										

Inch Series




Shaft dia. 31.750 — 33.338mm


01 6 11					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
	BA 208 Z BA 2010 Z BA 2012 Z BA 2016 Z BA 2020 Z	21.5 27 32.5 43 53.5	BAM 208 BAM 2010 BAM 2012 BAM 2016 BAM 2020	26 31.5 37 47.5 58	 	_ _ _ _	_ _ _ _		_ _ _ _	_ _ _ _
31.750 (1½)	 - -	_ _ _ _	_ _ _ _ _	_ _ _ _ _	_ _ _ _		— — — —		YB 2010 YB 2012 YB 2016 YB 2018 YB 2020	35 42.5 57 64 68
	_ _ _ _	_ _ _	_ _ _ _	_	BHA 208 Z BHA 2012 Z BHA 2016 Z BHA 2020 Z	49.5 66	BHAM 208 BHAM 2012 BHAM 2016 BHAM 2020	40 54.5 71 86.5	_ _ _ _	_ _ _ _
33.338 (1 ⁵ / ₁₆)	BA 218 Z BA 2110 Z BA 2112 Z	28.5 35.5 43	BAM 218 BAM 2110 BAM 2112	35 41.5 49	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _	_ _ _

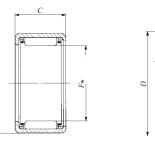
Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

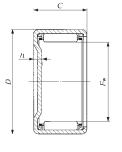
Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

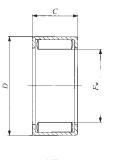
Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic load rating		Allowable rotational	Assembled inner ring
		1	l	Shaf	t dia.	Housing	bore dia.		load rating C_0	speed(1)	illilei illig
F_{w}	D	C	t_1	h			7		Ü		
·			Max.	Max.	Min.	Max.	Min.	N	N	rpm	
31.750 (1 ½)		12.70(.500)						9 100	14 700	12 000	IRB 168
31.750 (1 ½)		15.88(.625)						12 500	22 200	12 000	IRB 1610
31.750 (1 1/4)		19.05(.750)		31.750	31.734	38.114	38.089	15 700	29 600	12 000	IRB 1612
31.750 (1 1/4)		25.40(1.000)						21 500		12 000	IRB 1616
31.750 (1 ½)	_	31.75(1.250)	2.8					26 900	59 200	12 000	IRB 1620
		15.88(.625)	-					27 000	59 000	4 500	IRB 1610
31.750 (1 1/4)		19.05(.750)	-					31 800	72 500	4 500	IRB 1612
31.750 (1 1/4)		25.40(1.000)	-	31./50	31./34	38.114	38.089	40 900	100 000	4 500	IRB 1616
. , 1	. , 2	28.58(1.125) 31.75(1.250)						45 300 49 400	114 000 128 000	4 500 4 500	IRB 1620
	-										
31.750 (1 1/4)		12.70(.500)						13 700		12 000	IRB 168
31.750(1½)		19.05(.750)		31.750	31.734	41.289	41.264	24 100 33 200		12 000	IRB 1612
31.750 (1 ½) 31.750 (1 ½)		25.40(1.000) 31.75(1.250)						40 000	69 600	12 000 12 000	IRB 1616 IRB 1620
33.338 (1 1/6)		12.70(.500)		22 220	22 222	41 200	41 264	11 100		11 000	IRB 168-1
33.338 (1 ½) 33.338 (1 ½)		15.88(.625) 19.05(.750)		33.330	33.322	41.269	41.204	15 400 19 300	32 100	11 000 11 000	IRB 1610-1 IRB 1612-1
33.330 (1 7 ₁₆)	41.2/3(178)	13.03(./30)	2.0					19 300	32 100	11 000	IND 1012-1

B42

Inch Series




Shaft dia. 34.925 — 38.100mm


		Identification number										
Shaft dia.	Standard	Mass	Closed end	Mass	Standard	Mass	Closed end	Mass	Grease retained	Mass		
mm	Standard	(Ref.)	Closed ella	(Ref.)		(Ref.)	Closed ella	(Ref.)		(Ref.)		
(inch)		g		g		g		g		g		
	BA 228 Z	23.5	BAM 228	29	_	_	_	_	_			
	BA 2212 Z	35.5	BAM 2212	41	_	_	_	_	_	_		
	BA 2216 Z	47.5	BAM 2216	53	_	_	_	_	_	_		
	BA 2220 Z	59	BAM 2220	64	_	_	_	_	_	_		
	_	_	_	—	_	_	_	_	YB 228	30.5		
34.925	_	_	_	_	_	_	_	_	YB 2212	46		
$(1\frac{3}{8})$		_			_		_	_	YB 2220	77.5		
	_	_	_	_	BHA 228 Z	37	BHAM 228	43	_	_		
	_	_	_	_	BHA 2210 Z	44	BHAM 2210	50	_	_		
	_	_	_	_	BHA 2212 Z	53	BHAM 2212	59	_	_		
	_	_	_	_	BHA 2216 Z	71	BHAM 2216	77	_	_		
		_	_	_	BHA 2220 Z	87	BHAM 2220	98.5	_			
	BA 248 Z	38.5	BAM 248	47.5	_	_	_	_	_	_		
	BA 2410 Z	48.5	BAM 2410	57.5	_	_	_	_	_	_		
	BA 2412 Z	58.5	BAM 2412	67.5	_	_	_	_	_	_		
	BA 2414 Z	69	BAM 2414	78	_	_	_	_	_	_		
38.100	BA 2416 Z	79	BAM 2416	88	_	_	_	_	_	_		
$(1\frac{1}{2})$	BA 2420 Z	97.5	BAM 2420	106	_		_	_	_			
(-/2/	_	_	_	_	_	_	_	_	YB 246	38		
	_	_	_	_	_	_	_	_	YB 248	51.5		
	_	_	_	_	_	_	_	_	YB 2414	91		
	_	_	_	_	_	_	_	_	YB 2416	105		
	_	_	_	_	_	_	_	_	YB 2420	131		

Note(¹) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remark Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

BAM BHAM

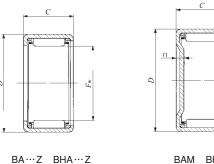
YΒ

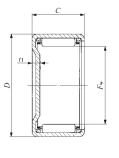
Bounda	ry dimension	Standard	mounting	dimension	s mm	Basic dynamic	Basic static	Allowable rotational	Assembled inner ring		
${F}_{ m w}$	D	C	t_1 Max.	Shaf h Max.		Housing J Max.		C N	C_0	speed(1)	3
34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾)	$\begin{array}{c} \textbf{41.275} (1 \frac{5}{8}) \\ \textbf{41.275} (1 \frac{5}{8}) \end{array}$	12.70(.500) 19.05(.750) 25.40(1.000) 31.75(1.250) 12.70(.500) 19.05(.750) 31.75(1.250)	2.8 2.8 2.8					9 770 16 900 23 100 28 900 23 000 33 400 52 000	16 600 33 500 50 200 67 100 49 500 79 800 141 000	10 000 10 000 10 000 10 000 4 500 4 500	IRB 188 IRB 1812 IRB 1816 IRB 1820 IRB 188 IRB 1812 IRB 1820
34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾) 34.925 (1 ¾)	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	12.70(.500) 15.88(.625) 19.05(.750) 25.40(1.000) 31.75(1.250)	3.4 3.4 3.4	34.925	34.909	44.464	44.439	14 100 19 700 24 800 34 100 41 200	18 800 28 800 38 800 58 400 74 200	10 000 10 000 10 000	IRB 188 IRB 1812 IRB 1816 IRB 1820
38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	47.625 (1 ½) 47.625 (1 ½) 47.625 (1 ½) 47.625 (1 ½)	12.70(.500) 15.88(.625) 19.05(.750) 22.22(.875) 25.40(1.000) 31.75(1.250)	2.8 2.8 2.8 2.8	38.100	38.084	47.639	47.614	12 900 17 800 22 500 26 700 31 100 39 000	17 900 27 100 36 600 45 600 55 400 74 200	9 000 9 000 9 000 9 000 9 000 9 000	IRB 2010
38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	47.625 (1 ½) 47.625 (1 ½) 47.625 (1 ½)	9.52(.375) 12.70(.500) 22.22(.875) 25.40(1.000) 31.75(1.250)		38.100	38.084	47.639	47.614	21 000 28 700 48 900 55 100 66 800	34 100 50 900 101 000 118 000 151 000	4 000 4 000 4 000 4 000 4 000	IRB 2014 IRB 2016 IRB 2020

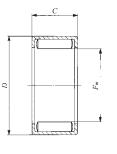
B44

TLA BA BHA

Inch Series






Shaft dia. 41.275 — 52.388mm

Shaft dia.					Identification n	umber				
mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.) g	Standard	Mass (Ref.) g	Closed end	Mass (Ref.) g	Grease retained	Mass (Ref.)
41.275 (1 ⁵ / ₈)	BA 268 Z BA 2610 Z BA 2616 Z BA 2620 Z	41 52 85 105	BAM 2610 BAM 2616 BAM 2620	51.5 62.5 95.5 115			_ _ _ _	_ _ _ _		
44.450 (1 ³ / ₄)	BA 2812 Z BA 2816 Z BA 2820 Z BA 2824 Z	67.5 91 112 136 —	BAM 2812 BAM 2816 BAM 2820 BAM 2824	79.5 103 125 148 —	— — — — — BHA 2824 Z		— — — — — BHAM 2824		— — — YB 2816	
47.625 (1½)	BA 308 Z BA 3010 Z BA 3012 Z BA 3016 Z	60 72.5	BAM 308 BAM 3010 BAM 3012 BAM 3016	61 74 86.5 112		_ _ _ _	_ _ _ _ _	_ _ _ _		 95
50.800 (2)	BA 328 Z BA 3216 Z BA 3220 Z BA 3224 Z BAW3228Z	50 104 128 155 180	BAM 328 BAM 3216 BAM 3220 BAM 3224 BAMW3228	66 119 144 170 196	 - -		— — — —			
52.388 (2 ¹ / ₁₆)	_ _ _	_ _ _	_ _ _	_ _ _	BHA 3312 Z BHA 3316 Z BHA 3324 Z	104 139 205	BHAM 3312 BHAM 3316 BHAM 3324	122 157 225	_ _ _	_ _ _

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. "W" in the identification number indicates that rolling elements are arranged in double rows.

Z	BHA…Z	BAM	BHAM	YΒ

Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic	Basic static	Allowable	Assembled inner ring
$F_{ m w}$	D	C	t_1 Max.		t dia. 6 Min.	Housing J Max.	bore dia. 7 Min.	C N	C_0	speed(1)	J
41.275 (1 $\frac{5}{8}$) 41.275 (1 $\frac{5}{8}$) 41.275 (1 $\frac{5}{8}$) 41.275 (1 $\frac{5}{8}$) 41.275 (1 $\frac{5}{8}$)	50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	12.70(.500) 15.88(.625) 25.40(1.000) 31.75(1.250) 15.88(.625)	2.8 2.8 2.8	41.275	41.259	50.818	50.788	13 700 18 900 33 000 41 400 37 000	19 800 30 000 61 400 82 100 71 700	8 000 8 000 8 000 8 000 3 500	IRB 2210
44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	53.975 (2 ½) 53.975 (2 ½)	19.05(.750) 25.40(1.000) 31.75(1.250) 38.10(1.500) 25.40(1.000)	2.8 2.8 2.8	44.450	44.434	53.993	53.963	25 200 34 800 43 600 52 000 59 500	44 500 67 400 90 200 113 000 136 000	7 500 7 500 7 500 7 500 7 500 3 500	IRB 2412 IRB 2416 — IRB 2424 IRB 2416
44.450 (1 ¾) 47.625 (1 ⅓) 47.625 (1 ⅓) 47.625 (1 ⅓) 47.625 (1 ⅓) 47.625 (1 ⅓)	57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	38.10(1.500) 12.70(.500) 15.88(.625) 19.05(.750) 25.40(1.000) 19.05(.750)	2.8 2.8 2.8 2.8					72 200 14 700 20 300 25 700 35 400 47 800	135 000 22 800 34 500 46 700 70 600 105 000	7 500 7 000 7 000 7 000 7 000 7 000 3 000	IRB 2424 IRB 248-1 IRB 2410-1 — —
50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	60.325 (2 ³ / ₈) 60.325 (2 ³ / ₈) 60.325 (2 ³ / ₈)	12.70(.500) 25.40(1.000) 31.75(1.250) 38.10(1.500) 44.45(1.750) 25.40(1.000)	2.8 2.8 2.8 2.8	50.800	50.781	60.343	60.313	15 400 37 100 46 600 55 500 57 900 64 100	24 700 76 500 102 000 128 000 136 000 156 000	6 000 6 000 6 000 6 000 6 000 2 500	IRB 2616 IRB 2720 — IRB 2628 IRB 2616
52.388 (2 ½6) 52.388 (2 ½6) 52.388 (2 ½6)	- 1,02	19.05(.750) 25.40(1.000) 38.10(1.500)	3.4	52.388	52.369	64.312	64.282	36 400 50 600 73 900	62 100 94 700 154 000	6 000 6 000 6 000	_ _ _

B46

B

TLA ВА вна

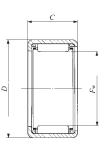
^{2.} Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of

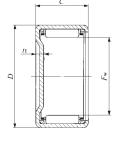
B

TLA BA BHA

SHELL TYPE NEEDLE ROLLER BEARINGS

Inch Series




Shaft dia. 53.975 — 69.850mm

					Identification n	umber				
Shaft dia. mm (inch)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Standard	Mass (Ref.)	Closed end	Mass (Ref.)	Grease retained	Mass (Ref.)
53.975 (2½)	BA 348 Z BA 3416 Z BA 3424 Z	53 109 162	BAM 348 BAM 3416 BAM 3424	70.5 127 180	_ _ _		_ _ _	_ _ _	_ _ _	
57.150 (2½)	BA 3612 Z BA 3616 Z BA 3620 Z BA 3624 Z	85.5 115 143 172	BAM 3612 BAM 3616 BAM 3620 BAM 3624	105 135 163 192	 		_ _ _ _	_ _ _	_ _ _ _	_ _ _ _
66.675 (2 ⁵ / ₈)	BA 4216 Z	133	BAM 4216	161	_	_	_	_	_	_
69.850 (2 ³ / ₄)	BA 4410 Z BA 4412 Z BA 4416 Z BA 4420 Z	85.5 103 139 173	BAM 4410 BAM 4412 BAM 4416 BAM 4420	115 133 169 205	 		— — — —		— — — —	

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Shell Type Grease Retained Full Complement Needle Roller Bearings are provided with prepacked grease. Standard type and closed end type bearings are not provided with prepacked grease, so perform proper lubrication when using these types of bearings.

 $\mathsf{BA}\cdots\mathsf{Z}$

BAM

Bounda	ry dimension	s mm(inch)		Standard	mounting	dimension	ns mm	Basic dynamic	Basic static	Allowable rotational	Assembled inner ring
$F_{ m w}$	D	C	t_1 Max.	Shaf h Max.		Housing J Max.	bore dia. 7 Min.	C N	C_0	speed(1)	
53.975 (2 ½) 53.975 (2 ½) 53.975 (2 ½)	63.500 (2 ½)	12.70(.500) 25.40(1.000) 38.10(1.500)	2.8	53.975	53.956	63.518	63.488	16 100 38 700 57 900	26 600 82 500 138 000	5 500 5 500 5 500	IRB 3016 IRB 3024
57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	66.675 (2 ½) 66.675 (2 ½)	19.05(.750) 25.40(1.000) 31.75(1.250) 38.10(1.500)	2.8 2.8	57.150	57.131	66.693	66.663	28 500 39 300 49 400 58 800	56 700 85 700 115 000 144 000	5 000 5 000 5 000 5 000	_ _ _ _
66.675 (2 ⁵ / ₈)	76.200 (3)	25.40(1.000)	2.8	66.675	66.656	76.218	76.188	42 000	97 900	4 000	IRB 3616
69.850 (2 ³ / ₄) 69.850 (2 ³ / ₄)	79.375(3½) 79.375(3½)	15.88(.625) 19.05(.750) 25.40(1.000) 31.75(1.250)	2.8 2.8	69.850	69.831	79.393	79.363	25 000 31 500 43 500 54 600	50 800 68 700 104 000 139 000	3 500 3 500 3 500 3 500	IRB 4016 IRB 4020

В

TLA

ВНА

SHELL TYPE NEEDLE ROLLER BEARINGS

With seals

Shaft dia. 12 – 50mm

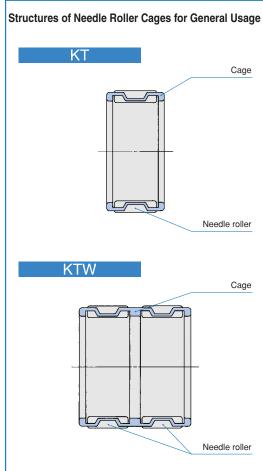
		Mass (Ref.)	Boundary	dimensio di	ns mm	Stand	lard mounting	g dimensions	mm
Shaft dia.	Identification number	(1101.)					t dia.	_	bore dia.
mm		g	$F_{\rm w}$	D	C	h Max.	6 Min.	Max.	7 Min.
12	TLA 1216 UU	11.7	12	18	16	12.000	11.989	17.995	17.977
14	TLA 1416 UU	13.3	14	20	16	14.000	13.989	19.993	19.972
15	TLA 1516 UU	14	15	21	16	15.000	14.989	20.993	20.972
16	TLA 1616 UU	14.8	16	22	16	16.000	15.989	21.993	21.972
18	TLA 1816 UU	16.3	18	24	16	18.000	17.989	23.993	23.972
20	TLA 2016 UU TLA 2020 UU	17.8 22.5	20 20	26 26	16 20	20.000	19.987	25.993	25.972
22	TLA 2216 UU TLA 2220 UU	19.4 25	22 22	28 28	16 20	22.000	21.987	27.993	27.972
25	TLA 2516 UU TLA 2520 UU	26 33	25 25	32 32	16 20	25.000	24.987	31.992	31.967
28	TLA 2820 UU	36.5	28	35	20	28.000	27.987	34.992	34.967
30	TLA 3016 UU TLA 3020 UU	30.5 39	30 30	37 37	16 20	30.000	29.987	36.992	36.967
35	TLA 3516 UU TLA 3520 UU	35 45	35 35	42 42	16 20	35.000	34.984	41.992	41.967
40	TLA 4016 UU TLA 4020 UU	39.5 50.5	40 40	47 47	16 20	40.000	39.984	46.992	46.967
45	TLA 4520 UU	56	45	52	20	45.000	44.984	51.991	51.961
50	TLA 5026 UU	89	50	58	26	50.000	49.984	57.991	57.961

Note(1) Allowable rotational speed applies to grease lubrication. Remark The type with seals is provided with prepacked grease.

 $\mathsf{TLA}\cdots\mathsf{UU}$

Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(1)	
N	N	rpm	
6 420	7 490	14 000	
7 080	8 840	12 000	
7 380	9 520	11 000	
7 670	10 200	11 000	
8 230	11 500	9 000	
8 740 11 100	12 900 17 500	9 000 9 000	
9 230 11 700	14 300 19 300	8 000 8 000	
9 440 12 800	13 900 20 500	7 000 7 000	
13 800	23 500	6 000	
10 400 14 100	16 600 24 500	5 500 5 500	
11 600 15 700	20 000 29 600	5 000 5 000	
12 400 16 700	22 800 33 700	4 500 4 500	
17 800	37 800	4 000	
28 800	64 100	3 500	

NEEDLE ROLLER CAGES FOR GENERAL USAGE



Structure and Features

IKO Needle Roller Cages for General Usage are bearings which display excellent rotational performance. Needle rollers with extremely small dimensional variations in diameter are incorporated and retained in their specially shaped cages with high rigidity and accuracy, which precisely guide the needle rollers.

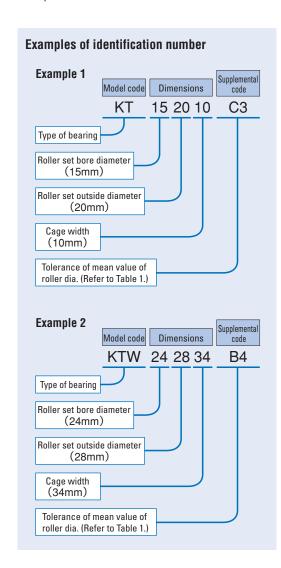
When combined with shafts and housing bores that are heat treated and accurately ground as raceway surfaces, Needle Roller Cages for General Usage are particularly useful in small spaces.

In addition, since they are lightweight and have high rigidity as well as a large lubricant holding capacity, they can withstand severe operating conditions such as high speed rotation and shock loads, and they are used in a wide range of applications.

KT

C1 C2

Types


Needle Roller Cages for General Usage are available in two types, with single row needle rollers and double row needle rollers.

For applications such as crank shafts where these bearings are difficult to install, it is also possible to make split type bearings.

If such bearings are required, please contact **IKD**. For Needle Roller Cages for Engine Connecting Rods (KT···EG and KTV···EG), see page C17.

Identification Number

The identification number of Needle Roller Cages for General Usage consists of a model code, dimensions and any supplemental codes. The arrangement examples are shown below.

Accuracy

The diameter tolerances of needle rollers of Needle Roller Cages for General Usage are classified by classification symbols shown in Table 1. If a classification symbol is not indicated in an identification number, the classification symbol "C3" is applied.

When two or more bearings are used in tandem arrangement on the same shaft, it is necessary to select bearings of the same classification symbol to obtain an even load distribution.

The tolerance of the cage width B_c is -0.20 \sim -0.55

Table 1 Diameter tolerances of needle rollers unit: μ m

Classification symbol	Tolerance of mean value of needle roller diameter
С 3	0~- 3
B 2	0~- 2
B 4	-2~- 4
B 6	-4~-6
B 8	-6~-8
B10	-8~-10

Radial clearances of Needle Roller Cages for General Usage are determined by the dimensional accuracy of the raceways and needle rollers. Table 2 shows the recommended fits for the operating conditions.

Table 2 Recommended fits of shaft to the housing bore diameter G6

boro didiriotor do					
Shaft	Tolerance class of shaft				
Operating conditions	$F_{\rm w} \leq$ 68mm	$F_{\rm w}$ $>$ 68mm			
When high operating accuracy is required. When shock loads and oscillating motions are applied.	j5	h5			
For general use	h5	g5			
When the temperature is high, or mounting errors are large.	g6	f6			

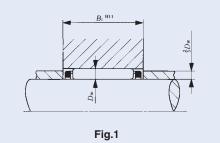
Remark When setting the required radial clearance according to the operating conditions, the clearance can easily be obtained by selecting and matching the tolerances of needle rollers, shaft and housing bore. When variation of the clearance does not create any problems, h6 and G7 are used for shaft and housing bore, respectively

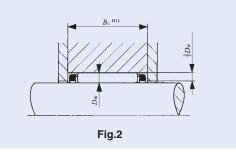
Specifications of shaft and housing

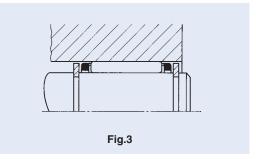
For the raceways, a surface hardness of 58 ~ 64HRC and a surface roughness 0.2 μ m R_a or less are desirable. However, when the operating conditions are not severe, a surface roughness $0.8 \mu mR_a$ or less can be

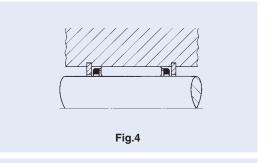
When the surface hardness is low, it is necessary to correct the load rating by the hardness factor specified on page A20.

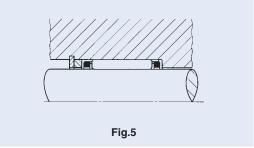
Operating temperature range


For synthetic resin cages, "N" is added at the end of the identification number. The operating temperature range for Needle Roller Cages for General Usage is -20 $^{\circ}$ C \sim +120 $^{\circ}$ C. However, the maximum allowable temperature for synthetic resin cages is +110 °C, and when they are continuously operated, it is +100 °C.


Mounting


The dimensions related to mounting of Needle Roller Cages for General Usage are shown in Figs. 1 and 2. When mounting Needle Roller Cages for General Usage, they are axially positioned by using, for example, Cir-clips for shaft and housing bore (WR and AR on page L13) as shown in Figs. 3, 4 and 5.


For high rotational speed applications, a heat treated and ground spacer is positioned between the cage and the cir-clip as shown in Fig. 5 so that the cage does not make direct contact with the cir-clip. In this case, the cir-clip is normally mounted on the nonrotating side.


Fig. 3 shows a mounting example in the case of outer ring rotation, and Figs. 4 and 5 show examples in the case of inner ring rotation.

NEEDLE ROLLER CAGES FOR GENERAL USAGE

Shaft dia. 3 — 14mm

Shaft dia.	Identification number	Mass (Ref.)	Boundary dimensions mm		Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(1)	
mm	identification number	g	F_{w}	E_{w}	$B_{\rm c}$	N	N N	rpm
3	KT 367N	0.39	3	6	7	1 480	990	140 000
4	KT 477N	0.47	4	7	7	1 800	1 300	100 000
5	KT 587N KT 588N	0.53 0.66	5 5	8 8	7 8	2 070 2 420	1 600 1 950	85 000 85 000
6	KT 697N KT 698N KT 6910 KT 61013	0.63 0.75 1.45 2.7	6 6 6	9 9 9 10	7 8 10 13	2 310 2 700 3 010 4 410	1 900 2 320 2 660 3 720	75 000 75 000 75 000 75 000
7	KT 7108N KT 71010	0.86 1.69	7 7	10 10	8 10	2 960 3 340	2 690 3 130	65 000 65 000
8	KT 8118N KT 81110 KT 81113 KT 8128 KT 81211	0.96 1.9 2.5 2.1 3	8 8 8 8	11 11 11 12 12	8 10 13 8 11	3 190 3 630 4 500 3 630 4 630	3 060 3 600 4 750 3 040 4 170	60 000 60 000 60 000 60 000 60 000
9	KT 91210 KT 91213	2.1 2.8	9 9	12 12	10 13	3 900 4 840	4 070 5 370	55 000 55 000
10	KT 10138 KT 101310 KT 101313 KT 101410 KT 101412 KT 101413 KT 101415	1.9 2.3 3 3.2 3.8 4.2 4.8	10 10 10 10 10 10	13 13 13 14 14 14 14	8 10 13 10 12 13 15	3 370 4 160 5 160 4 900 5 940 6 100 7 080	3 470 4 550 6 000 4 680 6 000 6 200 7 520	50 000 50 000 50 000 50 000 50 000 50 000 50 000
11	KT 111410	2.5	11	14	10	4 400	5 020	45 000

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remark For synthetic resin cages, "N" is added at the end of the identification number.

		B. 4	D 1	1.		B		All II
Shaft		Mass (Ref.)	Boundary dimensions mm			load rating	Basic static load rating	Allowable rotational
dia.	Identification number	(1101.)				C	C_0	speed(1)
			$F_{\rm w}$	E_{w}	$B_{\rm c}$		0	
mm		g	T W	$L_{ m W}$	D _c	N	N	rpm
	KT 12158	2.2	12	15	8	3 750	4 200	40 000
	KT 121510	2.7	12	15	10	4 620	5 490	40 000
	KT 121512	3.2	12	15	12	5 590	7 020	40 000
	KT 121513	3.6	12	15	13	5 730	7 250	40 000
	KT 121514	3.8	12	15	14	6 200	8 010	40 000
12	KT 121610	4	12	16	10	5 650	5 890	40 000
	KT 121613	5.2	12	16	13	7 020	7 800	40 000
	KT 121618	7	12	16	18	9 790	11 900	40 000
	KT 121710	5.1	12	17	10	6 170	5 740	40 000
	KT 121812	7.8	12	18	12	9 030	8 460	40 000
	KT 121820	13.2	12	18	20	13 700	14 400	40 000
	KT 131710	4.3	13	17	10	5 990	6 500	40 000
13	KT 131815	8.2	13	18	15	9 660	10 400	40 000
	KT 131816	8.7	13	18	16	10 300	11 400	40 000
	KT 14188	3.7	14	18	8	5 110	5 410	35 000
	KT 141810	4.6	14	18	10	6 320	7 110	35 000
	KT 141811	5.2	14	18	11	6 520	7 410	35 000
	KT 141813	6	14	18	13	7 860	9 410	35 000
14	KT 141816	7.3	14	18	16	9 750	12 400	35 000
14	KT 141910	5.9	14	19	10	7 130	7 180	35 000
	KT 141916	9.4	14	19	16	11 100	12 600	35 000
	KT 141918	10.5	14	19	18	12 400	14 700	35 000
	KT 142012	8.7	14	20	12	9 790	9 680	35 000
	KT 142017	12.4	14	20	17	13 300	14 400	35 000

NEEDLE ROLLER CAGES FOR GENERAL USAGE

Shaft dia. 15 – 18mm

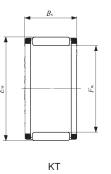
Shaft		Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic load rating	Basic static	Allowable rotational
Snaπ dia.	Identification number	(1161.)			ı	C	C_0	speed(1)
			$F_{\rm w}$	$E_{\rm w}$	B_{c}		0	
mm		g	- W	Z _W	26	N	N	rpm
	KT 15199	4.4	15	19	9	6 120	6 950	35 000
	KT 151910	4.9	15	19	10	6 630	7 720	35 000
	KT 151911	5.5	15	19	11	6 850	8 040	35 000
15	KT 151913	6.4	15	19	13	8 250	10 200	35 000
13	KT 151917	8.2	15	19	17	10 900	14 600	35 000
	KT 151918	8.7	15	19	18	11 500	15 600	35 000
	KT 152010	6.3	15	20	10	7 580	7 920	35 000
	KT 152115	11.9	15	21	15	12 600	13 500	35 000
	KT 162010	5.2	16	20	10	6 930	8 330	30 000
	KT 162013	6.8	16	20	13	8 620	11 000	30 000
	KT 162016	8.3	16	20	16	10 700	14 600	30 000
	KT 162017	8.7	16	20	17	11 400	15 700	30 000
	KT 162118	12	16	21	18	14 000	17 700	30 000
16	KT 162120	13.6	16	21	20	14 700	18 900	30 000
10	KT 162125	16.6	16	21	25	18 300	25 100	30 000
	KT 162212	9.7	16	22	12	10 500	10 900	30 000
	KT 162214	11.5	16	22	14	11 600	12 500	30 000
	KT 162217	13.8	16	22	17	14 200	16 100	30 000
	KT 162220	16.5	16	22	20	15 900	18 600	30 000
	KT 162420	23.5	16	24	20	18 500	19 000	30 000
	KT 172110	5.5	17	21	10	7 220	8 950	30 000
	KT 172113	7.2	17	21	13	8 980	11 800	30 000
	KT 172115	8.2	17	21	15	10 400	14 400	30 000
17	KT 172117	9.3	17	21	17	11 800	16 900	30 000
17	KT 172220	14	17	22	20	15 500	20 500	30 000
	KT 172311	9.6	17	23	11	10 100	10 500	30 000
	KT 172315	13.1	17	23	15	13 300	15 100	30 000
	KT 172418	18.6	17	24	18	16 500	18 000	30 000
		l	I	I		1		

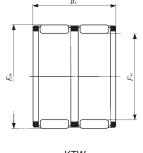
Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

	Т

	Mass Boundary dimens				ensions	Basic dynamic	Basic static	Allowable
Shaft		(Ref.)		mm		load rating	load rating	rotational speed(1)
dia.	Identification number		E	E	D	C	C_0	speed(*)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 18228	4.7	18	22	8	6 060	7 270	30 000
	KT 182210	5.8	18	22	10	7 500	9 560	30 000
	KT 182213	7.6	18	22	13	9 330	12 700	30 000
	KT 182216	9.2	18	22	16	11 600	16 700	30 000
	KT 182412	11	18	24	12	11 800	13 100	30 000
	KT 182416	14.8	18	24	16	15 100	17 900	30 000
18	KT 182417	15.7	18	24	17	16 000	19 400	30 000
	KT 182420	18.7	18	24	20	17 900	22 400	30 000
	KT 182517	18.8	18	25	17	16 700	18 600	30 000
	KT 182519	21	18	25	19	18 700	21 400	30 000
	KT 182522	24.5	18	25	22	20 600	24 200	30 000
	KT 182614 KT 182620	18.1 26	18 18	26	14	14 600	14 400	30 000
	K1 102020	20	10	26	20	20 000	21 600	30 000

NEEDLE ROLLER CAGES FOR GENERAL USAGE





Shaft dia. 20 – 24mm

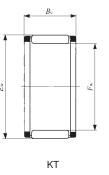
		Mass	Mass Boundary dimensions				Basic static	Allowable
Shaft		(Ref.)	mm		load rating	load rating	rotational	
dia.	Identification number				I	C	C_0	speed(1)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 202410	6.3	20	24	10	7 710	10 200	25 000
	KT 202413	8.3	20	24	13	9 590	13 500	25 000
	KT 202417	10.6	20	24	17	12 600	19 300	25 000
	KTW 202422	14.6	20	24	22	13 700	21 300	25 000
	KT 202525	19.7	20	25	25	19 900	29 800	25 000
	KTW 202531.6	26.5	20	25	31.6	21 700	33 200	25 000
	KTW 202540	32.5	20	25	40	27 500	44 900	25 000
	KT 202611	11.1	20	26	11	11 200	12 500	25 000
20	KT 202612	12	20	26	12	12 400	14 300	25 000
	KT 202614	14.2	20	26	14	13 700	16 400	25 000
	KT 202617	17	20	26	17	16 800	21 200	25 000
	KT 202620	20.5	20	26	20	18 700	24 400	25 000
	KT 202624	24	20	26	24	22 500	30 900	25 000
	KT 202627	26.5	20	26	27	26 000	37 300	25 000
	KT 202814	20	20	28	14	15 700	16 100	25 000
	KT 202820	29	20	28	20	21 500	24 200	25 000
	KT 203225	49.5	20	32	25	30 800	30 500	25 000
0.1	KT 212610	8.5	21	26	10	9 090	11 000	25 000
21	KT 212611	9.6	21	26	11	9 390	11 500	25 000

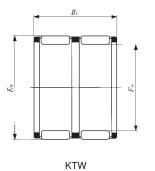
Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

	•			•		
)i		¥
Ew					<u>_</u>	
<u> </u>).		¥
		K	TW			

Shaft dia.	Identification number	Mass (Ref.)	Boundary dimensions mm			Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(1)
mm		g	F_{w}	$E_{ m w}$	$B_{\rm c}$	N	N	rpm
22	KT 222610 KT 222613 KT 222617 KTW 222625 KT 222720 KT 222726 KT 222912 KT 222912 KT 222916 KT 222917 KT 222918 KT 222920 KT 223015 KT 223230 KT 223232	6.9 9.1 11.6 17.7 17.9 22.5 18.4 16.1 21 22.5 23.5 26.5 23.5 52.5 56	22 22 22 22 22 22 22 22 22 22 22 22 22	26 26 26 27 27 28 29 29 29 29 29 30 32 32	10 13 17 25 20 26 17 12 16 17 18 20 15 30 32	8 220 10 200 13 500 17 100 17 400 22 500 17 500 12 900 17 600 18 700 19 800 20 900 17 900 36 400 38 800	11 500 15 200 21 600 29 400 25 700 35 800 23 000 14 000 20 900 22 600 24 400 26 100 19 700 42 700 46 300	25 000 25 000
23	KT 232824 KT 232913 KT 233015 KT 233016	22 15.1 21 22	23 23 23 23 23	28 29 30 30	24 13 15 16	21 600 13 800 17 300 18 600	34 500 17 200 20 800 22 600	20 000 20 000 20 000 20 000
24	KT 242813 KT 242816 KTW 242834 KT 242913 KT 243020	9.9 12 27 12.8 23.5	24 24 24 24 24 24	28 28 28 29 30	13 16 34 13 20	10 800 13 400 21 600 12 700 20 300	16 800 22 200 40 700 17 600 28 500	20 000 20 000 20 000 20 000 20 000

NEEDLE ROLLER CAGES FOR GENERAL USAGE





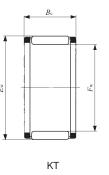
Shaft dia. 25 – 32mm

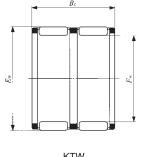
Shaft		Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic	Basic static	Allowable
dia.	Identification number	(1.1011)			ı	C	C_0	speed(1)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 252910	7.9	25	29	10	8 940	13 300	20 000
	KT 252913	10.3	25	29	13	11 100	17 600	20 000
	KT 253013	13.3	25	30	13	13 100	18 600	20 000
	KT 253016	16.2	25	30	16	16 300	24 600	20 000
	KT 253017	17.1	25	30	17	17 300	26 600	20 000
	KT 253020	20	25	30	20	18 600	29 100	20 000
	KT 253113	16.2	25	31	13	14 300	18 400	20 000
25	KT 253116	19.6	25	31	16	17 800	24 400	20 000
	KT 253117	20.5	25	31	17	19 000	26 500	20 000
	KT 253120	25	25	31	20	21 200	30 500	20 000
	KT 253216	23.5	25	32	16	19 400	24 500	20 000
	KT 253224	35	25	32	24	27 700	38 700	20 000
	KT 253515	33	25	35	15	22 600	23 800	20 000
	KT 253525	48	25	35	25	32 500	37 900	20 000
	KT 253530	58	25	35	30	39 100	48 000	20 000
26	KT 263013	10.7	26	30	13	11 400	18 400	19 000
20	KT 263832	79.5	26	38	32	47 200	55 300	19 000
	KT 283313	14.8	28	33	13	13 800	20 700	18 000
	KT 283317	18.9	28	33	17	18 300	29 500	18 000
	KT 283327	29	28	33	27	26 300	47 300	18 000
28	KT 283417	23	28	34	17	20 300	29 900	18 000
20	KT 283516	26	28	35	16	20 100	26 500	18 000
	KT 283528	44.5	28	35	28	33 200	50 600	18 000
	KT 283620	38.5	28	36	20	26 500	34 700	18 000
	KT 284138	110	28	41	38	58 700	71 100	18 000

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

t		Mass (Ref.)	Boundary dimensions mm		Basic dynamic load rating	Basic static	Allowable rotational	
Identifica	tion number					C	C_0	speed(1)
achtinouton number		a	F_{w}	$E_{\rm w}$	$B_{\rm c}$	N	N	rpm
VT	202542		00	05	10			
								17 000
								17 000
								17 000
								17 000 17 000
								17 000 17 000
								17 000
								17 000
								17 000
								17 000
								17 000
								17 000
								17 000
								17 000
								17 000
		117	30	42	37	55 900	71 300	17 000
КТ	323713	16.7	32	37	13	14 900	23 700	16 000
KT	323717	21.5	32	37	17	19 600	33 900	16 000
KT	323723	28.5	32	37	23	24 400	44 800	16 000
KT	323813	20.5	32	38	13	16 800	24 400	16 000
KT	323820	31.5	32	38	20	24 800	40 300	16 000
KT	323916	29	32	39	16	21 600	30 200	16 000
KT	323920	37	32	39	20	25 600	37 700	16 000
KT	324519	63.5	32	45	19	33 700	35 900	16 000
KT	324525	84.5	32	45	25	45 600	53 000	16 000
KT	324532	109	32	45	32	58 500	73 000	16 000
KT	324550	162	32	45	50	81 500	111 000	16 000
	KT KT KT KT KT KT KT KT KT KT KT KT KT K	KT 303516 KT 303517 KT 303524 KT 303527 KT 303613 KT 303620 KT 303715 KT 303716 KT 303720 KT 303723 KT 303824 KT 303824 KT 304232 KTW 304237 KT 323713 KT 323717 KT 323713 KT 323713 KT 323716 KT 323716 KT 323717 KT 323717 KT 323713 KT 323717 KT 323713	Ref. Ref.	Ref.	Ref. Ref.	Ref. Ref.	Ref. Ref.	Identification number Ref.

NEEDLE ROLLER CAGES FOR GENERAL USAGE





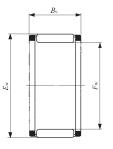
Shaft dia. 35 – 52mm

		Mass	Bounda	arv dime	ensions	Basic dynamic	Basic static	Allowable
Shaft		(Ref.)	mm		load rating	load rating	rotational	
dia.	Identification number			 	I	C	C_0	speed(1)
			$F_{\rm w}$	$E_{\rm w}$	$B_{\rm c}$			
mm		g	"		Ů	N	N	rpm
	KT 354013	18.1	35	40	13	15 500	25 800	14 000
	KT 354017	23	35	40	17	20 500	36 900	14 000
	KT 354026	34.5	35	40	26	28 700	56 800	14 000
	KT 354113	22.5	35	41	13	17 700	26 800	14 000
35	KT 354216	32	35	42	16	23 100	33 900	14 000
	KT 354218	35.5	35	42	18	26 000	39 500	14 000
	KT 354220	40.5	35	42	20	27 400	42 300	14 000
	KT 354230	59	35	42	30	40 600	70 300	14 000
	KT 354525	68.5	35	45	25	42 100	57 900	14 000
36	KT 364216	27.5	36	42	16	21 900	35 700	14 000
	KT 384417	30.5	38	44	17	23 800	40 400	13 000
38	KT 384620	50	38	46	20	30 500	45 400	13 000
	KT 384632	80	38	46	32	45 400	75 700	13 000
	KT 404513	20.5	40	45	13	16 800	29 800	12 000
	KT 404517	26.5	40	45	17	22 200	42 700	12 000
	KT 404527	41	40	45	27	32 400	69 200	12 000
	KT 404817	44	40	48	17	28 100	41 600	12 000
	KT 404820	52.5	40	48	20	31 400	48 000	12 000
	KT 404825	64.5	40	48	25	39 300	64 000	12 000
40	KT 404834	87.5	40	48	34	51 100	89 600	12 000
70	KT 405015	48.5	40	50	15	28 200	35 900	12 000
	KT 405017	56.5	40	50	17	30 200	39 200	12 000
	KT 405020	61	40	50	20	35 700	48 600	12 000
	KTW 405238	158	40	52	38	65 000	93 000	12 000
	KT 405432	144	40	54	32	66 800	87 200	12 000
	KT 405450	215	40	54	50	93 600	134 000	12 000
	KT 405463	270	40	54	63	115 000	175 000	12 000

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

	B c ▶
<u> </u>	
ě	
i	
<u> </u>	
	KTW

Shaft dia.	Identification number	Mass (Ref.)	Bounda	ary dime mm	ensions	Basic dynamic load rating $\cal C$	Basic static load rating C_0	Allowable rotational speed(1)
mm		g	F_{w}	$E_{\rm w}$	$B_{\rm c}$	N	N	rpm
41	KT 414835	78.5	41	48	35	47 800	90 800	12 000
42	KT 424717 KT 424815 KT 424816 KT 425020 KT 425030	27.5 30 32 55 80.5	42 42 42 42 42	47 48 48 50 50	17 15 16 20 30	22 500 22 400 24 000 32 400 48 200	44 200 38 600 42 100 50 600 84 400	12 000 12 000 12 000
45	KT 455017	29.5	45	50	17	23 300	47 100	11 000
	KT 455027	46	45	50	27	34 800	79 000	11 000
	KT 455320	58	45	53	20	33 200	53 300	11 000
	KT 455325	71.5	45	53	25	41 500	71 100	11 000
	KT 455330	86	45	53	30	47 800	85 300	11 000
	KT 455335	101	45	53	35	53 900	99 500	11 000
	KT 455527	90.5	45	53	27	50 300	78 200	11 000
48	KT 485320	37	48	53	20	26 800	57 600	10 000
	KT 485420	46	48	54	20	30 600	60 400	10 000
50	KT 505520	38.5	50	55	20	27 100	59 300	10 000
	KT 505527	50.5	50	55	27	35 600	84 100	10 000
	KT 505820	65	50	58	20	35 900	61 100	10 000
	KT 505825	80	50	58	25	44 900	81 500	10 000
	KT 505830	96.5	50	58	30	51 700	97 800	10 000
	KT 505835	113	50	58	35	58 300	114 000	10 000
52	KT 525817	41	52	58	17	28 300	56 000	9 500
	KT 526024	80	52	60	24	44 000	80 800	9 500


NEEDLE ROLLER CAGES FOR GENERAL USAGE

Shaft dia. 55 — 100mm

		Mass	Bound:	arv dime	ensions	Basic dynamic	Basic static	Allowable
Shaft		(Ref.)	mm		load rating	load rating	rotational	
dia.	Identification number			I	1	C	C_0	speed(1)
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	rpm
	KT 556020	42.5	55	60	20	28 600	66 000	9 000
	KT 556027	55.5	55	60	27	37 600	93 900	9 000
55	KT 556120	52	55	61	20	32 600	68 500	9 000
33	KT 556315	52.5	55	63	15	29 400	48 700	9 000
	KT 556320	71	55	63	20	37 400	66 400	9 000
	KT 556325	87	55	63	25	46 800	88 600	9 000
58	KT 586320	44.5	58	63	20	29 300	69 400	8 500
30	KT 586420	54.5	58	64	20	33 600	72 500	8 500
	KT 606520	45.5	60	65	20	29 700	71 100	8 500
	KT 606820	76.5	60	68	20	38 900	71 700	8 500
60	KT 606825	94	60	68	25	48 600	95 600	8 500
	KT 606827	101	60	68	27	52 400	105 000	8 500
	KT 607236	205	60	72	36	86 700	152 000	8 500
63	KT 637120	79.5	63	71	20	39 500	74 400	8 000
65	KT 657320	83.5	65	73	20	41 200	79 600	7 500
03	KT 657330	124	65	73	30	59 300	127 000	7 500
68	KT 687620	86.5	68	76	20	41 800	82 200	7 500
70	KT 707820	89	70	78	20	42 500	84 900	7 000
70	KT 707830	132	70	78	30	61 200	136 000	7 000
72	KT 728020	91.5	72	80	20	43 200	87 500	7 000
	KT 758320	94.5	75	83	20	43 800	90 200	6 500
75	KT 758325	116	75	83	25	54 800	120 000	6 500
75	KT 758330	141	75	83	30	63 100	144 000	6 500
	KT 758335	164	75	83	35	71 200	168 000	6 500

Note(1) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

ΚT

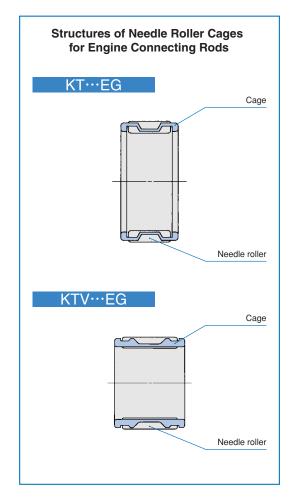
01 6		Mass (Ref.)	Bounda	ary dime mm	ensions	Basic dynamic load rating	Basic static	Allowable
Shaft dia.	Identification number	(1161.)			ı	C	load rating C_0	speed(1)
a.a.			$F_{\rm w}$	E_{w}	$B_{\rm c}$			
mm		g	- w	-w	- 0	N	N	rpm
	KT 808822	110	80	88	22	49 700	108 000	6 000
80	KT 808825	123	80	88	25		127 000	6 000
	KT 808830	149	80	88	30	65 000	153 000	6 000
	KT 859112	44.5	85	91	12	25 200	56 700	6 000
85	KT 859325	130	85	93	25	57 800	134 000	6 000
	KT 859330	157	85	93	30	66 600	161 000	6 000
90	KT 909825	138	90	98	25	60 400	145 000	5 500
30	KT 909830	167	90	98	30	69 600	174 000	5 500
95	KT 9510330	175	95	103	30	70 900	182 000	5 500
100	KT 10010830	184	100	108	30	72 500	191 000	4 500

NEEDLE ROLLER CAGES FOR ENGINE CONNECTING RODS

- Needle Roller Cages for Big End
- Needle Roller Cages for Small End

Structure and Features

Rods are bearings for use in engine connecting Rods are bearings for use in engine connecting rods. These bearings have superior performance proven in high performance engines of racing motor cycles, and are widely used in small motor vehicles, motor cycles, outboard marines, snow mobiles, high-speed compressors, etc. and also in general-purpose engines. Bearings for engine connecting rods are used under extremely severe and complex operating conditions such as heavy shock loads, high speeds, high temperatures and stringent lubrication.


Needle Roller Cages for Engine Connecting Rods are lightweight, and have high load ratings and high rigidity as well as superior wear resistance to withstand these severe conditions.

In Needle Roller Cages for Engine Connecting Rods, the types shown in Table 1 are available.

Table 1 Types

Туре	For big end	For small end
Model code	KT…EG	KTV ··· EG

KT···EG KTV···EG

C17

Needle Roller Cages for Big End KT···EG

These roller cages are subjected to acceleration and deceleration during their rotating and epicyclic motion due to crank shaft rotation. To withstand such conditions, they are made of a special alloy and are lightweight with high rigidity.

They are guided on their outer periphery surface with superior lubricating properties.

For the purpose of using them under severe conditions such as high rotational speed and stringent lubrication, bearings plated with non-ferrous metals are also available on request.

High-load capacity and high-rigidity cages to be used for racing motor cycles (See the photo bellow.), split needle cages for solid (one-piece) type crank-shafts and other special specification cages of various types are also available. Please consult **IKU** when required.

High-load capacity and high-rigidity cage KTZ···EG

Needle Roller Cages for Small End KTV···EG

These roller cages oscillates at high speeds within a limited loading zone under heavy shock loads. Thus, these cages are designed to be lightweight and have high rigidity with a well-balanced structure. In these cages, a number of needle rollers having a small diameter are incorporated to reduce the rolling contact stress in the loading zone.

Needle Roller Cages for Small End are classified into two types, the outer surface guide type and the inner surface guide type. This classification is shown in the table of dimensions.

In the outer surface guide type, the cage is guided by the sliding contact between the inner surface of the connecting rod and the outer surface of the cage.

In the inner surface guide type, the cage is guided by the sliding contact between the outer surface of the pin and the inner surface of the cage.

Identification Number

The identification number of Needle Roller Cages for Engine Connecting Rods consists of a model code, dimensions and any supplemental codes as shown below. Model code Dimensions

KT 22 28 16 EG B2

Type of bearing

Roller set bore diameter (22mm)

Roller set outside diameter (28mm)

Width of cage (16mm)

Tolerance of mean value of roller dia. (See Table 2.)

Accuracy

The diameter tolerances of needle rollers of Needle Roller Cages for Engine Connecting Rods are classified as shown in Table 2. When the classification symbol is not indicated in the identification number, the classification symbol "B2" is applied.

The tolerance of the cage width $B_{\rm c}$ is $-0.2\!\sim\!-0.4$ mm. But cages with marks in the $B_{\rm c}$ column in the dimension tables are manufactured with the following width tolerances

• · 0~− 0.2 mm

■: $-0.1 \sim -0.3 \text{ mm}$

Table 2 Tolerances of needle roller diameter

μ								
Class	Classification symbol(1)	Tolerance of mean value of roller dia. (²)						
Standard	B 2 B 4	0~- 2 -2~- 4						
Semi-standard	B 6 B 8 B10	$-4 \sim -6$ $-6 \sim -8$ $-8 \sim -10$						

otes(1) The classification symbol is indicated at the end of the identification number.

(2) Tolerances for circularity are based on JIS B 1506₂₀₀₅ (Rolling bearings - Rollers).

Clearance

Radial internal clearances are selected according to the type of engine and the operating conditions (rotational speed, load, lubricating conditions, etc.). If a bearing is used with an inadequate clearance, bearing troubles such as seizure, early flaking and noise increase may occur, leading to an engine failure. Therefore, it is necessary to select the clearance carefully according to test results and experience.

Recommended radial internal clearances are shown in Table 3. When operating at high speeds, it is recommended to select the upper limit of the clearance.

To obtain the recommended clearance shown in Table 3, it is general practice to match a connecting rod, crank pin or piston pin and needle roller cage of suitable tolerances for assembly.

Precautions for Use

When designing a connecting rod, crank pin and piston pin, the following precautions should be taken, because the raceways are subjected to loads under extremely severe conditions.

Material

It is recommended to use carburizing steel because the raceways are subjected to fluctuating loads with frequent and heavy shock loads. Generally, chromium molybdenum steel is used. Nickel chromium molybdenum steel is also used.

A Hardness

The recommended surface hardness of the raceway is $697 \sim 800$ HV ($60 \sim 64$ HRC). While the effective hardening depth differs depending on the applications, the general value is $0.6 \sim 1.2$ mm.

3 Surface roughness

To minimize initial wear and to extend life, it is recommended that the surface roughness of the crank pin and piston pin be $0.1 \, \mu \text{m} R_{\rm a}$ or less, and the surface roughness of the connecting rod large end and small end bores be $0.2 \, \mu \text{m} R_{\rm a}$ or less.

Accuracy

Circularity and cylindricity of connecting rod, piston pin and crank pin are as shown in Table 4.

G Parallelism and torsional accuracy of connecting rod bores

 $L\pm0.02$ mm and $E\pm0.02$ mm shown in Fig. 1 indicate the parallelism and torsional accuracy between the big end and small end bores of the connecting rod, respectively. The tolerance range is 0.04 mm or less per 100 mm in case of a general-purpose engine and 0.02 mm or less for a high-speed engine such as a racing motorcycle engine. When these accuracy conditions are not satisfied, the axial forces on the needle roller cage and connecting rod will increase, directly leading to a failure such as seizure. Careful consideration is required.

Table 3 Recommended radial internal clearance

unit: μ n

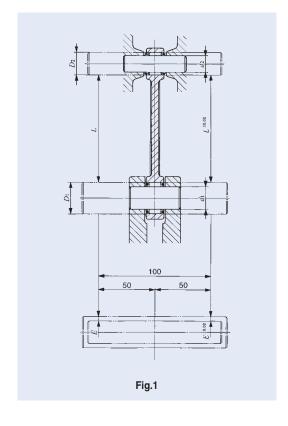
KT···EG

KTV···EG

				unit. μ m
Shaft dia. mm			Big end	Small end
	Over	Incl.		
Ī	_	18	$(d_{\rm p}-6)\sim d_{\rm p}$	
	18	30	$(d_{\mathrm{p}} - 6) \sim d_{\mathrm{p}}$ $(d_{\mathrm{p}} - 8) \sim d_{\mathrm{p}}$	3~15
	30	40	$(d_{\rm p}^{\rm P}-12)\sim d_{\rm p}^{\rm P}$	

Remark $d_{\rm p}$ is obtained using the following formula for roller pitch circle diameter in millimeters, and changing the unit from millimeters to micrometers.

Roller pitch circle dia. = $\frac{F_{\rm w} + E_{\rm w}}{2}$

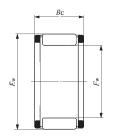

Example KT 222814 EG for big end

Recommended clearance is; 17 \sim 25 μ m

Table 4 Accuracy of connecting rod, piston pin and crank pin unit: μ

	and c		unit: μ m			
Range m	of dia. m	Crank pin o Piston pin o	$\begin{array}{c} \text{liameter } d_1 \\ \text{diameter } d_2 \end{array}$	$\begin{array}{c} \text{Big end bore } D_1 \\ \text{Small end bore } D_2 \end{array}$		
Over	Incl.	Circularity MAX.	Cylindricity MAX.	Circularity MAX.	Cylindricity MAX.	
_	18	1	2	2	3	
18	30	2	3	3	4	
30	40	3	4	4	5	

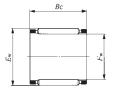
Remark Refer to Fig.1 for the dimension symbols.


1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

KT···EG KTV···EG

NEEDLE ROLLER CAGES FOR ENGINE CONNECTING RODS

Needle Roller Cages for Big End


KT…EG

Shaft dia. 8 – 32mm

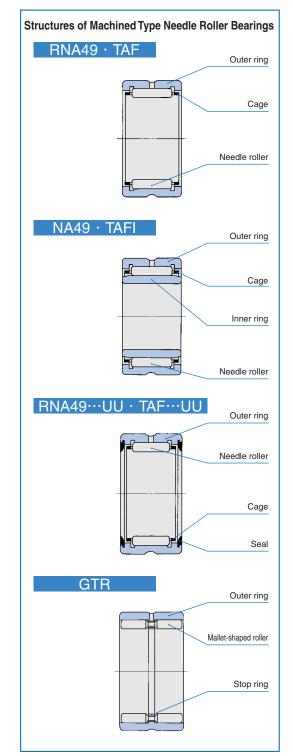
Shaft		Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic load rating	Basic static load rating
dia.	Identification number					C	C_0
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N
8	KT 8128 EG	2.1	8	12	8	3 280	2 660
10	KT 101410 EG	3.2	10	14	10	4 900	4 680
12	KT 121610 EG KT 121710 EG	3.8 5.3	12 12	16 17	10 10	5 650 6 670	5 890 6 380
14	KT 14199.7 EG KT 141910 EG	5.7 5.7	14 14	19 19	9.7 10	6 120 6 640	5 880 6 530
15	KT 15199 EG KT 152010 EG	4.2 6.1	15 15	19 20	9	5 790 7 100	6 460 7 260
16	KT 162211.5 EG KT 162212 EG	9.5 9.7	16 16	22 22	■11.5 12	9 550 10 500	9 660 10 900
18	KT 182210 EG KT 182411.6 EG KT 182412 EG	5.7 11 11	18 18 18	22 24 24	10 ■11.6 12	7 500 10 600 11 800	9 560 11 500 13 100
20	KT 202612 EG KT 202614 EG KT 202814 EG	12 13.8 20	20 20 20	26 26 28	12 14 •14	12 400 13 000 15 700	14 300 15 200 16 100
22	KT 222814 EG KT 222816 EG KT 222912 EG KT 223215 EG	14.9 17.5 15.2 30	22 22 22 22	28 28 29 32	14 16 12 15	13 600 15 700 12 900 21 300	16 600 19 800 14 000 21 500
23	KT 232913 EG	14.9	23	29	13	12 800	15 600
24	KT 243015 EG KT 243016 EG KT 243120 EG	17.9 18.2 28	24 24 24	30 30 31	15 16 20	14 200 16 300 20 800	18 000 21 500 26 400
30	KT 303818 EG	35.5	30	38	18	24 900	32 600
32	KT 324220 EG	54	32	42	20	31 900	39 400

Needle Roller Cages for Small End

KTV...EG

Shaft dia. 9 – 18mm

Shaft dia.	Identification number	Mass (Ref.)	Bounda	ary dime	ensions	Basic dynamic load rating	Basic static load rating C_0	Cage guide type
mm		g	F_{w}	E_{w}	$B_{\rm c}$	N	N	
9	KTV 91211.5 EG	2.8	9	12	•11.5	3 900	4 070	Outer surface guide
	KTV 91214 EG	3.5	9	12	14	4 440	4 810	Inner surface guide
10	KTV 101316 EG	4.5	10	13	16	4 400	4 880	Inner surface guide
	KTV 101410 EG	3.8	10	14	10	4 520	4 220	Inner surface guide
	KTV 101411 EG	4.1	10	14	11	5 060	4 880	Outer surface guide
	KTV 101412.5 EG	4.8	10	14	•12.5	5 590	5 540	Inner surface guide
10.5	KTV 10.51415 EG	5.1	10.5	14	15	5 710	6 270	Outer surface guide
12	KTV 121514.3 EG	4.3	12	15	•14.3	5 840	7 390	Outer surface guide
	KTV 121613 EG	5.6	12	16	13	7 020	7 800	Outer surface guide
	KTV 121615.5 EG	6.8	12	16	•15.5	7 600	8 600	Outer surface guide
14	KTV 141812 EG	6	14	18	12	6 780	7 760	Inner surface guide
	KTV 141816.5 EG	8.2	14	18	16.5	9 180	11 500	Outer surface guide
	KTV 141822 EG	10.8	14	18	•22	9 950	12 600	Inner surface guide
16	KTV 162019 EG	10.6	16	20	19	10 800	14 600	Outer surface guide
	KTV 162022 EG	12.7	16	20	22	11 400	15 700	Inner surface guide
18	KTV 182223.5 EG	14.9	18	22	■23.5	13 000	19 300	Inner surface guide
	KTV 182321 EG	16.4	18	23	21	14 400	18 900	Inner surface guide


MACHINED TYPE NEEDLE ROLLER BEARINGS

- Machined Type Caged Needle Roller Bearings
- Machined Type Guide Needle Roller Bearings

Structure and Features

IKO Machined Type Needle Roller Bearings are bearings with a low sectional height and large load ratings. The outer ring has high rigidity and can easily be used even for light alloy housings. These bearings are available in metric series and inch series, both of which have the caged type and the full complement type. It is therefore possible to select a suitable bearing for use under various conditions such as heavy loads and high-speed or low-speed rotations. In addition, there are bearings with and without an inner ring. As the type without inner ring uses a shaft as the raceway surface, a compact design is possible.

NA TAFI TRI BRI

D1

Machined Type Needle Roller Bearings are available in various types shown in Table 1.

Table 1.1 Type of bearing (Standard type)

	Туре	Caged Nee Bear		Guide Needle Roller Bearings		
Se	eries	Without inner ring	With inner ring	Without inner ring	With inner ring	
l	Dimension series 49	RNA 49	NA 49			
	Dimension series 69	RNA 69	NA 69		GTRI	
Metric series	Dimension series 48	RNA 48	NA 48	GTR		
Met	For heavy duty	TR	TRI			
	For light duty	TAF	TAFI			
Inch series		BR	BRI	GBR	GBRI	

Table 1.2 Type of bearing (With seal)

Туре			Caged Neo Bear	edle Roller rings	Guide Needle Roller Bearings		
Series			Without inner ring	With inner ring	Without inner ring	With inner ring	
sə	Dimension	Two side seals	RNA 49 ··· UU	NA 49 ··· UU			
series	series 49	One side seal	RNA 49 ··· U	NA 49 ··· U			
Metric	Dimension	Two side seals	RNA 69 ··· UU	NA 69 ··· UU		_	
Š	series 69	One side seal	RNA 69 ··· U	NA 69 ··· U			
Inch series		Two side seals	BR ···UU	BRI ····UU	GBR····UU	GBRI ··· UU	
		One side seal	BR ···U	BRI ···U	GBRU	GBRIU	

Caged Needle Roller Bearings

This type of bearing combines a collared outer ring with the IKD's unique lightweight rigid cage and needle rollers. During operation, needle rollers are guided precisely by the cage, and an ideal load distribution is obtained.

The metric series consists of the NA48 and NA49 series of ISO Standard, NA69 and TAFI series which are based on the international dimension series, and the heavy duty TRI series which is widely used in Japan. The TAFI series has a sectional height as low as that of the shell type and is used for light loads.

The inch series or BRI series is based on the specifications of ANSI Standard of USA.

Caged Needle Roller Bearings without Inner Ring

As shown in the section "Design of shaft and housing" on page A44, any desired radial clearance can be selected by assembling this type of bearing with a shaft which is heat-treated and finished by grinding. These bearings are free from the effects on dimensional accuracy caused by assembling an inner ring,

so that the rotational accuracy is improved. Also, the shaft rigidity can be improved as the shaft diameter can be increased by an amount corresponding to the inner ring thickness.

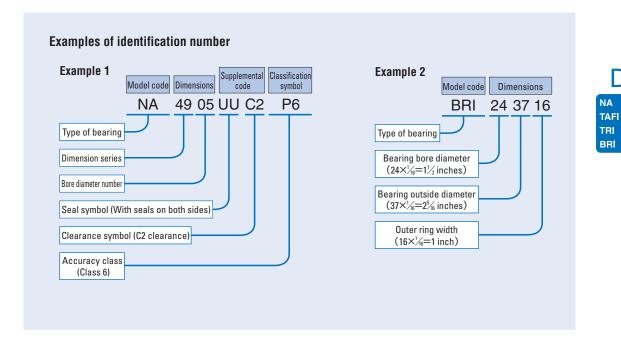
Caged Needle Roller Bearings with Inner Ring

This type of bearing is used when the shaft cannot be heat-treated and finished by grinding. The outer and inner rings are separable and a small relief clearance is provided on both sides of the inner ring raceway to facilitate bearing mounting. In the TRI and BRI series, the width of the inner ring is larger than that of the outer ring.

Due to heat expansion during operation or mounting errors, the inner or outer ring may be shifted axially and the whole length of the rollers may not be in contact with the raceway. Therefore, attention should be paid to the allowable axial shift S as shown in the table of dimensions.

Needle Roller Bearings with Seal

These bearings are sealed types of the NA49, NA69 and BRI series bearings, in which a seal is installed on one side (type with one seal) or both sides (type with two seals) of the bearing. The seal is made of special synthetic rubber and effectively prevents dust penetration and grease leakage.


Guide Needle Roller Bearings

These bearings are full complement type bearings and use mallet-shaped rollers which are guided accurately by the guide rail located at the center of the outer ring raceway and the guide groove of the malletshaped roller. This minimizes skewing (tilting of the roller from its rotating axis), which is normally a weak point of full complement bearings, and improves the rotational accuracy. This type of bearing is especially suitable for heavy loads, shock loads and oscillating motions.

The bearings are available in metric and inch series. Bearings with and without inner rings are available in both series. In bearings with an inner ring, the width of the inner ring is larger than that of the outer ring. The GBRI series of the inch series includes types with a seal or seals which are incorporated on one or both sides.

Identification Number

The identification number of Machined Type Needle Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Examples are shown below.

Accuracy

Machined Type Needle Roller Bearings are manufactured based on JIS (See page A31.). The tolerances for the smallest single roller set bore diameter of bearings without inner ring are based on Table 14 on page A33. For BR and BRI series, the accuracy is based on Table 2 and the tolerances for the smallest single roller set bore diameter are based on Table 3.

Table 2 Accuracy of inner and outer rings of inch series BR and BRII (1)

unit: // m

D4

d o Nominal bea or outs m				Deviation inner (or	$(\Delta_{C_{\mathrm{S}}})$ n of a single r outer) ring	K _{ia} Radial runout of assembled bearing inner ring	$K_{ m ea}$ Radial runout of assembled bearing outer ring		
		ue	, iation	ue	viation .	V	viutii	Illilei Tillig	outer ring
Over	Incl.	High	Low	High	Low	High	Low	Max.	Max.
_	19.050	0	- 10	_	_	0	- 130	10	_
19.050	30.162	0	- 13	0	- 13	0	— 130	13	15
30.162	50.800	0	- 13	0	- 13	0	— 130	15	20
50.800	82.550	0	- 15	0	- 15	0	- 130	20	25
82.550	120.650	0	-20	0	-20	0	- 130	25	35
120.650	184.150	_	-	0	- 25	0	- 130	30	45

Remark d for Δ_{dmp} , Δ_{Bs} , Δ_{Cs} and K_{ia} , and D for Δ_{Dmp} and K_{ea} Note(1) For GBR, GBRI, refer to Metric series tables on page A31-A32.

> 1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

 \Box

TRI

BRI

Table 3 Tolerances for smallest single roller set bore diameter $F_{
m ws\ min}$ of inch series BR $^{(1)}$ unit: μ m

	ws iiiii		uiii. μ iii		
F Nominal roller s m	et bore diameter	$\Delta_{F m ws\ min}$ Deviation of smallest single roller set bore diameter			
Over	Incl.	High	Low		
_	18.034	+43	+ 20		
18.034	30.226	+46	+23		
30.226	41.910	+48	+ 25		
41.910	50.038	+51	+ 25		
50.038	70.104	+53	+ 28		
70.104	80.010	+ 58	+ 28		
80.010	102.108	+61	+31		

Note(1) For GBR, refer to Metric series tables on page A33.

Radial internal clearances of Machined Type Needle Roller Bearings are made to the CN clearance shown in Table 18 on page A37. Radial internal clearances of BRI series are based on Table 4.

Table 4 Radial internal clearance of

incl	n series BRI ((1)	unit: μ m
Nominal roller s	w et bore diameter m	Radial intern	al clearance
Over	Incl.	Min.	Max.
_	18.034	33	66
18.034	25.908	41	76
25.908	30.226	46	82
30.226	35.052	48	86
35.052	41.910	50	89
41.910	50.038	50	92
50.038	70.104	56	99
70.104	80.010	56	104
80.010	100.076	63	117
100.076	102.108	68	127

Note(1) For GBRI, refer to Metric series tables on page A37.

Table 5 Bearings with prepacked grease

O: With prepacked grease X: Without prepacked grease

	Bearing type	Standard type	With seals on both sides	With a seal on one side	
		RNA, NA	×	0	×
Caged Needle Roller Bearings	Metric series	TR, TRI	×	_	_
Cayed Needle Holler Dearlings		TAF, TAFI, TAF/SG	×	_	_
	Inch series	BR, BRI	Standard type both sides one side X O X X - - TAF/SG X - - X O X X - - -		
Guide Needle Roller Bearings	Metric series	GTR, GTRI	×	_	_
Guide Needle Holler Dearlings	Inch series	GBR, GBRI	×	0	×

The recommended fits for Machined Type Needle Roller Bearings are shown in Tables 22 to 24 on pages A41 and A42.

Lubrication

Fit

Bearings with prepacked grease are shown in Table 5. ALVANIA GREASE S2 (SHOWA SHELL SEKIYU K.K.) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication. Operating them without lubrication will increase the wear of the rolling contact surfaces and shorten their lives.

Table 6.1 shows the number of oil holes of the outer ring and Table 6.2 shows the number of oil holes of the inner ring.

When an outer ring with an oil hole is especially required for the type without an oil hole, add "-OH" before the clearance symbol in the identification number. When an outer ring with an oil hole and an oil groove is required for the type without an oil hole, attach "-OG" before the clearance symbol.

Example: TAFI 203216 - OH C2 P6

When an outer ring with multiple oil holes or an inner ring with an oil hole(s) is required, please consult **IKD**.

Table 6.1 Number of oil holes of the outer ring

	Bearing		Number of oil holes of the outer ring			
		Nominal roller set bore diameter F_{w} mm	Standard type	With seals on both sides	With a seal on one side	
		RNA, NA		1	1	1
	Metric series	TR, TRI		1	_	_
Caged Needle Roller	Wether selles	TAF, TAFI	$F_{\rm w} \leq 26$	0	_	_
Bearings			26 < F _w	1	_	_
	Inch series	DD DDI	$F_{\rm w} \le 69.850$	1	1	1
	ilicii series	BR, BRI	69.850 < F _w	2	1	1
Guide Needle Roller Rearings	Metric series	GTR, GTI	RI	1	_	_
Guide Needle Roller Bearings	Inch series	GBR, GB	RI	1	1	1

Remark The type with an oil hole(s) is provided with an oil groove.

Table 6.2 Number of oil holes of the inner ring

	Bearing	Number of oil holes of the inner ring				
	•	Nominal bearing bore diameter d mm	Standard type	With seals on both sides	With a seal on one side	
		NA	NA		0	0
Canad Mandla Dallan	Metric series	TRI		0	0	0
Caged Needle Roller Bearings		TAFI		0	_	_
Dournigs	Inch series	BRI	<i>d</i> ≦ 76.200	1	1	1
	ilicii series	וחם	76.200 < d	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
Guide Needle Roller Bearings	Metric series	GTRI		0	_	_
Guide Needle Koller Bearings	Inch series	GBRI	-	0	0	0

Remark The type with an oil hole(s) is provided with an oil groove.

Matched Set Bearings

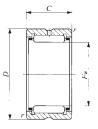
When using two or more Machined Type Needle Roller Bearings adjacent to each other on the same shaft, it is necessary to obtain an even load distribution. On request, a set of bearings is available, in which bearings are matched to obtain an even load distribution.

Mounting dimensions for Machined Type Needle Roller Bearings are shown in the table of dimensions.

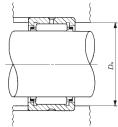
NA TAFI TRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring



Shaft dia. 5 – 15mm


Shaft			lde	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
_	_	_	_	TAF 51010	_	_	3.4
5		_	_	TAF 51012	_	_	4.2
	RNA 493			_	_		4.6
6	RNA 494	_	_	_	_	_	5.3
	_		_	TAF 61212	_	_	6.4
	RNA 495	_	_	_	_	—	5.9
7	_	_	_	TAF 71410	_	_	6.9
	_	_	_	TAF 71412	_	_	8.3
	RNA 496	_	_	_	_	_	7.4
8		_	_	TAF 81512	_	_	9.1
	_		_	TAF 81516	_	_	12.9
	_	_	_	TAF 91612	_	_	9.8
9	—	_	_	TAF 91616	_	_	13.2
	RNA 497	_	_	_	_	_	9.3
	_	_	_	TAF 101712	_	_	10.7
10	_	_	_	TAF 101716	_	_	14.3
	RNA 498	_	_	_	_	_	12.6
	_	_	_	TAF 121912	_	_	12.2
12	_	_	_	TAF 121916	_	_	16.3
	RNA 499	_	_	_	_	_	13.6
	RNA 4900	_	_	_	_	_	16.5
14	_	_	_	TAF 142216	_	_	21
	_	_	_	TAF 142220	_	_	26.5
15		_	_	TAF 152316	_	_	22.5
15	_	_	_	TAF 152320	_	_	28

Minimum allowable value of chamfer dimension r

(c) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. TAF series with a roller set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole. In others, the outer ring has an oil groove and an

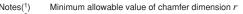
RNA49 TAF $\mathsf{RNA69}\,(F_{\mathrm{w}}\!\leq\!35)$

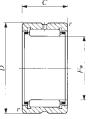
TAFI

				0. 1 1 .:				
Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational	
				$D_{ m a}$	C	C_0	speed(²)	
E	D		(1)		C	C ()	- cpood()	
F_{w}	D	C	$r_{\rm s min}$	Max. mm	N	N	rpm	
5	10	10	0.2	8.4	2 420	1 950	80 000	
5	10	12	0.2	8.4	3 080	2 660	80 000	
5	11	10	0.15	9.8	2 420	1 950	80 000	
6	12	10	0.15	10.8	2 700	2 320	70 000	
6	12	12	0.2	10.4	3 440	3 170	70 000	
7	13	10	0.15	11.8	2 960	2 690	60 000	
7	14	10	0.2	12.4	3 600	2 960	60 000	
7	14	12	0.2	12.4	4 610	4 050	60 000	
8	15	10	0.15	13.8	3 960	3 420	50 000	
8	15	12	0.2	13.4	5 060	4 690	50 000	
8	15	16	0.2	13.4	7 080	7 220	50 000	
9	16	12	0.2	14.4	5 490	5 330	45 000	
9	16	16	0.2	14.4	7 680	8 210	45 000	
9	17	10	0.15	15.8	4 530	3 650	45 000	
10	17	12	0.2	15.4	5 880	5 970	40 000	
10	17	16	0.2	15.4	8 230	9 190	40 000	
10	19	11	0.2	17.4	6 180	5 030	40 000	
12	19	12	0.3	17	6 610	7 260	35 000	
12	19	16	0.3	17	9 250	11 200	35 000	
12	20	11	0.3	18	6 600	6 310	35 000	
14	22	13	0.3	20	9 230	10 100	30 000	
14	22	16	0.3	20	11 700	13 700	30 000	
14	22	20	0.3	20	14 800	18 600	30 000	
15	23	16	0.3	21	12 300	14 900	30 000	
15	23	20	0.3	21	15 600	20 200	30 000	

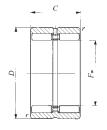
^{2.} No grease is prepacked. Perform proper lubrication.

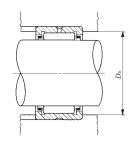
MACHINED TYPE NEEDLE ROLLER BEARINGS


Without Inner Ring



Shaft dia. 16 – 22mm


Shaft			lden	tification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	(*******)
mm	1 11 10 1 10	11111100	1			J	g
	RNA 4901	_			_	_	18.1
40	——————————————————————————————————————	_	_	TAF 162416	_	_	23
16	_	_	_	TAF 162420	_	_	29
	_	RNA 6901	_	_	_	_	30
17	_	_	_	TAF 172516	_	_	24.5
	_	_	_	TAF 172520	_	_	30.5
	RNA 49/14	_	_	_	_	_	19.9
18	_	_	_	TAF 182616	_	_	25.5
				TAF 182620	_	_	32
19	_	_	_	TAF 192716 TAF 192720	_	_	27
				IAF 192120	_	_	34
	RNA 4902			TAF 202816	_	_	21.5 27.5
	_	_	_	TAF 202820		_	35.5
20	_	RNA 6902	_		_	_	37
	_	_	_	_	TR 203320	_	59.5
	_	_	_	_	_	GTR 203320	69
21	_	_	_	TAF 212916	_	_	29
21	_	_	_	TAF 212920	_	_	36
	RNA 4903		_	_	_	_	23.5
	_	_	_	TAF 223016	_	_	30
22		RNA 6903		TAF 223020			37.5
		DIVA 0903					40.5
					TR 223425	GTR 223425	73.5 87
						GIN 223425	0/

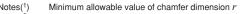

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. TAF series with a roller set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole. In others, the outer ring has an oil groove and an arithmetic set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole.

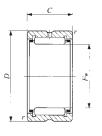
D	
NA	
TAFI	
TRI	
BRI	

Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational	
			1	$D_{ m a}$	C	C_0	speed(2)	
F_{w}	D	C	$r_{\rm s min}^{(1)}$	Max.		C ()	,	
1 W	D	C	's min	mm	N	N	rpm	
16	24	13	0.3	22	9 660	11 100	25 000	
16	24	16	0.3	22	12 300	15 100	25 000	
16	24	20	0.3	22	15 500	20 400	25 000	
16	24	22	0.3	22	17 100	23 000	25 000	
17	25	16	0.3	23	12 900	16 300	25 000	
17	25	20	0.3	23	16 300	22 000	25 000	
18	26	13	0.3	24	10 600	12 800	20 000	
18	26	16	0.3	24	13 400	17 500	20 000	
18	26	20	0.3	24	17 000	23 600	20 000	
19	27	16	0.3	25	14 000	18 700	20 000	
19	27	20	0.3	25	17 700	25 300	20 000	
20	28	13	0.3	26	10 900	13 800	20 000	
20	28	16	0.3	26	13 900	18 800	20 000	
20	28	20	0.3	26	17 600	25 400	20 000	
20	28	23	0.3	26	19 300	28 800	20 000	
20	33	20	0.3	31	24 300	26 500	20 000	
20	33	20	0.3	31	29 200	37 200	7 500	
21	29	16	0.3	27	14 400	20 000	19 000	
21	29	20	0.3	27	18 200	27 100	19 000	
22	30	13	0.3	28	11 700	15 600	18 000	
22	30	16	0.3	28	14 900	21 200	18 000	
22	30	20	0.3	28	18 900	28 700	18 000	
22	30	23	0.3	28	20 800	32 500	18 000	
22	34	25	0.3	32	29 100	36 800	18 000	
22	34	25	0.3	32	37 900	57 800	7 000	

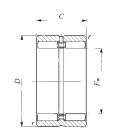
^{2.} No grease is prepacked. Perform proper lubrication.

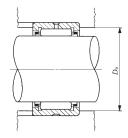
MACHINED TYPE NEEDLE ROLLER BEARINGS


Without Inner Ring



Shaft dia. 24 – 30mm


	it dia. 2 i						
Shaft			ldent	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
24	_ _	_ _	_ _	TAF 243216 TAF 243220		_ _	32 40.5
	 RNA 4904		_ _ _	TAF 253316 TAF 253320		_ _ _	33.5 42 55.5
0.5	—	RNA 6904	_	_	_	_	95.5
25		_ _ _ _	_ _ _ _	_ _ _ _	TR 253820 TR 253825	GTR 253820 GTR 253825	71 89 81.5 104
26	_	_	_	TAF 263416 TAF 263420		_ _	34.5 43.5
28	RNA 49/22	 RNA 69/22	_ _ _ _	TAF 283720 TAF 283730	_ _ _ _	_ _ _ _	51.5 83.5 56.5 97.5
29	_	_	_ _	TAF 293820 TAF 293830	_ _		57 85
30	RNA 4905		_ _ _	TAF 304020 TAF 304030	_ _ _ _	_ _ _ _	64.5 97.5 64 111
	_		_	_	TR 304425	 GTR 304425	115 133


(c) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. TAF series with a roller set bore diameter $F_{\rm w}$ of 26 mm or less have no oil hole. In others, the outer ring has an oil groove and an

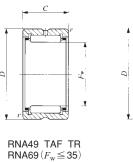
Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational	
		l l		$D_{ m a}$	C	C_0	speed(2)	
F_{w}	D	C	$r_{\rm s min}^{(1)}$	Max.		0	,	
- W	D		· S IIIIII	mm	N	N	rpm	
24	32	16	0.3	30	15 300	22 500	17 000	
24	32	20	0.3	30	19 400	30 500	17 000	
25	33	16	0.3	31	15 800	23 700	16 000	
25	33	20	0.3	31	20 000	32 100	16 000	
25	37	17	0.3	35	21 000	25 000	16 000	
25	37	30	0.3	35	35 400	48 900	16 000	
25	38	20	0.3	36	28 900	35 000	16 000	
25	38	25	0.3	36	34 800	44 400	16 000	
25	38	20	0.3	36	33 300	46 500	6 000	
25	38	25	0.3	36	42 400	63 700	6 000	
26	34	16	0.3	32	16 300	24 900	15 000	
26	34	20	0.3	32	20 600	33 800	15 000	
28	37	20	0.3	35	21 700	37 100	14 000	
28	37	30	0.3	35	31 100	58 900	14 000	
28	39	17	0.3	37	21 400	28 900	14 000	
28	39	30	0.3	37	36 300	56 900	14 000	
29	38	20	0.3	36	21 600	37 200	14 000	
29	38	30	0.3	36	30 900	59 100	14 000	
30	40	20	0.3	38	25 100	40 100	13 000	
30	40	30	0.3	38	36 000	63 900	13 000	
30	42	17	0.3	40	23 700	30 700	13 000	
30	42	30	0.3	40	42 100	64 300	13 000	
30	44	25	0.3	42	37 900	52 100	13 000	
30	44	25	0.3	42	47 000	76 500	5 000	
			0.0		,, 000	. 0 000		

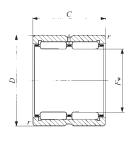
^{2.} No grease is prepacked. Perform proper lubrication.

MACHINED TYPE NEEDLE ROLLER BEARINGS

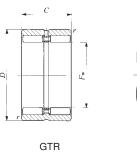
Without Inner Ring

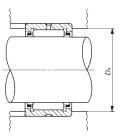
Shaft dia. 32 – 40mm


			ldent	ification number			Mass		
Shaft			ident						
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR			
mm							g		
	_	_	_	TAF 324220	_	_	68		
	_	_	_	TAF 324230	_	_	102		
32	RNA 49/28		_	_	_	_	76.5		
		RNA 69/28		_	_	_	133		
	_	_	_	_	_	GTR 324530	152		
	_		_	TAF 354520	_	_	73.5		
	_	_	—	TAF 354530	_	_	112		
35	RNA 4906	_	—	_	_	_	72.5		
33	_	RNA 6906	_	_	_	_	125		
	_	_	_	_	TR 354830	_	139		
	_	_	_	_	_	GTR 354830	163		
37	_		_	TAF 374720	_	_	77.5		
31	_	_	_	TAF 374730	_	_	117		
	_		_	TAF 384820	_	_	79		
38	_	_	_	TAF 384830	_	_	119		
30	_	_	_	_	TR 385230	_	168		
	_	_	_	_	_	GTR 385230	195		
	_	_	_	TAF 405020	_	_	83		
	_	_	_	TAF 405030	_	_	125		
40	RNA 49/32	_	_	_	_	_	96		
40	_	RNA 69/32	_	_	_	_	172		
	_	_	_	_	TR 405520	_	129		
	_	_	_	_	_	GTR 405520	144		


Notes(1) Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.


Remarks1. The outer ring has an oil groove and an oil hole.


2. No grease is prepacked. Perform proper lubrication.

RNA69

_/	
<u> </u>	
1	NA
	TAF
	TRI
	BRI

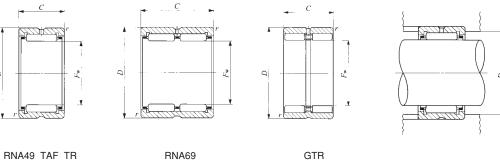
Boun	dary dim	ensions	mm	Standard mounting	Basic dynamic	Basic static	Allowable	
Dourn	aary ami			dimension	load rating	load rating	rotational	
E	D		(1)	$D_{\rm a}$	C	C_0	speed(2)	
F_{w}	D	C	$r_{\rm smin}$	Max. mm	N	N	rpm	
32	42	20	0.3	40	25 700	42 200	12 000	
32	42	30	0.3	40	36 800	67 200	12 000	
32	45	17	0.3	43	24 500	32 700	12 000	
32	45	30	0.3	43	41 800	64 800	12 000	
32	45	30	0.3	43	58 000	101 000	4 500	
35	45	20	0.3	43	26 900	46 200	11 000	
35	45	30	0.3	43	38 600	73 600	11 000	
35	47	17	0.3	45	25 200	34 700	11 000	
35	47	30	0.3	45	43 000	69 000	11 000	
35	48	30	0.3	46	47 400	72 300	11 000	
35	48	30	0.3	46	61 100	110 000	4 500	
37	47	20	0.3	45	28 200	50 100	11 000	
37	47	30	0.3	45	40 500	79 800	11 000	
38	48	20	0.3	46	28 100	50 200	11 000	
38	48	30	0.3	46	40 300	80 000	11 000	
38	52	30	0.6	48	50 800	81 100	11 000	
38	52	30	0.6	48	64 200	121 000	4 000	
40	50	20	0.3	48	29 400	54 100	10 000	
40	50	30	0.3	48	42 300	86 200	10 000	
40	52	20	0.6	48	31 200	47 800	10 000	
40	52	36	0.6	48	53 500	95 700	10 000	
40	55	20	0.6	51	37 400	55 700	10 000	
40	55	20	0.6	51	44 300	73 600	3 500	

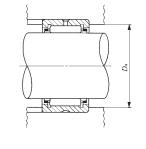
TAFI

TRI BRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring


Shaft dia. 42 – 50mm


Shaft			Ident	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
	_	_	_	TAF 425220	_	_	86.5
	_	_	_	TAF 425230	_	_	130
42	RNA 4907	— DNA 0007	_	_	_	_	113
		RNA 6907	_	_	_	_	200
	_	_	_	_	TR 425630	——————————————————————————————————————	183
	_			_	_	GTR 425630	210
43	_	_	_	TAF 435320 TAF 435330	_	_	88.5
					_	_	133
	_		_	TAF 455520	_	_	92 138
45	RNA 49/38	_	_	TAF 455530		_	120
40		_			TR 455930	_	193
	_	_	_	_	— — —	GTR 455930	225
47	_	_	_	TAF 475720	_	_	95
47	_	_	_	TAF 475730	_	_	144
	RNA 4908	_	_	_	_	_	152
48	_		_	_	TR 486230	_	205
		RNA 6908	_	_	_	GTR 486230	275 240
			_		_	G1H 400230	
		_		TAF 506225 TAF 506235	_	_	159 225
50				IAF 500235			
30	RNA 49/42		_		TR 506430	_	210 174
	— — —	_	_	_	_	GTR 506430	245

Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

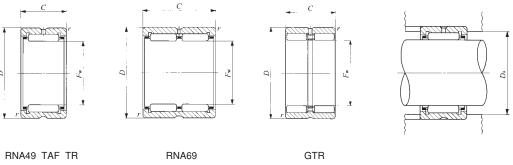
Remarks1. The outer ring has an oil groove and an oil hole.

Bound	Boundary dimensions mm			Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational
_			(1)	$D_{\rm a}$	C	C_0	speed(2)
F_{w}	D	С	$r_{\rm smin}$	Max. mm	N	N	rpm
42	52	20	0.3	50	29 900	56 200	9 500
42	52	30	0.3	50	43 000	89 400	9 500
42	55	20	0.6	51	32 000	50 100	9 500
42	55	36	0.6	51	54 900	100 000	9 500
42	56	30	0.6	52	53 800	90 100	9 500
42	56	30	0.6	52	67 500	133 000	3 500
43	53	20	0.3	51	30 500	58 200	9 500
43	53	30	0.3	51	43 800	92 600	9 500
45	55	20	0.3	53	31 000	60 200	9 000
45	55	30	0.3	53	44 600	95 800	9 000
45	58	20	0.6	54	33 600	54 600	9 000
45	59	30	0.6	55	55 100	94 800	9 000
45	59	30	0.6	55	70 300	142 000	3 500
47	57	20	0.3	55	31 500	62 200	8 500
47	57	30	0.3	55	45 200	99 100	8 500
48	62	22	0.6	58	41 600	67 400	8 500
48	62	30	0.6	58	56 300	99 500	8 500
48	62	40	0.6	58	71 300	135 000	8 500
48	62	30	0.6	58	72 700	154 000	3 000
50	62	25	0.3	60	43 000	85 300	8 000
50	62	35	0.3	60	58 000	125 000	8 000
50	64	30	0.6	60	57 700	104 000	8 000
50	65	22	0.6	61	42 500	70 300	8 000
50	64	30	0.6	60	74 600	158 000	3 000

TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring


Shaft dia. 52 – 68mm

Shaft			ldent	ification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
52	RNA 4909	_	_	_		_	197
J2	_	RNA 6909	_	<u> </u>		_	355
	_	_	_	TAF 556825	_	_	193
55	RNA 49/48	_	_	TAF 556835	_	<u> </u>	255 188
	RNA 4910				_		179
	— — —	RNA 6910	_	_	_	_	320
58	_	_	_		TR 587745	_	515
	_	_	_	_	_	GTR 587745	590
	_	_	_	TAF 607225	_	_	187
60	RNA 49/52	_	_	TAF 607235	_	_	260
	RIVA 49/52	_	_			<u> </u>	205
62	_	_	_	_ _	TR 628138	GTR 628138	460 520
	RNA 4911	_	_	<u> </u>			265
63	—	RNA 6911	_	_	_	_	475
	_	_	_	TAF 657825	_	_	225
65		_	_	TAF 657835	_	_	315
	RNA 49/58	_	_			_	275
	_	_		TAF 688225 TAF 688235			250 350
68	RNA 4912	_	_	- IAF 000233	_	_	285
	_	RNA 6912	_	_		_	510

Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

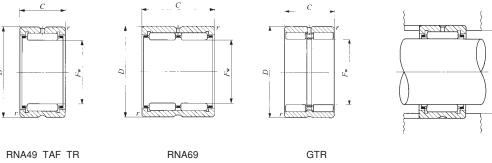
}	A
	S.
	•

Boundary dimensions mm		Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational		
F_{w}	D	С	$r_{\rm s min}$	$D_{ m a}$ Max. mm	C N	C_0 N	speed(²) rpm
52	68	22	0.6	64	43 500	73 300	7 500
52	68	40	0.6	64	74 600	147 000	7 500
55	68	25	0.3	66	45 400	94 000	7 500
55	68	35	0.3	66	61 200	138 000	7 500
55	70	22	0.6	66	44 300	76 300	7 500
58	72	22	0.6	68	46 200	82 100	7 000
58	72	40	0.6	68	79 200	164 000	7 000
58	77	45	1	72	104 000	191 000	7 000
58	77	45	1	72	135 000	280 000	2 500
60	72	25	0.3	70	47 500	103 000	6 500
60	72	35	0.3	70	64 100	151 000	6 500
60	75	22	0.6	71	47 100	85 100	6 500
62	81	38	1	76	92 000	166 000	6 500
62	81	38	1	76	118 000	241 000	2 500
63	80	25	1	75	57 600	97 200	6 500
63	80	45	1	75	98 700	194 000	6 500
65	78	25	0.6	74	49 600	112 000	6 000
65	78	35	0.6	74	67 000	164 000	6 000
65	82	25	1	77	58 900	101 000	6 000
68 68 68 68	82 82 85 85	25 35 25 45	0.6 0.6 1	78 78 80 80	54 800 72 000 60 200 103 000	117 000 166 000 105 000 211 000	6 000 6 000 6 000 6 000

TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring


Shaft dia. 70 — 85mm

	Identification number Mass										
Shaft			ident								
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR					
mm							g				
	_	_	_	TAF 708525	_	_	280				
70	RNA 49/62	_	_	TAF 708535	_	_	395 320				
70	HIVA 45/02				TD 700045		605				
	_	_	_	_	TR 708945	GTR 708945	690				
70	RNA 4913	_	_	_	_	_	325				
72	_	RNA 6913	_	_	_	_	585				
73	_	_	_	TAF 739025	_	_	335				
	_	_	_	TAF 739035	_	_	475				
75	_	_	_	TAF 759225	_	_	345				
13	RNA 49/68	_	_	TAF 759235	_	_	485 470				
	_	_	_	TAF 809525	_	_	315				
80		_	_	TAF 809535	_	_	445				
	RNA 4914	RNA 6914	_	_	_	_	495 910				
					TD 0040045		995				
83				_	TR 8310845	GTR 8310845	1 090				
	_		_	TAF 8510525	_	_	435				
85	RNA 4915	_	_	_	_	_	525				
00	_	— DNA 6045	_	TAF 8510535	_	_	610				
		RNA 6915					960				

Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

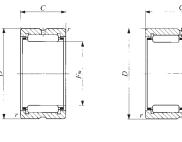
_
$D_{\rm s}$

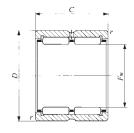
Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable
F_{w}	D	С	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	C N	C_0 N	speed(²) rpm
70	85	25	0.6	81	55 500	120 000	5 500
70	85	35	0.6	81	73 000	171 000	5 500
70	88	25	1	83	61 500	109 000	5 500
70	89	45	1	84	114 000	228 000	5 500
70	89	45	1	84	147 000	336 000	2 000
72	90	25	1	85	62 700	113 000	5 500
72	90	45	1	85	108 000	227 000	5 500
73	90	25	1	85	61 100	127 000	5 500
73	90	35	1	85	80 400	181 000	5 500
75	92	25	1	87	62 100	131 000	5 500
75	92	35	1	87	81 700	186 000	5 500
75	95	30	1	90	79 900	147 000	5 500
80 80 80 80	95 95 100 100	25 35 30 54	1 1 1	90 90 95 95	59 400 78 100 83 200 134 000	137 000 195 000 158 000 311 000	5 000 5 000 5 000 5 000
83	108	45	1	103	146 000	270 000	5 000
83	108	45	1	103	190 000	396 000	1 800
85	105	25	1	100	76 300	145 000	4 500
85	105	30	1	100	86 200	169 000	4 500
85	105	35	1	100	102 000	210 000	4 500
85	105	54	1	100	138 000	331 000	4 500

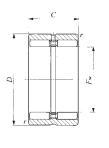
TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

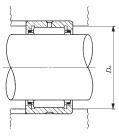
Without Inner Ring


Shaft dia. 90 — 105mm


			ldent	ification number			Mass
Shaft dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	(Ref.)
							_
	RNA 4916		_	TAF 9011025	_	_	455 550
90	—	_	_	TAF 9011035	_	_	640
	_	RNA 6916	_	_		_	1 010
93	_	_	_	_	TR 9311850	_	1 210
93	_	_	_	_	_	GTR 9311850	1 340
	_	_	_	TAF 9511526	_	_	495
	RNA 49/82	_	_	— TAE 0511500	_	_	575
95		_		TAF 9511536	_	_	690
	_	_	_	_	TR 9512045	— —	1 120
		_		_	_	GTR 9512045	
	— DNA 4047	_	_	TAF 10012026	_	_	525
	RNA 4917	_	_	TAF 10012036	_	_	705 725
100	_	RNA 6917	_	_	_	_	1 300
	_	_	_	_	TR 10012550	_	1 290
	_	_	_	_	_	GTR 10012550	1 440
	_	_	_	TAF 10512526	_	_	545
105	RNA 4918	_	_	_	_	_	740
	_	RNA 6918		TAF 10512536	_	_	760 1 360
		DIVA 0910	_		_	_	1 300


Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.


Remarks1. The outer ring has an oil groove and an oil hole.
2. No grease is prepacked. Perform proper lubrication.

GTR

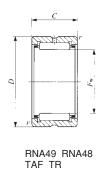
RNA49 TAF TR	RNA69
--------------	-------

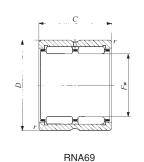
	4
	Da
	<u>*</u>
}	

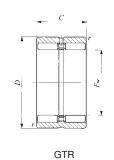
Boundary dimensions mm		Standard mounting dimension $D_{ m a}$	Basic dynamic load rating ${\it C}$	Basic static load rating C_0	Allowable rotational speed ⁽²⁾				
F_{w}	D	С	$r_{\rm s min}^{(1)}$	Max. mm	N	N N	rpm		
90 90 90 90	110 110 110 110	25 30 35 54	1 1 1 1	105 105 105 105	77 300 87 300 103 000 143 000	150 000 175 000 217 000 351 000	4 500 4 500 4 500 4 500		
93 93	118 118	50 50	1 1	113 113	165 000 224 000	329 000 509 000	4 500 1 600		
95 95 95	115 115 115	26 30 36	1 1 1	110 110 110	79 700 90 000 106 000	159 000 186 000 231 000	4 000 4 000 4 000		
95 95	120 120	45 45	1.5 1.5	112 112	155 000 204 000	305 000 455 000	4 000 1 600		
100 100 100 100	120 120 120 120	26 35 36 63	1 1.1 1 1.1	115 113.5 115 113.5	82 400 110 000 110 000 173 000	168 000 244 000 244 000 467 000	4 000 4 000 4 000 4 000		
100 100	125 125	50 50	1.5 1.5	117 117	172 000 234 000	355 000 549 000	4 000 1 500		
105 105 105 105	125 125 125 125	26 35 36 63	1 1.1 1 1.1	120 118.5 120 118.5	84 700 113 000 113 000 178 000	178 000 258 000 258 000 490 000	4 000 4 000 4 000 4 000		

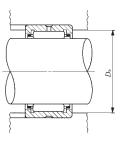
MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring


Shaft dia. 110 — 170mm


	Identification number Ma										
Shaft					(Ref.)						
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR					
mm							g				
	_	_	_	TAF 11013030	_	_	660				
	RNA 4919	_	_	TAF 11013040		_	770 880				
110	_	RNA 6919	_	— —	_	_	1 420				
	_	_	_	_	TR 11013550	_	1 400				
	_	_	_	_	_	GTR 11013550	1 560				
	RNA 4920	_	_	_	_	_	1 190				
115		_	_	_	TR 11515350	GTR 11515350	2 350				
				_	_	GIR 11515350	2 600				
120	_	_	RNA 4822	_		_	790				
125	RNA 4922	_	_	_	_	_	1 280				
130	_	_	RNA 4824	_	_	_	850				
135	RNA 4924	_	_	_	_	_	1 930				
140	_	_	_	_	TR 14017860	_	3 320				
140	_	_	_	_	_	GTR 14017860	3 730				
145	_	_	RNA 4826	_	_	_	1 100				
	RNA 4926	_	_	_	_	_	2 360				
150	_	_	_	_	TR 15018860	——————————————————————————————————————	3 540				
			_	_		GTR 15018860	3 970				
155	_	_	RNA 4828	_	_	_	1 170				
160	RNA 4928	_	_	_	_	_	2 500				
165	_	_	RNA 4830	_	_	_	1 750				
170	RNA 4930	_	_	_	_	_	4 090				

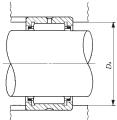

Notes(1) Minimum allowable value of chamfer dimension r


(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

<i>J</i>	 ı
}	NA
	TAF
	TRI
	BRI

Paun	dary dim	anaiana	100 100	Standard mounting	Danie danamie	D :	Allowable
Bound	aary aim	ensions	mm	dimension	Basic dynamic load rating	Basic static load rating	rotational
		ı		D_{a}	C	C_0	speed(2)
$F_{\rm w}$	D	C	r (1)	Max.	C	0	•
1 W	D	C	$r_{\rm s min}$	mm	N	N	rpm
110	130	30	1	125	106 000	240 000	3 500
110	130	35	1.1	123.5	116 000	271 000	3 500
110	130	40	1	125	134 000	324 000	3 500
110	130	63	1.1	123.5	182 000	514 000	3 500
110	135	50	1.5	127	183 000	395 000	3 500
110	135	50	1.5	127	245 000	603 000	1 400
115	140	40	1.1	133.5	145 000	329 000	3 500
115	153	50	1.5	145	233 000	414 000	3 500
115	153	50	1.5	145	315 000	614 000	1 300
120	140	30	1	135	93 200	239 000	3 500
125	150	40	1.1	143.5	152 000	357 000	3 000
130	150	30	1	145	96 900	259 000	3 000
135	165	45	1.1	158.5	187 000	435 000	3 000
140	178	60	1.5	170	307 000	625 000	3 000
140	178	60	1.5	170	409 000	923 000	1 100
145	165	35	1.1	158.5	116 000	340 000	3 000
150	180	50	1.5	172	215 000	540 000	2 500
150	188	60	1.5	180	320 000	675 000	2 500
150	188	60	1.5	180	423 000	989 000	1 000
155	175	35	1.1	168.5	120 000	363 000	2 500
160	190	50	1.5	182	224 000	580 000	2 500
165	190	40	1.1	183.5	168 000	446 000	2 500
170	210	60	2	201	324 000	712 000	2 500


TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring

RNA49 RNA48

<u> </u>	}	<u>*</u>	
	1		

Shaft dia. 175 — 350mm

Shaft			lde	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	(1101.)
mm							g
175			RNA 4832	_	_	_	1 850
180	RNA 4932		_	_	_	_	4 310
185			RNA 4834	_	_	_	2 700
190	RNA 4934		_	_	_	_	4 530
195	_	_	RNA 4836	_	_	_	2 840
205	RNA 4936	_	_	_	_	_	6 250
210	_	_	RNA 4838	_	_	_	3 380
215	RNA 4938	_	_	_	_	_	6 500
220		_	RNA 4840	_	_	_	3 520
225	RNA 4940	_	_	_	_	_	10 400
240	_	_	RNA 4844	_	_	_	3 820
245	RNA 4944	_	_	_	_	_	11 200
265	_	_	RNA 4848	_	_	_	5 670
	RNA 4948		_		_	_	12 000
285	_		RNA 4852		_	_	6 070
290	RNA 4952		_		_	_	21 200
305	_	_	RNA 4856		_	_	9 750
310	RNA 4956	_	_	_	_	_	22 500
330	_	_	RNA 4860	_	_	_	13 200
340	RNA 4960	_	_	_	_	_	33 400
350	_	_	RNA 4864	_	_	_	14 100

Notes(1) Minimum	allowable	value of	chamfer	dimension $\it r$
------------------	-----------	----------	---------	-------------------

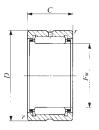
 ⁽²) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.
 Remarks1. The outer ring has an oil groove and an oil hole.
 No grease is prepacked. Perform proper lubrication.

Bound	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(2)
F_{w}	D	С	$r_{\rm s min}^{(1)}$	$D_{ m a}$ Max. mm	<i>C</i> N	C_0 N	rpm
175	200	40	1.1	193.5	173 000	474 000	2 500
180	220	60	2	211	337 000	761 000	1 900
185	215	45	1.1	208.5	211 000	567 000	1 900
190	230	60	2	221	347 000	810 000	1 900
195	225	45	1.1	218.5	218 000	602 000	1 900
205	250	69	2	241	434 000	989 000	1 900
210	240	50	1.5	232	249 000	726 000	1 800
215	260	69	2	251	440 000	1 020 000	1 700
220	250	50	1.5	242	255 000	766 000	1 600
225	280	80	2.1	269	518 000	1 120 000	1 600
240	270	50	1.5	262	266 000	833 000	1 500
245	300	80	2.1	289	536 000	1 200 000	1 400
265	300	60	2	291	345 000	1 150 000	1 300
265	320	80	2.1	309	565 000	1 320 000	1 300
285	320	60	2	311	354 000	1 220 000	1 100
290	360	100	2.1	349	847 000	1 900 000	1 100
305	350	69	2	341	486 000	1 550 000	950
310	380	100	2.1	369	877 000	2 040 000	950
330	380	80	2.1	369	610 000	1 900 000	900
340	420	118	3	407	1 130 000	2 650 000	850
350	400	80	2.1	389	635 000	2 040 000	750

TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring


Shaft dia. 360 — 490mm

Shaft			Ide	entification number			Mass (Ref.)
dia.	RNA 49	RNA 69	RNA 48	TAF	TR	GTR	
mm							g
360	RNA 4964	_	_	_	_	_	35 200
370	_	_	RNA 4868	_	_	_	14 800
380	RNA 4968	_	_	_	_	_	37 000
390	_	_	RNA 4872	_	_	_	15 600
400	RNA 4972	_	_	_	_	_	38 700
415	_	_	RNA 4876	_	_	_	27 900
430	RNA 4976	_	_	_	_	_	56 400
450	RNA 4980	_	_	_	_	_	58 800
470	RNA 4984	_	_	_	_	_	61 200
490	RNA 4988	_	_	_	_	_	86 900

Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

RNA49 RNA48

\	}	
		Ī
	\rightarrow	$D_{\rm a}$
	$\frac{1}{1}$	¥

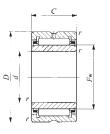
Boun	dary dim	ensions	mm	Standard mounting dimension	Basic dynamic load rating	Basic static load rating	Allowable rotational
			(1)	D_{a}	C	C_0	speed(²)
F_{w}	D	С	$r_{\rm smin}$	Max. mm	N	N	rpm
360	440	118	3	427	1 170 000	2 830 000	750
370	420	80	2.1	409	651 000	2 140 000	700
380	460	118	3	447	1 220 000	3 020 000	700
390	440	80	2.1	429	680 000	2 320 000	650
400	480	118	3	467	1 260 000	3 200 000	600
415	480	100	2.1	469	951 000	2 860 000	600
430	520	140	4	504	1 540 000	4 030 000	500
450	540	140	4	524	1 590 000	4 270 000	500
470	560	140	4	544	1 640 000	4 510 000	500
490	600	160	4	584	1 910 000	5 140 000	400

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring

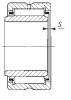
Shaft dia. 5 – 12mm

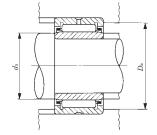
Shaft			Id	entification number			Mass (Ref.)	
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	, , ,	
mm	10/10	147.00	10,130	17.11		41111	g	d
	NA 40E						_	_
5	NA 495			TAFI 51512	_	_	7.3 11.9	5 5
	_	_	_	TAFI 51516	_	_	16.7	5
	NA 496			_	_	_	9.1	6
6	—	_	_	TAFI 61612	_	_	13	6
	_	_	_	TAFI 61616	_	_	17.5	6
	NA 497	_	_	_	_	_	11.2	7
7	_	_	_	TAFI 71712	_	_	14.3	7
	_	_	_	TAFI 71716	_	_	19.2	7
8	NA 498	_	_	_	_	_	15	8
	_	_	_	TAFI 91912	_	_	16.7	9
9	_	_	_	TAFI 91916		_	22.5	9
	NA 499	_	_	_		_	16.7	9
	NA 4900	_	_	_		_	24	10
10	_	_	_	TAFI 102216	_	_	30	10
		_	_	TAFI 102220	_	_	38	10
	NA 4901	—	_	_	_	_	26.5	12
12	_	_	_	TAFI 122416	_	_	33.5	12
	_	— — —	_	TAFI 122420	_	_	42.5	12
		NA 6901	_	_	_	_	44.5	12
							1	


Notes(1) Minimum allowable value of chamfer dimension r

(2) Allowable axial shift amount of inner ring to outer ring

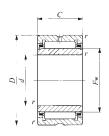
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.


Remarks1. TAFI series with a bore diameter d of 22 mm or less have no oil hole. In others, the outer ring has an oil groove and an oil hole.


2. No grease is prepacked. Perform proper lubrication.

NA49 TAFI

NA69 $(d \le 30)$

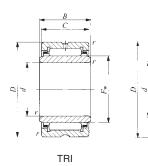

Boundary dimensions mm Standard mounting												
В	ounda	ry dim	ension	s m		dime	ensions		Basic dynamic load rating	Basic static load rating	Allowable rotational speed(3)	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	$S^{(2)}$	d Min.	a Max.	D_{a} Max.	C N	C_0 N	rpm	
13	10	_	0.15	7	0.5	6.2	6.7	11.8	2 960	2 690	60 000	LRT 5710
15	12		0.2	8	0.5	6.6	7.7	13.4	5 060	4 690	50 000	LRT 5812
15	16		0.2	8	0.5	6.6	7.7	13.4	7 080	7 220	50 000	LRT 5816
15	10	_	0.15	8	0.5	7.2	7.7	13.8	3 960	3 420	50 000	LRT 6810
16	12	_	0.2	9	0.5	7.6	8.7	14.4	5 490	5 330	45 000	LRT 6912
16	16	_	0.2	9	0.5	7.6	8.7	14.4	7 680	8 210	45 000	LRT 6916
17	10	_	0.15	9	0.5	8.2	8.7	15.8	4 530	3 650	45 000	LRT 7910
17	12	_	0.2	10	0.5	8.6	9.7	15.4	5 880	5 970	40 000	LRT 71012
17	16	_	0.2	10	0.5	8.6	9.7	15.4	8 230	9 190	40 000	LRT 71016
19	11	_	0.2	10	0.5	9.6	9.9	17.4	6 180	5 030	40 000	LRT 81011
19	12	_	0.3	12	0.5	11	11.5	17	6 610	7 260	35 000	LRT 91212
19	16	_	0.3	12	0.5	11	11.5	17	9 250	11 200	35 000	LRT 91216
20	11	_	0.3	12	0.5	11	11.5	18	6 600	6 310	35 000	LRT 91211
22	13	_	0.3	14	0.5	12	13	20	9 230	10 100	30 000	LRT 101413
22	16	_	0.3	14	0.5	12	13	20	11 700	13 700	30 000	LRT 101416
22	20	_	0.3	14	0.5	12	13	20	14 800	18 600	30 000	LRT 101420
24 24 24 24	13 16 20 22		0.3 0.3 0.3 0.3	16 16 16 16	0.5 0.5 0.5 0.5	14 14 14 14	15 15 15 15	22 22 22 22 22	9 660 12 300 15 500 17 100	11 100 15 100 20 400 23 000	25 000 25 000 25 000 25 000	LRT 121613 LRT 121616 LRT 121620 LRT 121622

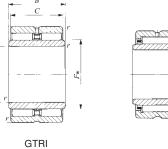
MACHINED TYPE NEEDLE ROLLER BEARINGS

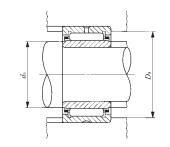
With Inner Ring

NA49 TAFI NA69 $(d \le 30)$

Shaft dia. 15 – 22mm


							Mass						
Shaft	Identification number												
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	(Ref.)						
mm	107140	147 (00	117 (40	17 (1)		31111	g	d					
							_						
				TAFI 152716	_		39.5 50	15 15					
	NA 4902	_		TAFI 152720		_	35	15					
15	—	NA 6902	_	_	_	_	61	15					
	_	_	_		TRI 153320	_	81	15					
	_	_	—	_	— — — — — — — — — — — — — — — — — — —	GTRI 153320	90.5	15					
	_	_	_	TAFI 172916	_	_	43.5	17					
	_	_	_	TAFI 172920	_	_	54	17					
17	NA 4903	_	_	_	_	_	39	17					
17	_	NA 6903		_			67	17					
	_	_	_	_	TRI 173425	_	104	17					
	_	_	_	_	_	GTRI 173425	117	17					
	_	—	_	TAFI 203216	_	_	48.5	20					
	_	_	—	TAFI 203220	_	_	61	20					
	NA 4904	— NA 0004	_	_	_	_	78.5	20					
20		NA 6904		_			136	20					
	_	_	_	_	TRI 203820	_	99	20					
	_	_	_	_	TRI 203825	— OTDI 000000	124	20					
					_	GTRI 203820 GTRI 203825	110 138	20 20					
						G1HI 203023							
				TAFI 223416		_	52 67 F	22					
22	NA 49/22			TAFI 223420			67.5 87	22 22					
	———	NA 69/22	_	_	_	_	152	22					
							_						

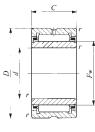

Notes(1) Minimum allowable value of chamfer dimension r

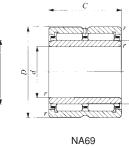

(2) Allowable axial shift amount of inner ring to outer ring

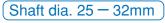
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks 1. TAFI series with a bore diameter d of 22 mm or less have no oil hole. In others, the outer ring has an oil groove and an oil hole.

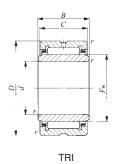
В	ounda	ary dim	ension	s m			lard mou ensions	mm	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(3)	Assembled inner ring
D	С	В	$r_{\rm s min}^{(1)}$	F_{w}	(2) S	d Min.	a Max.	D_{a} Max.	N N	<i>C</i> ₀	rpm	
27 27 28 28	16 20 13 23	_ _ _	0.3 0.3 0.3 0.3	19 19 20 20	0.5 0.5 0.3 0.3	17 17 17 17	18 18 19 19	25 25 26 26	14 000 17 700 10 900 19 300	18 700 25 300 13 800 28 800	20 000 20 000 20 000 20 000	LRT 151916 LRT 151920 LRT 152013 LRT 152023
33 33	20 20	20.5 20.5	0.3	20 20	0.3	17 17	19 19	31 31	24 300 29 200	26 500 37 200	20 000 7 500	LRT 152020 LRTZ 152020
29 29 30 30	16 20 13 23		0.3 0.3 0.3 0.3	21 21 22 22	0.5 0.5 0.3 0.3	19 19 19 19	20 20 21 21	27 27 28 28	14 400 18 200 11 700 20 800	20 000 27 100 15 600 32 500	19 000 19 000 18 000 18 000	LRT 172116 LRT 172120 LRT 172213 LRT 172223
34 34	25 25	25.5 25.5	0.3	22 22	0.5	19 19	21 21	32 32	29 100 37 900	36 800 57 800	18 000 7 000	LRT 172225 LRTZ 172225
32 32 37 37	16 20 17 30	_ _ _	0.3 0.3 0.3 0.3	24 24 25 25	0.5 0.5 0.5 0.5	22 22 22 22	23 23 24 24	30 30 35 35	15 300 19 400 21 000 35 400	22 500 30 500 25 000 48 900	17 000 17 000 16 000 16 000	LRT 202416 LRT 202420 LRT 202517 LRT 202530
38 38 38 38	20 25 20 25	20.5 25.5 20.5 25.5	0.3 0.3 0.3 0.3	25 25 25 25	0.3 0.5 —	22 22 22 22	24 24 24 24	36 36 36 36	28 900 34 800 33 300 42 400	35 000 44 400 46 500 63 700	16 000 16 000 6 000 6 000	LRT 202520 LRT 202525 LRTZ 202520 LRTZ 202525
34 34 39 39	16 20 17 30		0.3 0.3 0.3 0.3	26 26 28 28	0.5 0.5 1 0.5	24 24 24 24	25 25 27 27	32 32 37 37	16 300 20 600 21 400 36 300	24 900 33 800 28 900 56 900	15 000 15 000 14 000 14 000	LRT 222616 LRT 222620 LRT 222817 LRT 222830

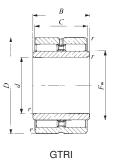

MACHINED TYPE NEEDLE ROLLER BEARINGS

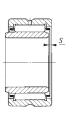

With Inner Ring

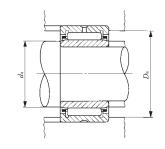


NA49 TAFI NA69 $(d \le 30)$


			Id	entification numbe	r		Mass						
Shaft	Identification number												
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI							
mm							g	d					
	_	_	_	TAFI 253820	_	_	82	25					
		_	_	TAFI 253830	_	_	123	25					
25	NA 4905	NIA COOF	_	_	_	_	92.5	25					
		NA 6905					160	25					
	_	_	_	_	TRI 254425		157	25					
	_	_		_	_	GTRI 254425	175	25					
	_	_	_	TAFI 284220	_	_	96.5	28					
		_	_	TAFI 284230	_	_	145	28					
28	NA 49/28	— NA 00/00	_	_	_	_	101	28					
		NA 69/28		_		_	176	28					
	_	_	_	_		GTRI 284530	196	28					
	_	_	_	TAFI 304520	_	_	112	30					
	_	_	_	TAFI 304530	_	_	171	30					
30	NA 4906	_	_	_	_	_	106	30					
00		NA 6906		_			184	30					
	_	_	_	_	TRI 304830	_	199	30					
	_	_	_	_	_	GTRI 304830	225	30					
	_	_	_	TAFI 324720	_	_	121	32					
	_	_	_	TAFI 324730	_	_	180	32					
32	NA 49/32	_	_	_	_	_	165	32					
-	_	_	_	_	TRI 325230	_	245	32					
	_	NA 69/32	_	_	_	_	295	32					
	_		_	_	_	GTRI 325230	270	32					


Notes(1) I	M	li	n	i	n	n	ı


num allowable value of chamfer dimension r


Allowable axial shift amount of inner ring to outer ring

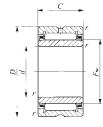
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

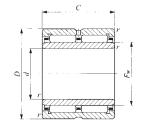
NA
TAFI
TRI
BRI

В	ounda	ary dim	ension	s m	m	dime	lard mou	inting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S (2)	d Min.	a Max.	$D_{ m a}$ Max.	C N	C ₀	speed(³) rpm	
38 38 42 42 44 44	20 30 17 30 25 25 20	25.5 25.5	0.3 0.3 0.3 0.3 0.3 0.3	29 29 30 30 30 30 30	0.5 1 0.5 0.5 0.5 -	27 27 27 27 27 27 27	28 28 29 29 29 29 31	36 36 40 40 42 42	21 600 30 900 23 700 42 100 37 900 47 000 25 700	37 200 59 100 30 700 64 300 52 100 76 500 42 200	14 000 14 000 13 000 13 000 13 000 5 000 12 000	LRT 252920 LRT 252930 LRT 253017 LRT 253030 LRT 253025 LRTZ 253025 LRTZ 283220
42 45 45	30 17 30	30.5	0.3 0.3 0.3	32 32 32	1 1 1	30 30 30	31 31 31 31	40 43 43	36 800 24 500 41 800 58 000	67 200 32 700 64 800	12 000 12 000 12 000 4 500	LRT 283230 LRT 283217 LRT 283230 LRTZ 283230
45 45 47 47	20 30 17 30	_ _ _ _	0.3 0.3 0.3 0.3	35 35 35 35 35	0.3 0.5 0.5 0.5	32 32 32 32 32	34 34 34 34	43 43 45 45	26 900 38 600 25 200 43 000	46 200 73 600 34 700 69 000	11 000 11 000 11 000 11 000	LRT 303520 LRT 303530 LRT 303517 LRT 303530
48 48	30 30	30.5 30.5	0.3 0.3	35 35	1 —	32 32	34 34	46 46	47 400 61 100	72 300 110 000	11 000 4 500	LRT 303530-1 LRTZ 303530
47 47 52	20 30 20	_ _ _	0.3 0.3 0.6	37 37 40	0.3 0.5 0.5	34 34 36	36 36 39	45 45 48	28 200 40 500 31 200	50 100 79 800 47 800	11 000 11 000 10 000	LRT 323720 LRT 323730 LRT 324020
52 52 52	30 36 30	30.5 — 30.5	0.6 0.6 0.6	38 40 38	0.5 0.3 —	36 36 36	37 39 37	48 48 48	50 800 53 500 64 200	81 100 95 700 121 000	11 000 10 000 4 000	LRT 323830 LRT 324036 LRTZ 323830

TAFI

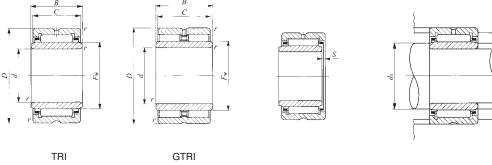
TRI


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring

NA49 TAFI NA69

Shaft dia. 35 – 45mm


			lo	lentification numbe	r		Mass	
Shaft dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	(Ref.)	d
mm							g	а
	_	_	_	TAFI 355020	_	_	129	35
	NA 4007		_	TAFI 355030	_	_	192 178	35 35
35	NA 4907 —	NA 6907	_	_	_	_	320	35
	_	_	_	_	TRI 355630	_	280	35
	_	_	_	_	_	GTRI 355520	191	35
	_	_	_	_	_	GTRI 355630	310	35
38	_	_	_	TAFI 385320	_	_	136	38
		_		TAFI 385330		_	205	38
	_	_	_	TAFI 405520	_	_	143	40
		_	_	TAFI 405530	_	_	215	40
40		_	_	_	TRI 405930	_	270	40
	NA 4908	NA 6908	_	_		_	245 440	40 40
			_		_	GTRI 405930	300	40
				TAFI 425720		_	149	42
	_	_	_	TAFI 425720	_	_	225	42
42				_	TRI 426230	_	305	42
	_	_	_	_	——————————————————————————————————————	GTRI 426230	340	42
	_	_	_	TAFI 456225	_	_	230	45
	_	_	_	TAFI 456235	_	_	320	45
45	_	_	_	_	TRI 456430	_	300	45
	NA 4909	_	_	_	_	_	285	45
		NA 6909	_	_	_	——————————————————————————————————————	520	45
	_	_	_	_	_	GTRI 456430	335	45

Notes(1)

Minimum allowable value of chamfer dimension r

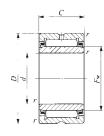
Allowable axial shift amount of inner ring to outer ring

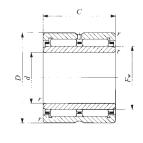
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

	—- _Ā
2	D_a

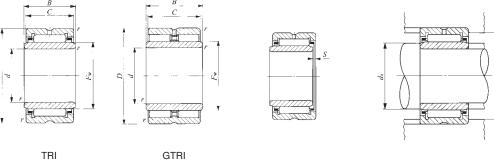
В	ounda	ary dim	ension	s m	m		lard mou	inting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	(2) S	d Min.	a Max.	$D_{ m a}$ Max.	C N	C ₀	speed(³) rpm	
50 50 55 55 56 55	20 30 20 36 30 20	30.5	0.3 0.3 0.6 0.6 0.6	40 42 42 42 42	0.3 0.5 0.5 0.3	37 37 39 39 39	39 39 41 41 41 39.5	48 48 51 51 52 51	29 400 42 300 32 000 54 900 53 800 44 300	54 100 86 200 50 100 100 000 90 100 73 600	10 000 10 000 9 500 9 500 9 500 3 500	LRT 354020 LRT 354030 LRT 354220 LRT 354236 LRT 354230 LRTZ 354020
56 53 53	30 20 30	30.5 — —	0.6 0.3 0.3	42 43 43	0.3 0.5	39 40 40	41 42 42	52 51 51	67 500 30 500 43 800	133 000 58 200 92 600	3 500 9 500 9 500	LRTZ 354230 LRT 384320 LRT 384330
55 55	20 30	_	0.3 0.3	45 45	0.3 0.5	42 42	44 44	53 53	31 000 44 600	60 200 95 800	9 000 9 000	LRT 404520 LRT 404530
59 62 62 59	30 22 40 30	30.5 — — 30.5	0.6 0.6 0.6 0.6	45 48 48 45	1 0.5 0.3	44 44 44 44	44.5 47 47 44.5	55 58 58 55	55 100 41 600 71 300 70 300	94 800 67 400 135 000 142 000	9 000 8 500 8 500 3 500	LRT 404530-1 LRT 404822 LRT 404840 LRTZ 404530
57 57	20 30	_	0.3 0.3	47 47	0.3 0.5	44 44	46 46	55 55	31 500 45 200	62 200 99 100	8 500 8 500	LRT 424720 LRT 424730
62 62	30 30	30.5 30.5	0.6 0.6	48 48	0.5	46 46	47 47	58 58	56 300 72 700	99 500 154 000	8 500 3 000	LRT 424830 LRTZ 424830
62 62	25 35	_	0.3 0.3	50 50	0.5 1	47 47	49 49	60 60	43 000 58 000	85 300 125 000	8 000 8 000	LRT 455025 LRT 455035
64 68 68 64	30 22 40 30	30.5 — — 30.5	0.6 0.6 0.6 0.6	50 52 52 50	1 0.5 0.3	49 49 49 49	49.5 51 51 49.5	60 64 64 60	57 700 43 500 74 600 74 600	104 000 73 300 147 000 158 000	8 000 7 500 7 500 3 000	LRT 455030 LRT 455222 LRT 455240 LRTZ 455030

TAFI


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring

NA49 TAFI NA69


Shaft dia. 50 – 70mm

Shaft			Id	lentification numbe	r		Mass (Ref.)	
dia.	NA 49 NA 69		NA 48	TAFI	TRI	GTRI	g	d
50	 NA 4910 	— — — NA 6910	— — — —	TAFI 506825 TAFI 506835	_ _ _ _	_ _ _ _	270 365 295 530	50 50 50 50
		_	_	_	TRI 507745	 GTRI 507745	755 825	50 50
55	 NA 4911 	 NA 6911		TAFI 557225 TAFI 557235	_ _ _ _	_ _ _ _	275 380 410 730	55 55 55 55
		_	_	_	TRI 558138	 GTRI 558138	650 710	55 55
60	 NA 4912 	 NA 6912	— — —	TAFI 608225 TAFI 608235	_ _ _ _	_ _ _ _	395 560 440 785	60 60 60
		_	_	_	TRI 608945	GTRI 608945	960 1 050	60 60
65	NA 4913 —	 NA 6913	_ _ _	TAFI 659035	_ _ _	_ _ _	470 710 840	65 65 65
70	 NA 4914 	— — NA 6914	_ _ _ _	TAFI 709525 TAFI 709535			540 755 765 1 400	70 70 70 70

Notes(1) Minimum allowable value of chamfer dimension r

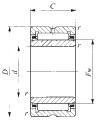
Allowable axial shift amount of inner ring to outer ring

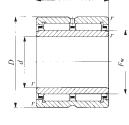
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

d_a) ~
<u>, </u>)
	}	

	Boundary dimensions mm Standard mounting Basic dynamic Basic static Allowable Assembled inner ring												
В	ounda	ary dim	ension	s m			lard mou ensions	inting mm	Basic dynamic load rating	Basic static load rating	Allowable rotational speed(³)	Assembled inner ring	
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S	d Min.	a Max.	$D_{ m a}$ Max.	N	C_0 N	rpm		
68 68 72 72	25 35 22 40	_ _ _ _	0.3 0.3 0.6 0.6	55 55 58 58	0.5 1 0.5 0.3	52 52 54 54	54 54 57 57	66 66 68 68	45 400 61 200 46 200 79 200	94 000 138 000 82 100 164 000	7 500 7 500 7 000 7 000	LRT 505525 LRT 505535 LRT 505822 LRT 505840	
77 77	45 45	45.5 45.5	1	58 58	2	55 55	57 57	72 72	104 000 135 000	191 000 280 000	7 000 2 500	LRT 505845 LRTZ 505845	
72 72 80 80	25 35 25 45	_ _ _	0.3 0.3 1 1	60 60 63 63	0.5 1 1 0.5	57 57 60 60	59 59 61 61	70 70 75 75	47 500 64 100 57 600 98 700	103 000 151 000 97 200 194 000	6 500 6 500 6 500 6 500	LRT 556025 LRT 556035 LRT 556325 LRT 556345	
81 81	38 38	38.5 38.5	1	62 62	1.5	60 60	60.5 60.5	76 76	92 000 118 000	166 000 241 000	6 500 2 500	LRT 556238 LRTZ 556238	
82 82 85 85	25 35 25 45	_ _ _	0.6 0.6 1	68 68 68	0.3 1 1 0.5	64 64 65 65	66 66 66	78 78 80 80	54 800 72 000 60 200 103 000	117 000 166 000 105 000 211 000	6 000 6 000 6 000 6 000	LRT 606825 LRT 606835 LRT 606825-1 LRT 606845	
89 89	45 45	45.5 45.5	1	70 70	2	65 65	68 68	84 84	114 000 147 000	228 000 336 000	5 500 2 000	LRT 607045 LRTZ 607045	
90 90 90	25 35 45	_ _ _	1 1 1	72 73 72	1 1 0.5	70 70 70	70.5 71 70.5	85 85 85	62 700 80 400 108 000	113 000 181 000 227 000	5 500 5 500 5 500	LRT 657225 LRT 657335 LRT 657245	
95 95 100 100	25 35 30 54	_ _ _	1 1 1	80 80 80 80	0.3 1 1.5 1	75 75 75 75	78 78 78 78	90 90 95 95	59 400 78 100 83 200 134 000	137 000 195 000 158 000 311 000	5 000 5 000 5 000 5 000	LRT 708025 LRT 708035 LRT 708030 LRT 708054	

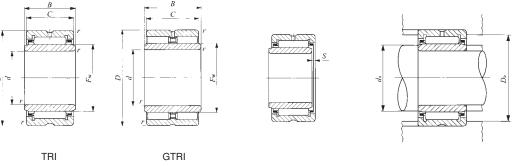
TAFI


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring

NA49 TAFI NA69

Shaft dia. 75 — 90mm


Shaft	Identification number												
dia. mm	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	g	d					
75	NA 4915	 NA 6915		TAFI 7510525 TAFI 7510535	_ _ _ _	_ _ _ _	675 810 945 1 480	75 75 75 75					
				_ _ _	TRI 7510845	GTRI 7510845	1 340 1 440	75 75 75					
80	NA 4916 —	 NA 6916	_ _ _ _	TAFI 8011025 TAFI 8011035	_ _ _ _	_ _ _ _	710 855 995 1 560	80 80 80 80					
0.5	 NA 4917 	 NA 6917	_ _ _ _	TAFI 8511526 TAFI 8511536	_ _ _ _	_ _ _	775 1 080 1 280 2 340	85 85 85 85					
85	_ _ _			_ _ _ _	TRI 8511850 TRI 8512045	GTRI 8511850 GTRI 8512045	1 640 1 610 1 780 1 720	85 85 85 85					
90	 NA 4918	_ _ _	_ _ _	TAFI 9012026 TAFI 9012036	_ _ _	_ _ _	820 1 140 1 350	90 90 90					
	_ _ _	NA 6918	_ _ _	_ _ _	TRI 9012550 — —	GTRI 9012550	1 870 2 460 2 020	90 90 90					

Notes(1) Minimum allowable value of chamfer dimension r

Allowable axial shift amount of inner ring to outer ring

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

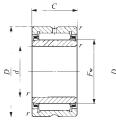
Remarks1. The outer ring has an oil groove and an oil hole.

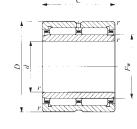
	₋
rp -	_s (
	T
7	

D,	nunde	ry dim	onoion	. m	m	Stone	lard mou	inting	Basic dynamic	Davis statis	Allowable	Assembled inner ring
ъ	Junua	ii y uiiii	6115101	is m	111		ensions	mm	load rating	Basic static load rating	rotational	Assembled inner milg
		I	l as	ı	(2)	ن ا	,	מו	C	C_0	speed(3)	
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S	Min.	a Max.	$D_{ m a}$		Ü		
			5 111111	vv				WIGA.	N	N	rpm	
105	25	_	1	85	0.5	80	83	100	76 300	145 000	4 500	LRT 758525
105	30	_	1	85	1.5	80	83	100	86 200	169 000	4 500	LRT 758530
105	35	_	1	85	1.5	80	83	100	102 000	210 000	4 500	LRT 758535
105	54	_	1	85	1	80	83	100	138 000	331 000	4 500	LRT 758554
108	45	45.5	1	83	2.5	80	81	103	146 000	270 000	5 000	LRT 758345
108	45	45.5	1	83	_	80	81	103	190 000	396 000	1 800	LRTZ 758345
					0.5							
110	25		1	90	0.5	85	88	105	77 300	150 000	4 500	LRT 809025
110	30		1	90	1.5	85	88	105	87 300	175 000	4 500	LRT 809030
110	35		1	90	1.5	85 05	88	105	103 000	217 000	4 500	LRT 809035
110	54		1	90	1	85	88	105	143 000	351 000	4 500	LRT 809054
115	26	_	1	95	1	90	93	110	79 700	159 000	4 000	LRT 859526
115	36	_	1	95	2	90	93	110	106 000	231 000	4 000	LRT 859536
120	35	_	1.1	100	1	91.5	98	113.5	110 000	244 000	4 000	LRT 8510035
120	63	_	1.1	100	0.5	91.5	98	113.5	173 000	467 000	4 000	LRT 8510063
118	50	50.5	1	93	3	90	91	113	165 000	329 000	4 500	LRT 859350
120	45	45.5	1.5	95	2.5	93	93.5	112	155 000	305 000	4 000	LRT 859545
118	50	50.5	1	93	_	90	91	113	224 000	509 000	1 600	LRTZ 859350
120	45	45.5	1.5	95	_	93	93.5	112	204 000	455 000	1 600	LRTZ 859545
120	26	_	1	100	1	95	98	115	82 400	168 000	4 000	LRT 9010026
120	36	_	1	100	2	95	98	115	110 000	244 000	4 000	LRT 9010036
125	35	_	1.1	105	1	96.5	103	118.5	113 000	258 000	4 000	LRT 9010535
125	50	50.5	1.5	100	3	98	98.5	117	172 000	355 000	4 000	LRT 9010050
125	63		1.1	105	0.5	96.5	103	118.5	178 000	490 000	4 000	LRT 9010563
125	50	50.5	1.5	100	_	98	98.5	117	234 000	549 000	1 500	LRTZ 9010050

TAFI

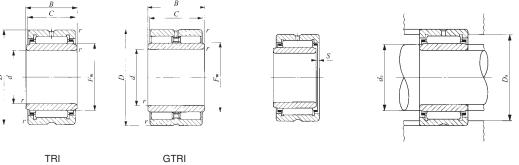
TRI


MACHINED TYPE NEEDLE ROLLER BEARINGS


With Inner Ring

NA49 TAFI NA48 NA69

Shaft dia. 95 — 150mm


Shaft	Identification number												
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	(Ref.)	d					
mm							g						
	_	_	_	TAFI 9512526	_	_	860	95					
95	— NA 4010		_	TAFI 9512536	_	_	1 190 1 420	95 95					
	NA 4919 —	NA 6919	_	_	_	_	2 580	95					
	_		_	TAFI 10013030	_	_	1 040	100					
	_	_	_	TAFI 10013040	_	_	1 380	100					
100	_	_	_	_	TRI 10013550	_	2 040	100					
	NA 4920	_	_	_	_		1 960	100					
				_	<u> </u>	GTRI 10013550	2 200	100					
105	_	_	_	_	TRI 10515350		3 020	105					
				_		GTRI 10515350		105					
110	_	_	NA 4822	_	_	_		110					
	NA 4922			_			2 120	110					
120	— NA 4004	_	NA 4824	_	_	_	1 300						
	NA 4924			_		_	2 960	120					
125	_	_	_	_	TRI 12517860	_	4 780	-					
				_		GTRI 12517860	5 180	125					
130	_	_	NA 4826	_	_	_	1 960						
	NA 4926			_		_	4 030						
135	_	_	_	_	TRI 13518860	— OTDI 40540000		135					
				_		GTRI 13518860	5 530	135					
140	— NA 4000	_	NA 4828	_	_	_		140					
	NA 4928			_		_	4 290	140					
150	— NA 4000	_	NA 4830	_	_	_	2 880	150					
	NA 4930			_	_	_	6 380	150					

Notes(1) Minimum allowable value of chamfer dimension r

Allowable axial shift amount of inner ring to outer ring

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

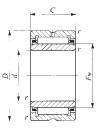
|--|

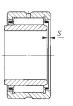
$\begin{array}{c c c c c c c c c c c c c c c c c c c $													
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	В	ounda	ıry dim	ension	is m	m			0	,			Assembled inner ring
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						(2)				ŭ	Ü		
125 26 - 1 105 1 100 103 120 84 700 178 000 4 000 LRT 95105 125 36 - 1 105 2 100 103 120 113 000 271 000 3 500 LRT 95105 130 35 - 1.1 110 1.5 108 123.5 116 000 271 000 3 500 LRT 95105 130 30 - 1 110 0.5 101.5 108 123.5 182 000 514 000 3 500 LRT 95110 130 40 - 1 110 0.5 105 108 125 106 000 240 000 3 500 LRT 100110 130 40 - 1 110 1.5 105 108 125 134 000 324 000 3 500 LRT 100110 135 50 50.5 1.5 110 3 108 108.5 127 183 000 329 000 3 500 LRT 100110 135 50 50.5 1.5 110 - 108 108.5 127 245 000 603 000 1 400 LRTZ 100110 153 50 50.5 1.5 115 - 118 113.5 145 233 000 414 000 3 500 LRT 100110 LRTZ 100110 153 50 50.5 1.5 115 - 113 113.5 145 315 000 614 000 3 500 LRT 105115 150 40 - 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 10125 150 40 - 1.1 135 2 126.5 133 138 170 409 000 923 000 1 100 LRTZ 125140 165 35 - 1.1 145 1 136.5 143 148 180 320 000 363 000 2 500 LRT 130150 188 60 60.5 1.5 150 - 143 148 180 423 000 989 000 1 000 LRTZ 135150 175 35 - 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 175	D	C	R	$r_{\rm c} = \frac{1}{r_{\rm c}}$	F_{w}		Min.	a Max.		Č	0		
125 36 — 1 105 2 100 103 120 113 000 258 000 4 000 LRT 95105 130 35 — 1.1 110 1 101.5 108 123.5 116 000 271 000 3 500 LRT 95110 130 30 — 1 110 0.5 105 108 123.5 182 000 514 000 3 500 LRT 95110 130 30 — 1 110 0.5 105 108 125 106 000 240 000 3 500 LRT 10010 133 40 — 1 110 1.5 105 108 125 134 000 324 000 3 500 LRT 10010 135 50 50.5 1.5 110 3 108 108.5 127 183 000 395 000 3 500 LRT 10010 140 0 1.1 155 1				SIIIII	- w				WIGA.	N	N	rpm	
130 35 — 1.1 110 1 101.5 108 123.5 116 000 271 000 3 500 LRT 95110 130 63 — 1 110 0.5 101.5 108 123.5 182 000 514 000 3 500 LRT 95110 130 30 — 1 110 0.5 105 108 125 106 000 240 000 3 500 LRT 10010 135 50 50.5 1.5 110 3 108 108.5 127 183 000 395 000 3 500 LRT 10010 140 40 — 1.1 115 1 106.5 113 133.5 145 000 329 000 3 500 LRT 10010 153 50 50.5 1.5 115 1 106.5 113 113.5 145 000 329 000 3 500 LRT 10010 153 50.5 1.5 115	125	26	_	1	105	1	100	103	120	84 700	178 000	4 000	LRT 9510526
130 63 — 1.1 110 0.5 101.5 108 123.5 182 000 514 000 3 500 LRT 95110 130 30 — 1 110 0.5 105 108 125 106 000 240 000 3 500 LRT 10010 130 40 — 1 110 0.5 105 108 125 134 000 324 000 3 500 LRT 100110 135 50 50.5 1.5 110 3 108 108.5 127 183 000 395 000 3 500 LRT 10010 140 40 — 1.1 115 1 106.5 113 133.5 145 000 329 000 3 500 LRT 100110 153 50 50.5 1.5 115 3 113 113.5 145 233 000 414 000 3 500 LRT 100110 153 50.5 1.5 1.5	125		_	1	105	2	100	103	120	113 000		4 000	LRT 9510536
130 30 — 1 110 0.5 105 108 125 106 000 240 000 3 500 LRT 100110 135 50 50.5 1.5 110 3 108 108.5 127 183 000 329 000 3 500 LRT 100110 135 50 50.5 1.5 110 — 108 108.5 127 245 000 603 000 1 400 LRT 100110 153 50 50.5 1.5 115 — 113 113.5 145 233 000 414 000 3 500 LRT 100110 153 50 50.5 1.5 115 — 113 113.5 145 233 000 414 000 3 500 LRT 100110 153 50 50.5 1.5 115 — 113 113.5 145 233 000 414 000 3 500 LRT 105115 153 50 50.5 1.5 115 — 113 113.5 145 233 000 614 000 1 300 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 10120 150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110125 150 40 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120135 178 60 60.5 1.5 140 — 133 138 170 307 000 625 000 3 000 LRT 120135 178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRT 130145 180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 — 143 148 180 320 000 989 000 1 000 LRT 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 130150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 130150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 130150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 130150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 130150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 580 000 2 500 LRT 130150 175 35 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160			_		-								
130 40 — 1 110 1.5 105 108 125 134 000 324 000 3 500 LRT 100110 135 50 50.5 1.5 110 3 108 108.5 127 183 000 395 000 3 500 LRT 100110 140 40 — 1.1 115 1 106.5 113 133.5 145 000 329 000 3 500 LRT 100110 153 50 50.5 1.5 110 — 108 108.5 127 245 000 603 000 1 400 LRTZ 100110 153 50 50.5 1.5 115 3 113 113.5 145 233 000 414 000 3 500 LRT 105115 153 50 50.5 1.5 115 — 113 113.5 145 233 000 414 000 3 500 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 110120 150 40 —	130	63	_	1.1	110	0.5	101.5	108	123.5	182 000	514 000	3 500	LRT 9511063
135 50 50.5 1.5 110 3 108 108.5 127 183 000 395 000 3 500 LRT 10010 140 40 - 1.1 115 1 106.5 113 133.5 145 000 329 000 3 500 LRT 100115 135 50 50.5 1.5 110 - 108 108.5 127 245 000 603 000 1 400 LRT 100115 153 50 50.5 1.5 115 3 113 113.5 145 233 000 414 000 3 500 LRT 105115 140 30 - 1 120 1 115 118 135 93 200 239 000 3 500 LRT 105115 140 30 - 1 120 1 115 118 135 93 200 239 000 3 500 LRT 110120 150 40 - 1.1 125<	130	30	_	1	110	0.5	105	108	125	106 000	240 000	3 500	LRT 10011030
140 40 — 1.1 115 1 106.5 113 133.5 145 000 329 000 3 500 LRT 100115 135 50 50.5 1.5 110 — 108 108.5 127 245 000 603 000 1 400 LRTZ 100110 153 50 50.5 1.5 115 3 113 113.5 145 233 000 414 000 3 500 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 10120 150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 10120 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 <td>130</td> <td>40</td> <td> - </td> <td>1</td> <td>110</td> <td>1.5</td> <td>105</td> <td>108</td> <td>125</td> <td>134 000</td> <td>324 000</td> <td>3 500</td> <td>LRT 10011040</td>	130	40	-	1	110	1.5	105	108	125	134 000	324 000	3 500	LRT 10011040
135 50 50.5 1.5 110 — 108 108.5 127 245 000 603 000 1 400 LRTZ 100110 153 50 50.5 1.5 115 3 113 113.5 145 233 000 414 000 3 500 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 110120 150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110120 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 135 2 126.5 133 158.5 187 0	135	50	50.5	1.5	110	3	108	108.5	127	183 000	395 000	3 500	LRT 10011050
153 50 50.5 1.5 115 3 113 113.5 145 233 000 414 000 3 500 LRT 105115 153 50 50.5 1.5 115 — 113 113.5 145 315 000 614 000 1 300 LRT 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 110120 150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110120 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120130 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5	140	40	_	1.1	115	1	106.5	113	133.5	145 000	329 000	3 500	LRT 10011540
153 50 50.5 1.5 115 — 113 113.5 145 315 000 614 000 1 300 LRTZ 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 110120 150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110125 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120130 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5 1.5 140 — 133 138 170 <td< td=""><td>135</td><td>50</td><td>50.5</td><td>1.5</td><td>110</td><td>—</td><td>108</td><td>108.5</td><td>127</td><td>245 000</td><td>603 000</td><td>1 400</td><td>LRTZ 10011050</td></td<>	135	50	50.5	1.5	110	—	108	108.5	127	245 000	603 000	1 400	LRTZ 10011050
153 50 50.5 1.5 115 — 113 113.5 145 315 000 614 000 1 300 LRTZ 105115 140 30 — 1 120 1 115 118 135 93 200 239 000 3 500 LRT 110120 150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110125 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120130 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5 1.5 140 — 133 138 170 <td< td=""><td>153</td><td>50</td><td>50.5</td><td>1.5</td><td>115</td><td>3</td><td>113</td><td>113.5</td><td>145</td><td>233 000</td><td>414 000</td><td>3 500</td><td>LRT 10511550</td></td<>	153	50	50.5	1.5	115	3	113	113.5	145	233 000	414 000	3 500	LRT 10511550
150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110125 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120135 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRT 125140 165 35 — 1.1 145 1 136.5 143 158.5 116 000 340 000 3 000 LRT 130145 188 60 60.5 1.5		50	50.5	1.5	115		113		145	315 000	614 000		LRTZ 10511550
150 40 — 1.1 125 1 116.5 123 143.5 152 000 357 000 3 000 LRT 110125 150 30 — 1 130 1 125 128 145 96 900 259 000 3 000 LRT 120130 165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120135 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRT 125140 165 35 — 1.1 145 1 136.5 143 158.5 116 000 340 000 3 000 LRT 130145 180 50 — 1.5 <td< td=""><td>140</td><td>30</td><td>_</td><td>1</td><td>120</td><td>1</td><td>115</td><td>118</td><td>135</td><td>93 200</td><td>239 000</td><td>3 500</td><td>LRT 11012030</td></td<>	140	30	_	1	120	1	115	118	135	93 200	239 000	3 500	LRT 11012030
165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120135 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRT 125140 165 35 — 1.1 145 1 136.5 143 158.5 116 000 340 000 3 000 LRT 130145 180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 <	150	40	_	1.1	125	1	116.5	123				3 000	
165 45 — 1.1 135 2 126.5 133 158.5 187 000 435 000 3 000 LRT 120135 178 60 60.5 1.5 140 2.5 133 138 170 307 000 625 000 3 000 LRT 125140 178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRT 125140 165 35 — 1.1 145 1 136.5 143 158.5 116 000 340 000 3 000 LRT 130145 180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 135150 175 35 — 1.1	150	30		1	130	1	125	128	145	96 900	259 000	3 000	LRT 12013030
178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRTZ 125140 165 35 — 1.1 145 1 136.5 143 158.5 116 000 340 000 3 000 LRT 130145 180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 135150 188 60 60.5 1.5 150 — 143 148 180 423 000 989 000 1 000 LRT 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT		45	_	1.1	135	2	126.5	133	158.5	187 000	435 000	3 000	LRT 12013545
178 60 60.5 1.5 140 — 133 138 170 409 000 923 000 1 100 LRTZ 125140 165 35 — 1.1 145 1 136.5 143 158.5 116 000 340 000 3 000 LRT 130145 180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 135150 188 60 60.5 1.5 150 — 143 148 180 423 000 989 000 1 000 LRT 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT	178	60	60.5	1.5	140	2.5	133	138	170	307 000	625 000	3 000	LRT 12514060
180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 135150 188 60 60.5 1.5 150 — 143 148 180 423 000 989 000 1 000 LRTZ 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160		60	60.5	1.5	140	_	133	138	170	409 000	923 000	1 100	LRTZ 12514060
180 50 — 1.5 150 2.5 138 148 172 215 000 540 000 2 500 LRT 130150 188 60 60.5 1.5 150 2.5 143 148 180 320 000 675 000 2 500 LRT 135150 188 60 60.5 1.5 150 — 143 148 180 423 000 989 000 1 000 LRTZ 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160	165	35		1.1	145	1	136.5	143	158.5	116 000	340 000	3 000	LRT 13014535
188 60 60.5 1.5 150 — 143 148 180 423 000 989 000 1 000 LRTZ 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160	180	50	_	1.5	150	2.5	138	148	172	215 000	540 000	2 500	
188 60 60.5 1.5 150 — 143 148 180 423 000 989 000 1 000 LRTZ 135150 175 35 — 1.1 155 1 146.5 153 168.5 120 000 363 000 2 500 LRT 140155 190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160	188	60	60.5	1.5	150	2.5	143	148	180	320 000	675 000	2 500	LRT 13515060
190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160		60	60.5	1.5		_	143	148	180	423 000		1 000	LRTZ 13515060
190 50 — 1.5 160 2.5 148 158 182 224 000 580 000 2 500 LRT 140160	175	35		1.1	155	1	146.5	153	168.5	120 000	363 000	2 500	LRT 14015535
		50	_	1.5	160	2.5	148	158	182	224 000	580 000	2 500	LRT 14016050
190 40 1.1 165 1.5 156.5 163 183.5 168 000 446 000 2 500 LRT 150165	190	40	_	1.1	165	1.5	156.5	163	183.5	168 000	446 000	2 500	LRT 15016540
	210	60		2			159			324 000	712 000	2 500	

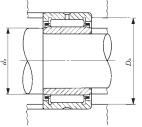
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring

Shaft dia. 160 — 340mm


Shaft			Į.	dentification numbe	r		Mass (Ref.)	
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI		,
mm							g	d
160	— NA 4932	_	NA 4832 —	_	_	_	3 050 6 750	l .
170	— NA 4024	_	NA 4834	_	_	_	4 120	170
	NA 4934	_		_	_	_	7 110	
180	NA 4936	_	NA 4836 —	_	_ _	_ _	4 340 10 200	l .
190	— NA 4938	_	NA 4838	_	_	_	5 760 10 700	
	—		NA 4840				6 040	
200	NA 4940	_	- NA 4040	_	_	_	15 400	
220	— NA 4044	_	NA 4844	_	_	_	6 570	-
	NA 4944			_	_	<u> </u>	16 700	
240	NA 4948	_	NA 4848 —	_			10 200 18 000	
260	_	_	NA 4852	_	_	_	11 000	260
	NA 4952		_	_	_	_	31 100	260
280	— NA 4956	_	NA 4856		_ _	_ _	15 800 33 100	
	_	_	NA 4860			_	22 300	
300	NA 4960	_		_	_	_	51 400	
320		_	NA 4864	_	_	_	23 700	l .
	NA 4964	_	_	_	_	_	54 400	320
340	— NA 4060	_	NA 4868	_	_	_	25 000	
	NA 4968						57 300	340


Notes(1) Minimum allowable value of chamfer dimension r


Allowable axial shift amount of inner ring to outer ring

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.
2. No grease is prepacked. Perform proper lubrication.

NA49 NA48

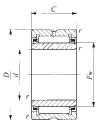
)	
<u> </u>	
}	N
	T.
	т.
	B

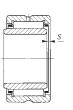
	Boundary dimensions mm Standard mounting Basic dynamic Basic static Allowable Assembled inner ring											
В	ounda	ry dim	iension	is mi	m	Standard mounting dimensions mm			Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
	(1) (2)		(2)	$d_{\rm a}$ $D_{\rm a}$			C	C_0	speed(3)			
D	C	B	$r_{\rm s min}^{(1)}$	F_{w}	Š	Min.	^a Max.	Max.	N	N	rnm	
	- 10			4==	4 =	400 =	470	100 =	N		rpm	
200 220	40 60		1.1	175 180	1.5 3	166.5 169	173 178	193.5 211	173 000 337 000	474 000 761 000	2 500 1 900	LRT 16017540 LRT 16018060
215230	45 60	_	1.1	185 190	1.5 3	176.5 179	183 188	208.5 221	211 000 347 000	567 000 810 000	1 900 1 900	LRT 17018545 LRT 17019060
225 250	45 69	_	1.1	195 205	1.5 3	186.5 189	193 203	218.5 241	218 000 434 000	602 000 989 000	1 900 1 900	LRT 18019545 LRT 18020569
240	50	_	1.5	210	1.5	198	208	232	249 000	726 000	1 800	LRT 19021050
260	69		2	215	3	199	213	251	440 000	1 020 000	1 700	LRT 19021569
250	50	_	1.5	220	1.5	208	218	242	255 000	766 000	1 600	LRT 20022050
280	80		2.1	225	4	211	223	269	518 000	1 120 000	1 600	LRT 20022580
270	50	_	1.5	240	1.5	228	238	262	266 000	833 000	1 500	LRT 22024050
300	80		2.1	245	4	231	243	289	536 000	1 200 000	1 400	LRT 22024580
300	60	_	2	265	2	249	262	291	345 000	1 150 000	1 300	LRT 24026560
320	80		2.1	265	4	251	262	309	565 000	1 320 000	1 300	LRT 24026580
320	60	_	2	285	2	269	282	311	354 000	1 220 000	1 100	LRT 26028560
360	100	_	2.1	290	4	271	287	349	847 000	1 900 000	1 100	LRT 260290100
350	69	_	2	305	2.5	289	302	341	486 000	1 550 000	950	LRT 28030569
380	100	_	2.1	310	4	291	307	369	877 000	2 040 000	950	LRT 280310100
380	80	_	2.1	330	2.5	311	327	369	610 000	1 900 000	900	LRT 30033080
420	118	_	3	340	4	313	337	407	1 130 000	2 650 000	850	LRT 300340118
400	80	_	2.1	350	2.5	331	347	389	635 000	2 040 000	750	LRT 32035080
440	118	_	3	360	4	333	357	427	1 170 000	2 830 000	750	LRT 320360118
420	80	_	2.1	370	2.5	351	367	409	651 000	2 140 000	700	LRT 34037080
460	118	_	3	380	4	353	377	447	1 220 000	3 020 000	700	LRT 340380118

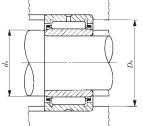
TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring


Shaft dia. 360 — 440mm


Shaft				Identification num	iber		Mass (Ref.)		
dia.	NA 49	NA 69	NA 48	TAFI	TRI	GTRI	(1101.)		
mm						3.11.1	g	d	
360	_	_	NA 4872	_	_	_	26 400	360	
300	NA 4972	_	_	<u> </u>	_	_	60 200		
380	_	_	NA 4876	_	_		44 600		
	NA 4976		_	<u> </u>	_	_			
400	NA 4980	_	_		_	_	94 400	400	
420	NA 4984		—	_	_	_	98 500	420	
440	NA 4988	_	_	_	_	_	131 000	440	


Minimum allowable value of chamfer dimension r

Allowable axial shift amount of inner ring to outer ring

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

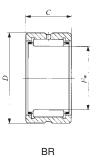
NA49 NA48

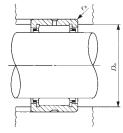
			- A
Î	(
d_3	\rightarrow		D_a
	()		
<u> </u>			
	}	}	
)	(

В	ounda	ry dim	ensior	ns m	m	Standard mounting dimensions mm			Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring		
			(1)	(1) (2)			$d_{ m a}$ Min. Max.				C	C_0	speed(3)	
D	C	В	$r_{\rm s min}^{(1)}$	F_{w}	S	Min.	Max.	Max.	N	N	rpm			
440	80	_	2.1	390	2.5	371	387	429	680 000	2 320 000	650	LRT 36039080		
480	118		3	400	4	373	397	467	1 260 000	3 200 000	600	LRT 360400118		
480		_	2.1	415	3	391	412	469	951 000	2 860 000	600	LRT 380415100		
520	140		4	430	5	396	427	504	1 540 000	4 030 000	500	LRT 380430140		
540	140	_	4	450	5	416	447	524	1 590 000	4 270 000	500	LRT 400450140		
560	140	_	4	470	5	436	467	544	1 640 000	4 510 000	500	LRT 420470140		
600	160	_	4	490	5	456	487	584	1 910 000	5 140 000	400	LRT 440490160		

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring, Inch Series


		Mass (Ref.)	Boundar	ry dimensions n	nm(inch)	Standard mounting dimensions mm	
Shaft dia. mm (inch)	Identification number	g	F_{w}	D	С	$D_{ m a}$ Max.	$r_{\text{as max}}^{(1)}$
15.875 (⁵ / ₈)	BR 101812	49	15.875 (⁵ ⁄ ₈)	28.575 (1 ½)	19.050(3/4)	24.5	0.6
19.050	BR 122012	56	19.050(³ / ₄)	31.750(1½)	19.050 (³ / ₄)	26.5	1
(³ ⁄ ₄)	BR 122016	75	19.050(³ / ₄)	31.750(1½)	25.400 (1)	26.5	1
22.225 (⁷ / ₈)	BR 142212	63	22.225(½)	34.925(1 ³ / ₈)	19.050 (³ / ₄)	29.7	1
	BR 142216	84.5	22.225(½)	34.925(1 ³ / ₈)	25.400 (1)	29.7	1
25.400 (1)	BR 162412 BR 162416	69 92.5	25.400 (1) 25.400 (1)	38.100(1½) 38.100(1½)	19.050 (³ / ₄) 25.400 (1)	32.9 32.9	1 1
28.575	BR 182616	102	28.575(1½)	41.275 (1 ½)	25.400(1)	36	1
(1 ¹ / ₈)	BR 182620	128	28.575(1½)	41.275 (1 ½)	31.750(1½)	36	1
31.750	BR 202816	110	31.750(1½)	44.450 (1 ³ ⁄ ₄)	25.400(1)	39.2	1
(1 ¹ ⁄ ₄)	BR 202820	138	31.750(1½)	44.450 (1 ³ ⁄ ₄)	31.750(1 ¹ / ₄)	39.2	1
34.925	BR 223016	119	34.925(1 ³ / ₈)	47.625 (1 ½)	25.400(1)	42.4	1
(1 ³ / ₈)	BR 223020	149	34.925(1 ³ / ₈)	47.625 (1 ½)	31.750(1½)	42.4	1
38.100	BR 243316	149	38.100(1½)	52.388 (2 ½)	25.400(1)	45.1	1.5
(1½)	BR 243320	187	38.100(1½)	52.388 (2 ½)	31.750(1 ¹ / ₄)	45.1	1.5
41.275	BR 263516	158	41.275(1½)	55.562 (2 ¾ ₆)	25.400(1)	48.3	1.5
(1 ⁵ / ₈)	BR 263520	199	41.275(1½)	55.562 (2 ¾ ₆)	31.750(1½)	48.3	1.5
44.450 (1 ³ / ₄)	BR 283716 BR 283720 BR 283820	170 215 250	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	58.738 (2 $\frac{5}{16}$) 58.738 (2 $\frac{5}{16}$) 60.325 (2 $\frac{3}{8}$)	25.400(1) 31.750(1½) 31.750(1½)	51.5 51.5 53.1	1.5 1.5 1.5
47.625 (1 ⁷ / ₈)	BR 303920	225	47.625 (1 ½)	61.912 (2 1/16)	31.750(11/4)	54.7	1.5


lotes(1)	Maximum permissible corner radius of the housing

Maximum permissible corner radius of the housing
(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

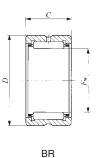
2. No grease is prepacked. Perform proper lubrication.

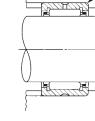
$D_{\rm a}$		
		NA
		TA
		TR

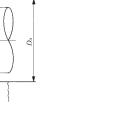
Basic dynamic	Basic static	Allowable	
load rating	load rating	rotational speed(²)	
C	C_0	speed(-)	
N	N	rpm	
18 900	19 700	25 000	
21 700	24 400	20 000	
27 600	33 100	20 000	
23 000	27 100	18 000	
29 100	36 800	18 000	
25 300	31 900	16 000	
32 100	43 300	16 000	
34 900	49 900	14 000	
43 200	65 600	14 000	
36 000	53 500	13 000	
44 600	70 300	13 000	
38 500	60 000	11 000	
47 700	78 900	11 000	
43 700	66 900	11 000	
54 200	88 200	11 000	
44 800	70 900	9 500	
55 600	93 400	9 500	
47 500	78 200	9 000	
58 900	103 000	9 000	
58 900	103 000	9 000	
60 100	108 000	8 500	
00 100	100 000	0 300	

TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS


Without Inner Ring, Inch Series




Shaft dia. 50.800 — 101.600mm

		Mass (Ref.)	Boundar	ry dimensions m	nm(inch)		mounting ons mm
Shaft dia. mm (inch)	Identification number	g	$F_{ m w}$	D	C	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$
50.800 (2)	BR 324116 BR 324120	190 240	50.800 (2) 50.800 (2)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1½)	57.8 57.8	1.5 1.5
57.150 (2 ¹ ⁄ ₄)	BR 364824 BR 364828	435 510	57.150 (2 ½) 57.150 (2 ½)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	69 69	1.5 1.5
63.500 (2½)	BR 405224 BR 405228	475 555	63.500 (2 ½) 63.500 (2 ½)	82.550(3½) 82.550(3½)	38.100(1½) 44.450(1¾)	74.3 74.3	2 2
69.850 (2 ³ ⁄ ₄)	BR 445624 BR 445628	510 600	69.850 (2 ¾ ₄) 69.850 (2 ¾ ₄)	88.900 (3 ½) 88.900 (3 ½)	38.100(1½) 44.450(1¾)	80.7 80.7	2 2
76.200 (3)	BR 486024 BR 486028	555 650	76.200(3) 76.200(3)	95.250(3 ³ / ₄) 95.250(3 ³ / ₄)	38.100(1½) 44.450(1¾)	87 87	2 2
82.550 (3 ¹ ⁄ ₄)	BR 526828 BR 526832	990 1 140	82.550 (3 ½) 82.550 (3 ½)	107.950(4½) 107.950(4½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	99.7 99.7	2 2
88.900 (3½)	BR 567232	1 220	88.900 (3 ½)	114.300(4½)	50.800(2)	106.1	2
95.250 (3 ³ ⁄ ₄)	BR 607632	1 290	95.250 (3 ¾ ₄)	120.650(4¾)	50.800(2)	111.4	2.5
101.600 (4)	BR 648032	1 370	101.600(4)	127.000(5)	50.800(2)	117.8	2.5

Notes(1) Maximum permissible corner radius of the ho	ousing
--	--------

Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(²)	
N	N	rpm	
51 000 63 200	89 400 118 000	8 000 8 000	
90 300 105 000	158 000 191 000	7 000 7 000	
94 600 110 000	174 000 210 000	6 500 6 500	
98 700 114 000	189 000 228 000	5 500 5 500	
105 000 122 000	211 000 255 000	5 500 5 500	
141 000 154 000	259 000 290 000	5 000 5 000	
162 000	316 000	4 500	
169 000	342 000	4 000	
176 000	368 000	4 000	

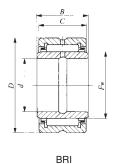
⁽c) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Remarks1. In bearings with a roller set bore diameter $F_{\rm w}$ of 69.850 mm or less, the outer ring has an oil groove and an oil hole. In others, the outer ring has an oil groove and two oil holes.

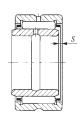
2. No grease is prepacked. Perform proper lubrication.

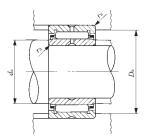
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 9.525 — 41.275mm


		Mass (Ref.)		Boundary	y dimensions	mm(inch)		
Shaft dia. mm (inch)	Identification number	g	d	D	C	В	$F_{ m w}$	(1) S
9.525 (³ / ₈)	BRI 61812	67.5	9.525(3/8)	28.575 (1 ½)	19.050(¾)	19.300	15.875(5/8)	0.3
12.700	BRI 82012	79.5	12.700 (½)	31.750(1½)	19.050(³ / ₄)	19.300	19.050 (³ ⁄ ₄)	0.3
(½)	BRI 82016	106	12.700 (½)	31.750(1½)	25.400(1)	25.650	19.050 (³ ⁄ ₄)	0.5
15.875	BRI 102212	91	15.875 (½)	34.925 (1 ³ / ₈)	19.050(³ / ₄)	19.300	22.225(½)	0.3
(5/ ₈)	BRI 102216	122	15.875 (½)	34.925 (1 ³ / ₈)	25.400(1)	25.650	22.225(½)	0.5
19.050	BRI 122412	102	19.050(³ / ₄)	38.100(1½)	19.050(³ / ₄)	19.300	25.400 (1) 25.400 (1)	0.3
(³ ⁄ ₄)	BRI 122416	136	19.050(³ / ₄)	38.100(1½)	25.400(1)	25.650		0.5
22.225 (7/8)	BRI 142616	152	22.225 (½)	41.275 (1 ½)	25.400(1)	25.650	28.575(1½)	0.5
	BRI 142620	190	22.225 (½)	41.275 (1 ½)	31.750(1 ¹ / ₄)	32.000	28.575(1½)	0.5
25.400 (1)	BRI 162816 BRI 162820	166 210	25.400 (1) 25.400 (1)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	25.400(1) 31.750(1 ¹ / ₄)	25.650 32.000	31.750(1½) 31.750(1½)	0.5 0.5
28.575	BRI 183016	182	28.575(1½)	47.625 (1 ½)	25.400(1)	25.650	34.925(1¾)	0.5
(1½)	BRI 183020	225	28.575(1½)	47.625 (1 ½)	31.750(1 ¹ / ₄)	32.000	34.925(1¾)	0.5
31.750	BRI 203316	220	31.750(1½)	52.388 (2 ½)	25.400(1)	25.650	38.100(1½)	0.5
(1 ¹ / ₄)	BRI 203320	275	31.750(1½)	52.388 (2 ½)	31.750(1 ¹ / ₄)	32.000	38.100(1½)	0.5
34.925 (1 ³ / ₈)	BRI 223516	235	34.925(1 ³ / ₈)	55.562 (2 ¾ ₁₆)	25.400(1)	25.650	41.275 (1 ½)	0.5
	BRI 223520	295	34.925(1 ³ / ₈)	55.562 (2 ¾ ₁₆)	31.750(1 ¹ / ₄)	32.000	41.275 (1 ½)	0.5
38.100 (1½)	BRI 243716 BRI 243720 BRI 243820 BRI 243920	250 315 350 380	38.100(1½) 38.100(1½) 38.100(1½) 38.100(1½)	58.738 (2 ½6) 58.738 (2 ½6) 60.325 (2 ¾8) 61.912 (2 ½6)	25.400(1) 31.750(1½) 31.750(1½) 31.750(1½)	25.650 32.000 32.000 32.000	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 47.625 (1 ¾)	0.5 0.5 0.5 0.5
41.275 (1 ⁵ / ₈)	BRI 264116 BRI 264120	325 410	41.275 (1 ½) 41.275 (1 ½)	65.088 (2 ½6) 65.088 (2 ½6)	25.400(1) 31.750(1 ¹ / ₄)	25.650 32.000	50.800 (2) 50.800 (2)	0.5 0.5


Allowable axial shift amount of inner ring to outer ring


Maximum permissible corner radius of the shaft or housing
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The inner ring and the outer ring each have an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication.

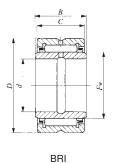
	tandard dimensio			Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
d	a	$D_{\rm a}$	$r_{\rm as\ max}^{(2)}$	С	C_0	speed(3)	
Min.	Max.	Max.	us mux	N	N	rpm	
14	14.5	24.5	0.6	18 900	19 700	25 000	LRB 61012
17.5	18	26.5	1	21 700	24 400	20 000	LRB 81212
17.5	18	26.5	1	27 600	33 100	20 000	LRB 81216
21	21.2	29.7	1	23 000	27 100	18 000	LRB 101412
21	21.2	29.7		29 100	36 800	18 000	LRB 101416
24	24.4	32.9	1	25 300	31 900	16 000	LRB 121612
24	24.4	32.9		32 100	43 300	16 000	LRB 121616
27	27.5	36	1	34 900	49 900	14 000	LRB 141816
27	27.5	36	1	43 200	65 600	14 000	LRB 141820
30.5	30.7	39.2	1	36 000	53 500	13 000	LRB 162016
30.5	30.7	39.2		44 600	70 300	13 000	LRB 162020
33.5	33.9	42.4	1	38 500	60 000	11 000	LRB 182216
33.5	33.9	42.4	1	47 700	78 900	11 000	LRB 182220
37	37.1	45.1	1.5	43 700	66 900	11 000	LRB 202416
37	37.1	45.1	1.5	54 200	88 200	11 000	LRB 202420
40.2	40.2	48.3	1.5	44 800	70 900	9 500	LRB 222616
40.2	40.2	48.3	1.5	55 600	93 400	9 500	LRB 222620
43.3	43.4	51.5	1.5	47 500	78 200	9 000	LRB 242816
43.3	43.4	51.5	1.5	58 900	103 000	9 000	LRB 242820
43.3	43.4	53.1	1.5	58 900	103 000	9 000	LRB 242820
43.3	43.4	54.7	1.5	60 100	108 000	8 500	LRB 243020
48	49	57.8	1.5	51 000	89 400	8 000	LRB 263216
48	49	57.8	1.5	63 200	118 000	8 000	LRB 263220

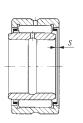
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 44.450 — 88.900mm

		Mass (Ref.)		Boundary dimensions mm(inch)						
Shaft dia. mm (inch)	Identification number	g	d	D	C	В	$F_{ m w}$	S(1)		
44.450 (1 ³ / ₄)	BRI 284824 BRI 284828	735 855	44.450 (1 ³ / ₄) 44.450 (1 ³ / ₄)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	38.350 44.700	57.150 (2 ½) 57.150 (2 ½)	1		
50.800 (2)	BRI 325224 BRI 325228	810 945	50.800(2) 50.800(2)	82.550 (3 ½) 82.550 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	63.500 (2 ½) 63.500 (2 ½)	1		
57.150 (2 ¹ ⁄ ₄)	BRI 365624 BRI 365628	885 1 040	57.150(2½) 57.150(2½)	88.900 (3 ½) 88.900 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	69.850 (2 ¾) 69.850 (2 ¾)	1		
63.500 (2½)	BRI 406024 BRI 406028	965 1 130	63.500 (2 ½) 63.500 (2 ½)	95.250 (3 ³ / ₄) 95.250 (3 ³ / ₄)	38.100(1½) 44.450(1¾)	38.350 44.700	76.200(3) 76.200(3)	1		
69.850 (2 ³ ⁄ ₄)	BRI 446828 BRI 446832	1 520 1 740	69.850 (2 ³ / ₄) 69.850 (2 ³ / ₄)	107.950 (4 ½) 107.950 (4 ½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	44.700 51.050	82.550 (3 ½) 82.550 (3 ½)	1.5 3		
76.200 (3)	BRI 487232	1 860	76.200 (3)	114.300 (4 1/2)	50.800(2)	51.050	88.900 (3 1/2)	3		
82.550 (3 ¹ ⁄ ₄)	BRI 527632	1 980	82.550(31/4)	120.650 (4 3/4)	50.800(2)	51.050	95.250 (3 ¾)	3		
88.900 (3½)	BRI 568032	2 120	88.900(3½)	127.000(5)	50.800(2)	51.050	101.600(4)	3		


Notes(1) Allowable axial shift amount of inner ring to outer ring


Allowable axial shift amount of thire firing to other hing.

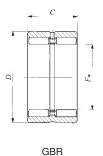

(2) Maximum permissible corner radius of the shaft or housing

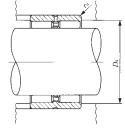
(3) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. In bearings with a bearing bore diameter, d, of 57.150 mm or less, the outer ring has an oil groove and an oil hole. In bearings with a bearing bore diameter, d, of 76.200 mm or less, the inner ring has an oil groove and an oil hole. In others, the inner ring and the outer ring each have an oil groove and two oil holes.

Standard mounting dimensions mm Rasic dynamic load rating Co Co Co Co Co Co Co C								
da Da ras max N N rpm 52.5 55 69 1.5 90 300 158 000 7 000 LRB 283624 52.5 55 69 1.5 105 000 191 000 7 000 LRB 283628 58 61 74.3 2 94 600 174 000 6 500 LRB 324024 58 61 74.3 2 110 000 210 000 6 500 LRB 324028 65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 364428 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 83.5 86 106.1 2					,			Assembled inner ring
Min. Max. Max. N N rpm 52.5 55 69 1.5 90 300 158 000 7 000 LRB 283624 52.5 55 69 1.5 105 000 191 000 7 000 LRB 283628 58 61 74.3 2 94 600 174 000 6 500 LRB 324024 58 61 74.3 2 110 000 210 000 6 500 LRB 324028 65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 364428 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2			ı	(2)	•			
52.5 55 69 1.5 90 300 158 000 7 000 LRB 283624 52.5 55 69 1.5 105 000 191 000 7 000 LRB 283628 58 61 74.3 2 94 600 174 000 6 500 LRB 324024 58 61 74.3 2 110 000 210 000 6 500 LRB 324028 65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 404828 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 290 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 485632 83.5				r _{as max}	N.	N	*****	
52.5 55 69 1.5 105 000 191 000 7 000 LRB 283628 58 61 74.3 2 94 600 174 000 6 500 LRB 324024 58 61 74.3 2 110 000 210 000 6 500 LRB 324028 65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 364428 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032								
58 61 74.3 2 94 600 174 000 6 500 LRB 324024 58 61 74.3 2 110 000 210 000 6 500 LRB 324028 65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 364428 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032								
58 61 74.3 2 110 000 210 000 6 500 LRB 324028 65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 404828 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 11.4 2.5 169 000 342 000 4 000 LRB 526032								
65 67 80.7 2 98 700 189 000 5 500 LRB 364424 65 67 80.7 2 114 000 228 000 5 500 LRB 364428 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 11.4 2.5 169 000 342 000 4 000 LRB 526032								
65 67 80.7 2 114 000 228 000 5 500 LRB 364428 71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032		61						LRB 324028
71 73 87 2 105 000 211 000 5 500 LRB 404824 71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032								
71 73 87 2 122 000 255 000 5 500 LRB 404828 77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032	65	67	80.7	2	114 000	228 000	5 500	LRB 364428
77 79 99.7 2 141 000 259 000 5 000 LRB 445228 77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032								
77 79 99.7 2 154 000 290 000 5 000 LRB 445232 83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032	71	73	87	2	122 000	255 000	5 500	LRB 404828
83.5 86 106.1 2 162 000 316 000 4 500 LRB 485632 91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032	77	79	99.7			259 000	5 000	LRB 445228
91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032	77	79	99.7	2	154 000	290 000	5 000	LRB 445232
91 93 111.4 2.5 169 000 342 000 4 000 LRB 526032	83.5	86	106 1	2	162 000	316 000	4 500	I RR 485632
	00.0		100.1		102 000	010 000	4 000	E115 4000E
	91	93	111 4	2.5	169 000	342 000	4 000	I BB 526032
97 99 117.8 2.5 176 000 368 000 4 000 LRB 566432	31	33	111.4	2.5	103 000	342 000	4	LIID 320032
57 55 117.5 2.5 176 666 566 666 4 666 END 566452	97	aa	117 2	2.5	176 000	368 000	4.000	I BB 566432
	37	33	117.0	2.5	170 000	300 000	4 000	LIID 300432

MACHINED TYPE NEEDLE ROLLER BEARINGS


Without Inner Ring, Inch Series



Shaft dia. 15.875 — 50.800mm

		Mass (Ref.)	Boundar	y dimensions n	nm(inch)		mounting ons mm
Shaft dia. mm (inch)	Identification number	g	F_{w}	D	С	$D_{ m a}$ Max.	$r_{\rm as\ max}^{(1)}$
15.875 (5/8)	GBR 101812	55.5	15.875 (⁵ ⁄ ₈)	28.575 (1 ½)	19.050(3/4)	24.5	0.6
19.050 (3⁄ ₄)	GBR 122012	63	19.050(3/4)	31.750 (1 ½)	19.050(3/4)	27	0.6
22.225 (7/8)	GBR 142212 GBR 142216	71 95.5	22.225(½) 22.225(½)	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	19.050 (3/4) 25.400 (1)	30 30	0.6 0.6
25.400 (1)	GBR 162412 GBR 162416	79 106	25.400 (1) 25.400 (1)	38.100 (1½) 38.100 (1½)	19.050 (³ / ₄) 25.400 (1)	33.3 33.3	0.6 0.6
28.575 (1 ¹ / ₈)	GBR 182616	117	28.575 (1½)	41.275 (1 ⁵ ⁄ ₈)	25.400 (1)	36.3	0.6
31.750 (1 ¹ / ₄)	GBR 202816	128	31.750 (1½)	44.450 (1 ³ ⁄ ₄)	25.400 (1)	39.6	0.6
34.925 $(1\frac{3}{8})$	GBR 223016	137	34.925 (1 ³ / ₈)	47.625 (1 ½)	25.400 (1)	42.8	0.6
38.100 (1½)	GBR 243316 GBR 243320	168 205	38.100(1½) 38.100(1½)	52.388 (2 ½) 52.388 (2 ½)	25.400(1) 31.750(1 ¹ / ₄)	47.3 47.3	0.6 0.6
41.275 (1 ⁵ / ₈)	GBR 263516 GBR 263520	180 220	41.275 (1 ½) 41.275 (1 ½)	55.562 (2 ½) 55.562 (2 ½)	25.400(1) 31.750(1 ¹ / ₄)	50.5 50.5	0.6 0.6
44.450 (1 ³ ⁄ ₄)	GBR 283720 GBR 283820	235 275	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	58.738 (2 ½) 60.325 (2 ¾)	31.750(1½) 31.750(1½)	53.7 55.3	0.6 0.6
47.625 (1 ⁷ / ₈)	GBR 303920	250	47.625 (1 ½)	61.912 (2 ½)	31.750 (1½)	56.2	1
50.800 (2)	GBR 324116 GBR 324120	215 265	50.800 (2) 50.800 (2)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1½)	59.2 59.2	1

Maximum permissible corner radius of the housing Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

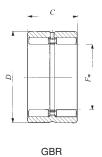
Basic dynamic load rating	Basic static load rating	Allowable rotational
C	C_0	speed(²)
N	N	rpm
23 500	28 500	9 500
26 400	34 500	8 000
28 600	40 100	7 000
38 300	58 300	7 000
31 000 41 400	46 100 67 100	6 000 6 000
43 900	75 300	5 500
46 600	83 900	4 500
49 500	91 800	4 500
54 200 64 100	97 700 121 000	4 000 4 000
56 600 67 000	105 000 130 000	3 500 3 500
69 700 69 700	141 000 141 000	3 500 3 500
72 400	150 000	3 000
63 100 74 600	130 000 162 000	3 000 3 000

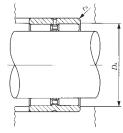
^{2.} No grease is prepacked. Perform proper lubrication.

MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring, Inch Series

Shaft dia. 57.150 — 107.950mm


		Mass (Ref.)	Boundar	ry dimensions n	nm(inch)		mounting ons mm
Shaft dia. mm (inch)	Identification number	g	F_{w}	D	С	D_{a} Max.	$r_{\rm as\ max}^{(1)}$
57.150 (2½)	GBR 364824 GBR 364828	490 580	57.150(2½) 57.150(2½)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	69.2 69.2	1.5 1.5
$(2^{1}/2)$	GBR 405224 GBR 405228	535 635	63.500(2½) 63.500(2½)	82.550 (3 ½) 82.550 (3 ½)	38.100(1½) 44.450(1¾)	75.7 75.7	1.5 1.5
69.850 (2 ³ / ₄)	GBR 445624 GBR 445628	585 690	69.850(2¾) 69.850(2¾)	88.900 (3 ½) 88.900 (3 ½)	38.100 (1½) 44.450 (1¾)	82 82	1.5 1.5
76.200 (3)	GBR 486024 GBR 486028	630 745	76.200(3) 76.200(3)	95.250 (3 ³ / ₄) 95.250 (3 ³ / ₄)	38.100 (1½) 44.450 (1¾)	88 88	1.5 1.5
82.550 (3 ¹ ⁄ ₄)	GBR 526828 GBR 526832	1 100 1 240	82.550(3½) 82.550(3½)	107.950 (4 ½) 107.950 (4 ½)	44.450 (1 ³ ⁄ ₄) 50.800 (2)	99.9 99.9	1.5 1.5
88.900 (3½)	GBR 567232	1 330	88.900 (3½)	114.300 (4 1/2)	50.800 (2)	106.3	1.5
95.250 (3 ³ ⁄ ₄)	GBR 607632	1 420	95.250(3¾)	120.650(4¾)	50.800 (2)	112.6	1.5
101.600 (4)	GBR 648032	1 500	101.600(4)	127.000(5)	50.800 (2)	119	1.5
107.950 (4 ¹ ⁄ ₄)	GBR 688432	1 580	107.950(41/4)	133.350 (5 1/4)	50.800 (2)	125.3	1.5


lotes(1) Ma	aximum p	ermissible	corner	radius	of 1	the	housing
-------------	----------	------------	--------	--------	------	-----	---------

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication.

Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)	
N	N	rpm	
113 000 133 000	224 000 276 000	2 500 2 500	
120 000 141 000	248 000 306 000	2 500 2 500	
125 000 147 000	273 000 336 000	2 000 2 000	
131 000 154 000	298 000 368 000	2 000 2 000	
193 000 214 000	396 000 452 000	1 800 1 800	
221 000	488 000	1 700	
228 000	522 000	1 600	
237 000	556 000	1 500	
242 000	590 000	1 400	

TAFI

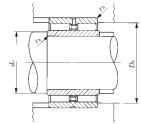
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 9.525 — 41.275mm

		Mass (Ref.)						
Shaft dia. mm (inch)	ldentification number	g	d	D	C	В	$F_{ m w}$	
9.525 (³ / ₈)	GBRI 61812	74	9.525(3/8)	28.575(11/8)	19.050(3/4)	19.300	15.875(1/8)	
12.700 (½)	GBRI 82012	86.5	12.700(½)	31.750(11/4)	19.050(3/4)	19.300	19.050(¾)	
15.875 (5/8)	GBRI 102212 GBRI 102216	99 133	15.875(½) 15.875(½)	34.925(1 ³ / ₈) 34.925(1 ³ / ₈)	19.050(³ / ₄) 25.400(1)	19.300 25.650	22.225(½) 22.225(½)	
19.050 (³ ⁄ ₄)	GBRI 122412 GBRI 122416	112 150	19.050(³ / ₄) 19.050(³ / ₄)	38.100(1½) 38.100(1½)	19.050(³ / ₄) 25.400(1)	19.300 25.650	25.400 (1) 25.400 (1)	
22.225 (7/8)	GBRI 142616	167	22.225(7/8)	41.275 (1 ⁵ / ₈)	25.400 (1)	25.650	28.575(11/8)	
25.400 (1)	GBRI 162816	184	25.400 (1)	44.450 (1 ³ ⁄ ₄)	25.400 (1)	25.650	31.750(11/4)	
28.575 (1 ¹ / ₈)	GBRI 183016	200	28.575 (1½)	47.625 (1½)	25.400 (1)	25.650	34.925 (1 ³ / ₈)	
31.750 (1 ¹ / ₄)	GBRI 203316 GBRI 203320	235 291	31.750(1½) 31.750(1½)	52.388 (2 ½) 52.388 (2 ½)	25.400(1) 31.750(1½)	25.650 32.000	38.100(1½) 38.100(1½)	
34.925 (1 ³ / ₈)	GBRI 223516 GBRI 223520	255 316	34.925(1 ³ / ₈) 34.925(1 ³ / ₈)	55.562 (2 ¾ ₁₆) 55.562 (2 ¾ ₁₆)	25.400(1) 31.750(1½)	25.650 32.000	41.275(1½) 41.275(1½)	
38.100 (1½)	GBRI 243720 GBRI 243820 GBRI 243920	335 375 410	38.100(1½) 38.100(1½) 38.100(1½)	58.738(2½) 60.325(2¾) 61.912(2½)	31.750(1½) 31.750(1½) 31.750(1½)	32.000 32.000 32.000	44.450(1¾) 44.450(1¾) 47.625(1¾)	
41.275 (1½)	GBRI 264116 GBRI 264120	350 435	41.275(1½) 41.275(1½)	65.088 (2 ½) 65.088 (2 ½)	25.400(1) 31.750(1½)	25.650 32.000	50.800(2) 50.800(2)	

Maximum permissible corner radius of the shaft or housing


(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

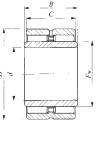
2. No grease is prepacked. Perform proper lubrication.

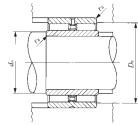
(Standard mounting dimensions mm		n (1)	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed (²)	Assembled inner ring
	a		$r_{\rm as\ max}$		Ü		
Min.	Max.	Max.		N	N	rpm	
14	14.5	24.5	0.6	23 500	28 500	9 500	LRBZ 61012
17.5	18	27	0.6	26 400	34 500	8 000	LRBZ 81212
21	21.2	30	0.6	28 600	40 100	7 000	LRBZ 101412
21	21.2	30	0.6	38 300	58 300	7 000	LRBZ 101416
24	24.4	33.3	0.6	31 000	46 100	6 000	LRBZ 121612
24	24.4	33.3	0.6	41 400	67 100	6 000	LRBZ 121616
27	27.5	36.3	0.6	43 900	75 300	5 500	LRBZ 141816
30.5	30.7	39.6	0.6	46 600	83 900	4 500	LRBZ 162016
33.5	33.9	42.8	0.6	49 500	91 800	4 500	LRBZ 182216
37	37.1	47.3	0.6	54 200	97 700	4 000	LRBZ 202416
37	37.1	47.3	0.6	64 100	121 000	4 000	LRBZ 202420
40.2 40.2	40.2 40.2	50.5 50.5	0.6 0.6	56 600 67 000	105 000 130 000	3 500 3 500	LRBZ 222616 LRBZ 222620
43.3 43.3	43.4 43.4	53.7 55.3	0.6	69 700 69 700	141 000 141 000	3 500 3 500	LRBZ 242820 LRBZ 242820
43.3	45	56.2	1	72 400	150 000	3 000	LRBZ 243020
48	49	59.2	1	63 100	130 000	3 000	LRBZ 263216
48	49	59.2	1	74 600	162 000	3 000	LRBZ 263220

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Inner Ring, Inch Series

Shaft dia. 44.450 — 95.250mm

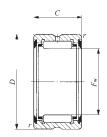

	11.100 00.20						
		Mass (Ref.)		Boundary o	limensions m	m(inch)	
Shaft dia. mm (inch)	Identification number	g	d	D	C	В	$F_{\rm w}$
44.450 (1 ³ ⁄ ₄)	GBRI 284824 GBRI 284828	790 925	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	76.200(3) 76.200(3)	38.100(1½) 44.450(1¾)	38.350 44.700	57.150(2½) 57.150(2½)
50.800 (2)	GBRI 325224 GBRI 325228	870 1 030	50.800 (2) 50.800 (2)	82.550 (3 ½) 82.550 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	63.500(2½) 63.500(2½)
57.150 (2½)	GBRI 365624 GBRI 365628	955 1 130	57.150(2½) 57.150(2½)	88.900 (3 ½) 88.900 (3 ½)	38.100(1½) 44.450(1¾)	38.350 44.700	69.850 (2 ³ / ₄) 69.850 (2 ³ / ₄)
63.500 (2½)	GBRI 406024 GBRI 406028	1 040 1 230	63.500(2½) 63.500(2½)	95.250 (3 ³ / ₄) 95.250 (3 ³ / ₄)	38.100(1½) 44.450(1¾)	38.350 44.700	76.200(3) 76.200(3)
69.850 (2 ³ ⁄ ₄)	GBRI 446828 GBRI 446832	1 630 1 840	69.850 (2 ¾ ₄) 69.850 (2 ¾ ₄)	107.950(4½) 107.950(4½)	44.450 (1 ³ / ₄) 50.800 (2)	44.700 51.050	82.550 (3 ½) 82.550 (3 ½)
76.200 (3)	GBRI 487232	1 970	76.200(3)	114.300(4½)	50.800 (2)	51.050	88.900 (3 ½)
82.550 (3 ¹ ⁄ ₄)	GBRI 527632	2 110	82.550(3½)	120.650(4¾)	50.800 (2)	51.050	95.250 (3 ³ ⁄ ₄)
88.900 (3½)	GBRI 568032	2 250	88.900 (3 ½)	127.000(5)	50.800 (2)	51.050	101.600(4)
95.250 (3 ³ ⁄ ₄)	GBRI 608432	2 380	95.250 (3 ³ ⁄ ₄)	133.350(51/4)	50.800 (2)	51.050	107.950 (4 1/4)


⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

Remarks1. The outer ring has an oil groove and an oil hole.

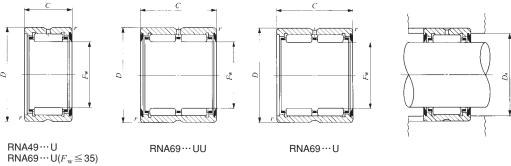
2. No grease is prepacked. Perform proper lubrication.

N.
N. TA
TI


(tandard dimensio			Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed (²)	Assembled inner ring
Min.	Max.	Max.		N	N	rpm	
52.5 52.5	55 55	69.2 69.2	1.5 1.5	113 000 133 000	224 000 276 000	2 500 2 500	LRBZ 283624 LRBZ 283628
58 58	61 61	75.7 75.7	1.5 1.5	120 000 141 000	248 000 306 000	2 500 2 500	LRBZ 324024 LRBZ 324028
65 65	67 67	82 82	1.5 1.5	125 000 147 000	273 000 336 000	2 000 2 000	LRBZ 364424 LRBZ 364428
71 71	73 73	88 88	1.5 1.5	131 000 154 000	298 000 368 000	2 000 2 000	LRBZ 404824 LRBZ 404828
77 77	79 79	99.9 99.9	1.5 1.5	193 000 214 000	396 000 452 000	1 800 1 800	LRBZ 445228 LRBZ 445232
83.5	86	106.3	1.5	221 000	488 000	1 700	LRBZ 485632
91	93	112.6	1.5	228 000	522 000	1 600	LRBZ 526032
97	99	119	1.5	237 000	556 000	1 500	LRBZ 566432
103	105	125.3	1.5	242 000	590 000	1 400	LRBZ 606832

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring


RNA49 \cdots UU RNA69 \cdots UU($F_{\rm w} \le$ 35)

Shaft dia. 14 – 45mm

Shaft		Identificati	on number		Mass (Ref.)	Bour	ndary o	dimen m	sions
dia. mm	With two seals	With one seal	With two seals	With one seal	g	F_{w}	D	C	$r_{\rm s min}^{(1)}$
14	RNA 4900UU	RNA 4900U	_	_	16.3	14	22	13	0.3
16	RNA 4901UU	RNA 4901U		 RNA 6901U	17.9 30	16 16	24 24	13 22	0.3 0.3
18	RNA 49/14UU	RNA 49/14U	_		19.7	18	26	13	0.3
20	RNA 4902UU	RNA 4902U		 RNA 6902U	21.5 37.5	20 20	28 28	13 23	0.3 0.3
22	RNA 4903UU	RNA 4903U		 RNA 6903U	23 40.5	22 22	30 30	13 23	0.3 0.3
25	RNA 4904UU —	RNA 4904U —	 RNA 6904UU	 RNA 6904U	54.5 95.5	25 25	37 37	17 30	0.3 0.3
28	RNA 49/22UU	RNA 49/22U		 RNA 69/22U	55.5 97.5	28 28	39 39	17 30	0.3 0.3
30	RNA 4905UU	RNA 4905U	RNA 6905UU	 RNA 6905U	63 111	30 30	42 42	17 30	0.3 0.3
32	RNA 49/28UU	RNA 49/28U	RNA 69/28UU	 RNA 69/28U	75.5 133	32 32	45 45	17 30	0.3 0.3
35	RNA 4906UU	RNA 4906U	RNA 6906UU	 RNA 6906U	71 125	35 35	47 47	17 30	0.3 0.3
40	RNA 49/32UU	RNA 49/32U		 RNA 69/32U	94.5 170	40 40	52 52	20 36	0.6 0.6
42	RNA 4907UU	RNA 4907U		 RNA 6907U	112 200	42 42	55 55	20 36	0.6 0.6
45	RNA 49/38UU	RNA 49/38U	_	_	119	45	58	20	0.6

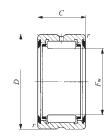
Notes(1) Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to grease lubrication.

Standard mounting dimension D_{a}	Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(²)	
Max. mm	N	N	rpm	
20	8 080	8 490	14 000	
22	8 470	9 320	12 000	
22	15 500	20 400	12 000	
24	9 260	10 800	11 000	
26	9 570	11 600	9 500	
26	18 500	27 100	9 500	
28	10 300	13 100	8 500	
28	19 800	30 600	8 500	
35	18 000	20 500	7 500	
35	33 000	44 600	7 500	
37	18 300	23 700	7 000	
37	33 800	52 000	7 000	
40	20 300	25 100	6 500	
40	39 200	58 700	6 500	
43	21 000	26 800	6 000	
43	38 900	59 100	6 000	
45	21 500	28 400	5 500	
45	40 100	63 000	5 500	
48	29 400	44 200	5 000	
48	50 300	88 300	5 000	
51	30 100	46 300	4 500	
51	51 600	92 600	4 500	
54	31 600	50 400	4 000	

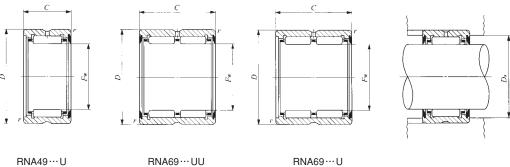
Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

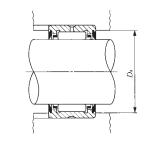
TAFI


TRI BRI

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring


RNA49…UU


Shaft dia. 48 – 85mm

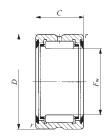
Ona	11 dia. 40 00	<u> </u>							
Shaft		Identificati	on number		Mass (Ref.)	Bour	ndary o		sions
dia.	With two seals	With one seal	With two seals	With one seal	g	F_{w}	D	C	$r_{\rm s min}^{(1)}$
48	RNA 4908UU	RNA 4908U			150 270	48 48	62 62	22 40	0.6 0.6
50	RNA 49/42UU	RNA 49/42U	_	_	173	50	65	22	0.6
52	RNA 4909UU —	RNA 4909U	- RNA 6909UU	 RNA 6909U	197 355	52 52	68 68	22 40	0.6 0.6
55	RNA 49/48UU	RNA 49/48U	_	_	187	55	70	22	0.6
58	RNA 4910UU —	RNA 4910U —	 RNA 6910UU	 RNA 6910U	177 320	58 58	72 72	22 40	0.6 0.6
60	RNA 49/52UU	RNA 49/52U	_	_	200	60	75	22	0.6
63	RNA 4911UU —	RNA 4911U —		 RNA 6911U	265 470	63 63	80 80	25 45	1 1
65	RNA 49/58UU	RNA 49/58U	_	_	275	65	82	25	1
68	RNA 4912UU —	RNA 4912U	 RNA 6912UU	 RNA 6912U	285 505	68 68	85 85	25 45	1
70	RNA 49/62UU	RNA 49/62U		_	320	70	88	25	1
72	RNA 4913UU —	RNA 4913U	 RNA 6913UU	 RNA 6913U	325 580	72 72	90 90	25 45	1
75	RNA 49/68UU	RNA 49/68U	_	_	465	75	95	30	1
80	RNA 4914UU —	RNA 4914U —		 RNA 6914U	495 910	80 80	100 100	30 54	1
85	RNA 4915UU —	RNA 4915U —	RNA 6915UU	 RNA 6915U	520 960	85 85	105 105	30 54	1

Notes(1) Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to grease lubrication.

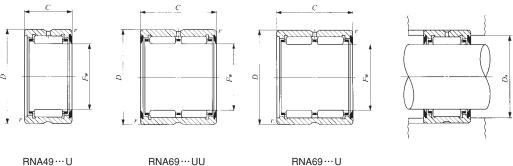
Standard mounting dimension D_{a}	Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)
Max. mm	N	N	rpm
58	37 200	58 400	4 000
58	63 700	117 000	4 000
61	38 000	60 900	4 000
64	38 900	63 400	3 500
64	66 600	127 000	3 500
66	39 600	66 100	3 500
68	41 300	71 100	3 500
68	70 800	142 000	3 500
71	42 100	73 600	3 000
75	52 200	85 700	3 000
75	89 400	171 000	3 000
77	53 400	89 200	3 000
80	54 500	92 800	3 000
80	93 400	186 000	3 000
83	55 700	96 300	2 500
85	56 800	99 800	2 500
85	97 400	200 000	2 500
90	73 900	133 000	2 500
95	76 900	143 000	2 500
95	124 000	281 000	2 500
100	79 600	153 000	2 000
100	128 000	299 000	2 000

^{2.} Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.


TAFI

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring


RNA49…UU

Shaft dia. 90 — 160mm

Shaft		Identificati	Mass (Ref.)	Bour	ndary o		sions		
dia. mm	With two seals	With one seal	With two seals	With one seal	g	F_{w}	D	C	$r_{\rm s min}^{(1)}$
90	RNA 4916UU —	RNA 4916U		 RNA 6916U	545 1 010	90 90	_	30 54	1
95	RNA 49/82UU	RNA 49/82U	_	_	570	95	115	30	1
100	RNA 4917UU —	RNA 4917U		 RNA 6917U	695 1 300	100 100	120 120	35 63	1.1 1.1
105	RNA 4918UU	RNA 4918U		 RNA 6918U	730 1 360	105 105	_	35 63	1.1 1.1
110	RNA 4919UU	RNA 4919U		 RNA 6919U	760 1 420	110 110	130 130	35 63	1.1 1.1
115	RNA 4920UU	RNA 4920U	_	_	1 200	115	140	40	1.1
125	RNA 4922UU	RNA 4922U	_	_	1 280	125	150	40	1.1
135	RNA 4924UU	RNA 4924U	_	_	1 940	135	165	45	1.1
150	RNA 4926UU	RNA 4926U	_	_	2 360	150	180	50	1.5
160	RNA 4928UU	RNA 4928U	_	_	2 510	160	190	50	1.5

Notes(1) Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to grease lubrication.

P. V.	C	C	
···U	RNA69…UU	RNA69…U	

Standard mounting dimension D_{a}	Basic dynamic load rating $\cal C$	Basic static load rating C_{0}	Allowable rotational speed(2)
Max. mm	N	N	rpm
105 105	80 700 132 000	158 000 317 000	2 000 2 000
110	83 200	168 000	2 000
113.5 113.5	103 000 168 000	225 000 448 000	1 900 1 900
118.5 118.5	106 000 172 000	238 000 471 000	1 800 1 800
123.5 123.5	109 000 177 000	250 000 493 000	1 700 1 700
133.5	134 000	297 000	1 700
143.5	140 000	322 000	1 500
158.5	178 000	410 000	1 400
172	206 000	511 000	1 300
182	214 000	549 000	1 200

^{2.} Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring

 $NA49 \cdots UU$ $NA69 \cdots UU(d \le 30)$

Shaft dia. 10 – 40mm


Shaft	Identification number					Boundary dimensions mm					
dia.	With two seals	With one seal	With two seals		d	D	C	B			
mm				g							
10	NA 4900UU	NA 4900U	_		24.5	10	22	13	14		
12	NA 4901UU	NA 4901U	—	—	27.5	12	24	13	14		
	—	—	NA 6901UU	NA 6901U	45.5	12	24	22	23		
15	NA 4902UU	NA 4902U	 NA 6902UU	NA 6902U	36 62.5	15 15	28 28	13 23	14 24		
17	NA 4903UU	NA 4903U			39.5	17	30	13	14		
	—	—	NA 6903UU	NA 6903U	68.5	17	30	23	24		
20	NA 4904UU	NA 4904U			78.5	20	37	17	18		
	—	—	NA 6904UU	NA 6904U	137	20	37	30	31		
22	NA 49/22UU	NA 49/22U		—	87.5	22	39	17	18		
	—	—	NA 69/22UU	NA 69/22U	153	22	39	30	31		
25	NA 4905UU	NA 4905U			92.5	25	42	17	18		
	—	—	NA 6905UU	NA 6905U	162	25	42	30	31		
28	NA 49/28UU	NA 49/28U			101	28	45	17	18		
	—	—	NA 69/28UU	NA 69/28U	177	28	45	30	31		
30	NA 4906UU	NA 4906U			106	30	47	17	18		
	—	—	NA 6906UU	NA 6906U	185	30	47	30	31		
32	NA 49/32UU	NA 49/32U			167	32	52	20	21		
	—	—	NA 69/32UU	NA 69/32U	300	32	52	36	37		
35	NA 4907UU	NA 4907U			179	35	55	20	21		
	—	—	NA 6907UU	NA 6907U	320	35	55	36	37		
40	NA 4908UU	NA 4908U	—		245	40	62	22	23		
	—	—	NA 6908UU	NA 6908U	440	40	62	40	41		

Notes(1) Minimum allowable value of chamfer dimension r

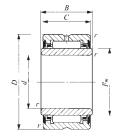
(2) Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

Standard mounting dimensions mm		Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring			
$r_{\rm s min}^{(1)}$	F_{w}	Min.	a Max.	D_{a} Max.	N	N	rpm	
0.3	14	12	13	20	8 080	8 490	14 000	LRTZ 101414
0.3	16	14	15	22	8 470	9 320	12 000	LRTZ 121614
0.3	16	14	15	22	15 500	20 400	12 000	LRTZ 121623
0.3	20	17	19	26	9 570	11 600	9 500	LRTZ 152014
	20	17	19	26	18 500	27 100	9 500	LRTZ 152024
0.3	22	19	21	28	10 300	13 100	8 500	LRTZ 172214
0.3	22	19	21	28	19 800	30 600	8 500	LRTZ 172224
0.3	25	22	24	35	18 000	20 500	7 500	LRTZ 202518
0.3	25	22	24	35	33 000	44 600	7 500	LRTZ 202531
0.3	28	24	27	37	18 300	23 700	7 000	LRTZ 222818
0.3	28	24	27	37	33 800	52 000	7 000	LRTZ 222831
0.3	30	27	29	40	20 300	25 100	6 500	LRTZ 253018
	30	27	29	40	39 200	58 700	6 500	LRTZ 253031
0.3	32	30	31	43	21 000	26 800	6 000	LRTZ 283218
	32	30	31	43	38 900	59 100	6 000	LRTZ 283231
0.3	35	32	34	45	21 500	28 400	5 500	LRTZ 303518
0.3	35	32	34	45	40 100	63 000	5 500	LRTZ 303531
0.6	40	36	39	48	29 400	44 200	5 000	LRTZ 324021
0.6	40	36	39	48	50 300	88 300	5 000	LRTZ 324037
0.6	42	39	41	51	30 100	46 300	4 500	LRTZ 354221
0.6	42	39	41	51	51 600	92 600	4 500	LRTZ 354237
0.6	48	44	47	58	37 200	58 400	4 000	LRTZ 404823
0.6	48	44	47	58	63 700	117 000	4 000	LRTZ 404841

TAFI

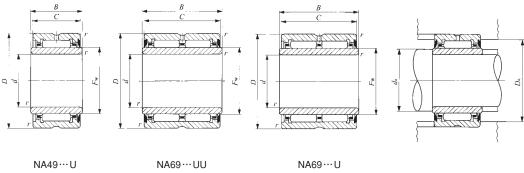

TRI BRI

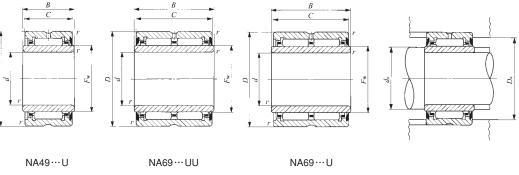
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring

NA49···UU

Shaft dia. 45 — 110mm


		Idontificati	on number		Mass	Pour	ndary o	liman	oiona
Shaft		identificati	on number		(Ref.)	Boui	,	m	510115
dia.	With two seals	With one seal	With two seals With one seal			,	_		
mm				g	d	D	C	В	
45	NA 4909UU	NA 4909U	_	_	290	45	68	22	23
	_	_	NA 6909UU	NA 6909U	520	45	68	40	41
50	NA 4910UU	NA 4910U	_	_	295	50	72	22	23
	_	_	NA 6910UU NA 6910U		530	50	72	40	41
55	NA 4911UU	NA 4911U			415	55	80	25	26
	_	_	NA 6911UU	NA 6911U	730	55	80	45	46
60	NA 4912UU	NA 4912U			445	60	85	25	26
		_	NA 6912UU	NA 6912U	785	60	85	45	46
65	NA 4913UU	NA 4913U	— —	— NA CO4011	475	65	90	25	26
			NA 6913UU	NA 6913U	845	65	90	45	46
70	NA 4914UU	NA 4914U	— NA CO141111	— NA CO1411	770	70	100 100	30 54	31 55
			NA 6914UU	NA 6914U	1 400	70			
75	NA 4915UU	NA 4915U	— NA 6915UU	— NA 6915U	815 1 480	75 75	105 105	30 54	31 55
	NA 4040UU	NA 404011	NA 091500	NA 09150					
80	NA 4916UU	NA 4916U	MA 6916UU	MA 6916U	860 1 570	80	110 110	30 54	31 55
	NA 4917UU	NA 4917U	14A 091000	NA 09100		85	120	35	
85	- NA 491700 	NA 49170	NA 6917UU NA 6917U		1 300	85	120	63	36 64
	NA 4918UU	NA 4918U			1 360	90	125	35	36
90	— —	— — —	NA 6918UU	NA 6918U	2 480	90	125	63	64
	NA 4919UU	NA 4919U	_		1 420	95	130	35	36
95	—	——————————————————————————————————————	NA 6919UU	NA 6919U	2 600	95	130	63	64
100	NA 4920UU	NA 4920U	_	_	1 980	100	140	40	41
110	NA 4922UU	NA 4922U	_	_	2 150	110	150	40	41
110	117 102200	11/1 70/20			- 150	' ' '	133	+0	7.


Notes(1) Minimum allowable value of chamfer dimension \boldsymbol{r}

Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

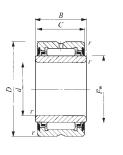
2. Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

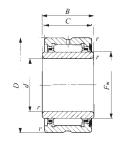
Standard mounting dimensions mm			Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring		
$r_{\rm s min}^{(1)}$	F_{w}	Min.	Max.	D_{a} Max.	N	N N	rpm	
0.6	52	49	51	64	38 900	63 400	3 500	LRTZ 455223
	52	49	51	64	66 600	127 000	3 500	LRTZ 455241
0.6	58	54	57	68	41 300	71 100	3 500	LRTZ 505823
	58	54	57	68	70 800	142 000	3 500	LRTZ 505841
1	63	60	61	75	52 200	85 700	3 000	LRTZ 556326
	63	60	61	75	89 400	171 000	3 000	LRTZ 556346
1	68	65	66	80	54 500	92 800	3 000	LRTZ 606826
	68	65	66	80	93 400	186 000	3 000	LRTZ 606846
1	72	70	70.5	85	56 800	99 800	2 500	LRTZ 657226
	72	70	70.5	85	97 400	200 000	2 500	LRTZ 657246
1	80	75	78	95	76 900	143 000	2 500	LRTZ 708031
	80	75	78	95	124 000	281 000	2 500	LRTZ 708055
1	85	80	83	100	79 600	153 000	2 000	LRTZ 758531
	85	80	83	100	128 000	299 000	2 000	LRTZ 758555
1	90	85	88	105	80 700	158 000	2 000	LRTZ 809031
	90	85	88	105	132 000	317 000	2 000	LRTZ 809055
1.1	100	91.5	98	113.5	103 000	225 000	1 900	LRTZ 8510036
1.1	100	91.5	98	113.5	168 000	448 000	1 900	LRTZ 8510064
1.1	105	96.5	103	118.5	106 000	238 000	1 800	LRTZ 9010536
1.1	105	96.5	103	118.5	172 000	471 000	1 800	LRTZ 9010564
1.1	110	101.5	108	123.5	109 000	250 000	1 700	LRTZ 9511036
1.1	110	101.5	108	123.5	177 000	493 000	1 700	LRTZ 9511064
1.1	115	106.5	113	133.5	134 000	297 000	1 700	LRTZ 10011541
1.1	125	116.5	123	143.5	140 000	322 000	1 500	LRTZ 11012541

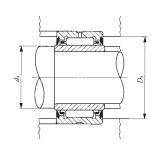
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring

Shaft dia. 120 — 140mm


Shaft		Identification number									
dia. mm	With two seals	With one seal	With two seals	With one seal	g	d	D	C	В		
120	NA 4924UU	NA 4924U	_	_	2 990	120	165	45	46		
130	NA 4926UU	NA 4926U	_	_	4 080	130	180	50	51		
140	NA 4928UU	NA 4928U	_	_	4 340	140	190	50	51		


Notes(1) Minimum allowable value of chamfer dimension r


(2) Allowable rotational speed applies to grease lubrication.

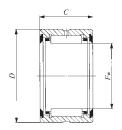
Remarks1. The outer ring has an oil groove and an oil hole.

Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

NA49····UU

NA49…U

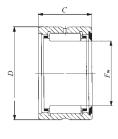
NA
TAFI
TRI
RDI


dim		dime	andard mounting limensions mm $d_{ m a} \mid D_{ m a}$		Basic dynamic load rating ${\it C}$	Basic static load rating C_0	Allowable rotational speed(²)	Assembled inner ring
$r_{\rm s min}^{(1)}$	F_{w}	Min.	Max.	Max.	N	N	rpm	
1.1	135	126.5	133	158.5	178 000	410 000	1 400	LRTZ 12013546
1.5	150	138	148	172	206 000	511 000	1 300	LRTZ 13015051
1.5	160	148	158	182	214 000	549 000	1 200	LRTZ 14016051

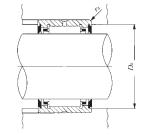
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring, Inch Series

 $\mathsf{BR}\cdots\mathsf{UU}$


Shaft dia. 15.875 — 50.800mm

Criair diai	. 13.073 30.00011111)										
	Identificati	on number	Mass (Ref.)	Boundar	ry dimensions n	nm(inch)					
Shaft dia. mm (inch)	With two seals	With two seals With one seal		$F_{ m w}$	D	C					
15.875 (5/8)	BR 101816 UU	BR 101816 U	54	15.875 (⁵ ⁄ ₈)	28.575 (1 ½)	25.400 (1)					
19.050 (³ ⁄ ₄)	BR 122016 UU	BR 122016 U	68	19.050 (3/4)	31.750 (1 ½)	25.400 (1)					
22.225 (7/8)	BR 142216 UU	BR 142216 U	76	22.225 (7/ ₈)	34.925 (1 ³ ⁄ ₈)	25.400 (1)					
25.400 (1)	BR 162416 UU	BR 162416 U	83	25.400 (1)	38.100 (1 ½)	25.400 (1)					
28.575 (1½)	BR 182620 UU	BR 182620 U	115	28.575 (1 ½)	41.275 (1 ½)	31.750 (1 ½)					
31.750 (1 ¹ / ₄)	BR 202820 UU	BR 202820 U	124	31.750 (1 ½)	44.450 (1 ¾ ₄)	31.750 (1 ½)					
34.925 (1 ³ / ₈)	BR 223020 UU	BR 223020 U	134	34.925 (1 ³ ⁄ ₈)	47.625 (1 ½ ₈)	31.750 (1 ½)					
38.100 (1½)	BR 243320 UU	BR 243320 U	168	38.100 (1 ½)	52.388 (2 ½)	31.750 (1 ½)					
41.275 (1 ⁵ / ₈)	BR 263520 UU	BR 263520 U	179	41.275 (1 ½)	55.562 (2 ¾ ₁₆)	31.750 (1 ½)					
44.450 (1 ³ ⁄ ₄)	BR 283720 UU	BR 283720 U	193	44.450 (1 ³ ⁄ ₄)	58.738 (2 ½)	31.750 (1 ½)					
47.625 (1½)	BR 303920 UU	BR 303920 U	202	47.625 (1 ½ ₈)	61.912 (2 ½ ₆)	31.750 (1 ½)					
50.800 (2)	BR 324120 UU	BR 324120 U	216	50.800 (2)	65.088 (2 % ₁₆)	31.750 (1 ½)					

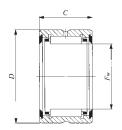

otes(1) Maximum permissible corner radius of the housing

(2) Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

 $BR \cdots U$

_
NA
TAFI
TRI

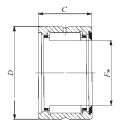

Standard mounting dimensions mm		Basic dynamic load rating ${\it C}$	Basic static load rating C_0	Allowable rotational speed(2)
$D_{ m a}$ Max.	$r_{\rm as\ max}$	N	N	rpm
24.5	0.6	18 300	20 000	12 000
26.5	1.0	20 700	24 400	10 000
29.7	1.0	21 600	26 900	9 000
32.9	1.0	23 600	31 300	8 000
36.0	1.0	34 900	49 900	7 000
39.2	1.0	36 000	53 500	6 500
42.4	1.0	38 500	60 000	5 500
45.1	1.5	43 700	66 900	5 500
48.3	1.5	44 800	70 900	4 500
51.5	1.5	47 500	78 200	4 500
54.7	1.5	48 500	82 100	4 000
57.8	1.5	51 000	89 400	4 000

Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

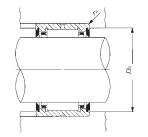
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring, Inch Series

BR…UU


Shaft dia. 57.150 — 95.250mm

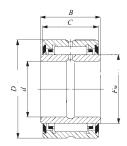
Cl#1:-	Identification	on number	Mass (Ref.)	Boundar	ry dimensions n	nm(inch)	
Shaft dia. mm (inch)	With two seals	With one seal	g	$F_{ m w}$	D	C	
57.150 (2½)	BR 364828 UU	BR 364828 U	459	57.150 (2 ½)	76.200 (3)	44.450 (1 ³ ⁄ ₄)	
63.500 (2½)	BR 405228 UU	BR 405228 U	499	63.500 (2 ½)	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)	
69.850 (2 ³ / ₄)	BR 445628 UU	BR 445628 U	540	69.850 (2 ³ ⁄ ₄)	88.900 (3 ½)	44.450 (1 ³ ⁄ ₄)	
76.200 (3)	BR 486028 UU	BR 486028 U	585	76.200 (3)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ³ ⁄ ₄)	
82.550 (3 ¹ ⁄ ₄)	BR 526828 UU	BR 526828 U	891	82.550 (3 ½)	107.950 (4 1/4)	44.450 (1 ¾ ₄)	
88.900 (3½)	BR 567232 UU	BR 567232 U	1 098	88.900 (3 ½)	114.300 (4 ½)	50.800 (2	
95.250 (3 ³ ⁄ ₄)	BR 607632 UU	BR 607632 U	1 161	95.250 (3 ³ ⁄ ₄)	120.650 (4 ³ ⁄ ₄)	50.800 (2	


otes(1) Maximum permissible corner radius of the housing

(2) Allowable rotational speed applies to grease lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

 $BR\cdots U$

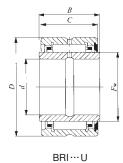

Standard mounting dimensions mm $D_{\rm a} = r_{\rm as\ max}^{(1)}$		Basic dynamic load rating	Basic static load rating C_{0}	Allowable rotational speed(2)
Max.		N	N	rpm
69.0	1.5	90 300	158 000	3 500
74.3	2.0	94 600	174 000	3 000
80.7	2.0	98 700	189 000	2 500
87.0	2.0	105 000	211 000	2 500
99.7	2.0	109 000	227 000	2 500
106.1	2.0	142 000	265 000	2 000
111.4	2.5	148 000	287 000	2 000

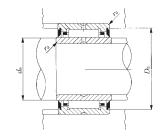
Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring, Inch Series

BRI...UU

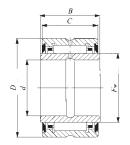

Shaft dia. 9.525 — 44.450mm


Charte	att dia. 3.323 44.430ffiff)										
Cl. (: 1:	Identificatio	n number	Mass (Ref.)								
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	C	В				
9.525 (³ / ₈)	BRI 61816 UU	BRI 61816 U	79	9.525 (3/8)	28.575 (1 ½)	25.400 (1)	25.650				
12.700 (½)	BRI 82016 UU	BRI 82016 U	99	12.700 (½)	31.750 (1 1/4)	25.400 (1)	25.650				
15.875 (⁵ / ₈)	BRI 102216 UU	BRI 102216 U	113.5	15.875 (5/ ₈)	34.925 (1 ³ ⁄ ₈)	25.400 (1)	25.650				
19.050 (³ ⁄ ₄)	BRI 122416 UU	BRI 122416 U	127	19.050 (3/4)	38.100 (1 ½)	25.400 (1)	25.650				
22.225 (%)	BRI 142620 UU	BRI 142620 U	177	22.225 (½ ₈)	41.275 (1 ½8)	31.750 (1 ½)	32.000				
25.400 (1)	BRI 162820 UU	BRI 162820 U	196	25.400 (1)	44.450 (1 ³ ⁄ ₄)	31.750 (1 ½)	32.000				
28.575 (1½)	BRI 183020 UU	BRI 183020 U	211	28.575 (1 ½)	47.625 (1 ½ ₈)	31.750 (1 ½)	32.000				
31.750 (1½)	BRI 203320 UU	BRI 203320 U	254	31.750 (1 1/4)	52.388 (2 ½)	31.750 (1 ½)	32.000				
34.925 (1 ³ / ₈)	BRI 223520 UU	BRI 223520 U	275	34.925 (1 ³ ⁄ ₈)	55.562 (2 ³ ⁄ ₁₆)	31.750 (1 ½)	32.000				
38.100 (1½)	BRI 243720 UU BRI 243920 UU	BRI 243720 U BRI 243920 U	293 362	38.100 (1 ½) 38.100 (1 ½)	58.738 (2 ½6) 61.912 (2 ½6)	31.750 (1 ½) 31.750 (1 ½)	32.000 32.000				
41.275 (1 ⁵ / ₈)	BRI 264120 UU	BRI 264120 U	386	41.275 (1 ½)	65.088 (2 % ₁₆)	31.750 (1 ½)	32.000				
44.450 (1 ³ / ₄)	BRI 284828 UU	BRI 284828 U	804	44.450 (1 ³ ⁄ ₄)	76.200 (3)	44.450 (1 ³ / ₄)	44.700				

Notes(1) Maximum permissible corner radius of the shaft or housing

(2) Allowable rotational speed applies to grease lubrication.

Remarks1. The inner ring and the outer ring each have an oil groove and an oil hole.

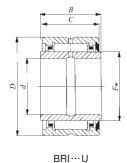

		tandard dimensio			Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
${F}_{ m w}$	$d_{\rm a}$		D_{a}	$r_{\rm as\ max}^{(1)}$	C	C_0	speed(²)	
T W	Min.	Max.	Max.		N	N	rpm	
15.875 (½)	14	14.5	24.5	0.6	18 300	20 000	12 000	LRBZ 61016 B
19.050 (3/4)	17.5	18	26.5	0.6	20 700	24 400	10 000	LRBZ 81216 B
22.225 (7/ ₈)	21	21.2	29.7	0.6	21 600	26 900	9 000	LRBZ 101416 B
25.400 (1)	24	24.4	32.9	0.6	23 600	31 300	8 000	LRBZ 121616 B
28.575 (1 ½)	27	27.5	36.0	0.6	34 900	49 900	7 000	LRBZ 141820 B
31.750 (1 ½)	30.5	30.7	39.2	0.6	36 000	53 500	6 500	LRBZ 162020 B
34.925 (1 ³ ⁄ ₈)	33.5	33.9	42.4	0.6	38 500	60 000	5 500	LRBZ 182220 B
38.100 (1 ½)	37	37.1	45.1	0.6	43 700	66 900	5 500	LRBZ 202420 B
41.275 (1 ⁵ ⁄ ₈)	40.2	40.2	48.3	0.6	44 800	70 900	4 500	LRBZ 222620 B
44.450 (1 $\frac{3}{4}$) 47.625 (1 $\frac{7}{8}$)	43.3 43.3	43.4 45	51.5 54.7	0.6 1	47 500 48 500	78 200 82 100	4 500 4 000	LRBZ 242820 B LRBZ 243020 B
50.800 (2)	48	49	57.8	1	51 000	89 400	4 000	LRBZ 263220 B
57.150 (2 ½)	52.5	55	69.0	1.5	90 300	158 000	3 500	LRBZ 283628 B

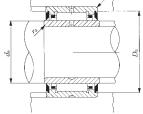
Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring, Inch Series

BRI…UU


Shaft dia. 50.800 — 82.550mm


	Identificatio	n number	Mass (Ref.)							
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	C	В			
50.800 (2)	BRI 325228 UU	BRI 325228 U	889	50.800 (2)	82.550 (3 ½)	44.450 (1 ¾ ₄)	44.700			
57.150 (2½)	BRI 365628 UU	BRI 365628 U	980	57.150 (2 ½)	88.900 (3 ½)	44.450 (1 ³ ⁄ ₄)	44.700			
63.500 (2½)	BRI 406028 UU	BRI 406028 U	1 065	63.500 (2 ½)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ³ ⁄ ₄)	44.700			
69.850 (2 ³ / ₄)	BRI 446828 UU	BRI 446828 U	1 421	69.850 (2 ³ ⁄ ₄)	107.950 (4 ½)	44.450 (1 ³ ⁄ ₄)	44.700			
76.200 (3)	BRI 487232 UU	BRI 487232 U	1 738	76.200 (3)	114.300 (4 ½)	50.800 (2)	51.050			
82.550 (3 ¹ ⁄ ₄)	BRI 527632 UU	BRI 527632 U	1 851	82.550 (3 ½)	120.650 (4 ³ ⁄ ₄)	50.800 (2)	51.050			

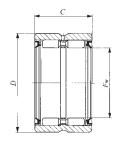
(2) Allowable rotational speed applies to grease lubrication.

Remarks1. The inner ring and the outer ring each have an oil groove and an oil hole.

D_a		

	L
NA	
TA	FI
TR	I
BR	ı

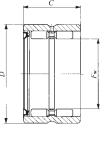
	Charada		4: al:		Basic dynamic	Basic static	Allowable	Assembled inner ring
		m	ting dime m	(1)	load rating	load rating C_0	rotational speed(²)	Assembled liller filly
F_{w}	Min.	a Max.	$D_{ m a}$ Max.	$r_{\rm as\ max}$	N	N	rpm	
63.500 (2 ½)	58	61	74.3	1.5	94 600	174 000	3 000	LRBZ 324028 B
69.850 (2 ³ ⁄ ₄)	65	67	80.7	1.5	98 700	189 000	2 500	LRBZ 364428 B
76.200 (3)	71	73	87.0	1.5	105 000	211 000	2 500	LRBZ 404828 B
82.550 (3 ½)	77	79	99.7	1.5	109 000	227 000	2 500	LRBZ 445228 B
88.900 (3 ½)	83.5	86	106.1	1.5	142 000	265 000	2 000	LRBZ 485632 B
95.250 (3 ³ ⁄ ₄)	91	93	111.4	1.5	148 000	287 000	2 000	LRBZ 526032 B


Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

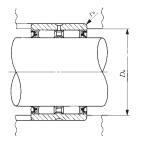
MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring, Inch Series

GBR…UU


Shaft dia. 15.875 — 50.800mm

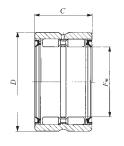
0. 6. 11	Identification	on number	Mass (Ref.)					
Shaft dia. mm (inch)	With two seals	With one seal	g	$F_{ m w}$	D	C		
15.875 (5/8)	GBR 101816 UU	GBR 101816 U	69.5	15.875(3/8)	28.575 (1½)	25.400 (1)		
19.050 (³ ⁄ ₄)	GBR 122016 UU	GBR 122016 U	79	19.050(3/4)	31.750(11/4)	25.400(1)		
22.225 (7/ ₈)	GBR 142216 UU	GBR 142216 U	89.5	22.225(7/8)	34.925 (1 ³ / ₈)	25.400 (1)		
25.400 (1)	GBR 162416 UU	GBR 162416 U	99	25.400(1)	38.100(1½)	25.400(1)		
28.575 (1½)	GBR 182620 UU	GBR 182620 U	139	28.575(11/8)	41.275(15/8)	31.750(11/4)		
31.750 (1 ¹ ⁄ ₄)	GBR 202820 UU	GBR 202820 U	152	31.750(11/4)	44.450(13/4)	31.750(11/4)		
34.925 (1 ³ / ₈)	GBR 223020 UU	GBR 223020 U	163	34.925 (1 ³ / ₈)	47.625 (1½)	31.750(11/4)		
38.100 (1½)	GBR 243320 UU	GBR 243320 U	200	38.100(1½)	52.388 (2 ½)	31.750(11/4)		
41.275 (1 ⁵ / ₈)	GBR 263520 UU	GBR 263520 U	215	41.275(15/8)	55.562 (2 3/16)	31.750(11/4)		
44.450 (1 ³ ⁄ ₄)	GBR 283720 UU	GBR 283720 U	230	44.450 (1¾)	58.738 (2 5/16)	31.750(11/4)		
47.625 (1 ⁷ / ₈)	GBR 303920 UU	GBR 303920 U	240	47.625 (1½)	61.912 (2 7/16)	31.750(11/4)		
50.800 (2)	GBR 324120 UU	GBR 324120 U	255	50.800 (2)	65.088 (2 ½)	31.750(11/4)		


Notes(1) Ma

Maximum permissible corner radius of the shaft or housing

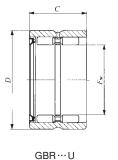
(2) Allowable rotational speed applies to grease lubrication.

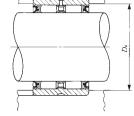
	ons mm	Basic dynamic load rating ${\it C}$	Basic static load rating C_0	Allowable rotational speed(2)
D_{a} Max.	r _{as max}	N	N	rpm
24.5	0.6	23 500	28 500	5 000
27	0.6	26 400	34 500	4 000
30	0.6	28 600	40 100	3 500
33.3	0.6	31 000	46 100	3 000
36.3	0.6	43 900	75 300	3 000
39.6	0.6	46 600	83 900	2 500
42.8	0.6	49 500	91 800	2 500
47.3	0.6	54 200	97 700	2 000
50.5	0.6	56 600	105 000	1 900
53.7	0.6	58 900	114 000	1 800
56.2	1	61 100	121 000	1 700
59.2	1	63 100	130 000	1 600


^{2.} Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, Without Inner Ring, Inch Series

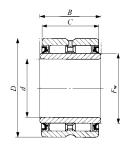

GBR…UU


Shaft dia. 57.150 — 107.950mm

Orian dia:						
	Identificati	on number	Mass (Ref.)	Boundary	/ dimensions	mm(inch)
Shaft dia. mm (inch)	With two seals	With one seal	g	F_{w}	D	C
57.150 (2 ¹ ⁄ ₄)	GBR 364828 UU	GBR 364828 U	515	57.150 (2 ½)	76.200 (3)	44.450 (1 ³ ⁄ ₄)
63.500 (2½)	GBR 405228 UU	GBR 405228 U	560	63.500 (2 ½)	82.550(31/4)	44.450 (1 ³ ⁄ ₄)
69.850 (2 ³ ⁄ ₄)	GBR 445628 UU	GBR 445628 U	610	69.850 (2 ³ ⁄ ₄)	88.900(3½)	44.450 (1 ³ ⁄ ₄)
76.200 (3)	GBR 486028 UU	GBR 486028 U	660	76.200(3)	95.250(3¾)	44.450 (1¾)
82.550 (3 ¹ ⁄ ₄)	GBR 526828 UU	GBR 526828 U	960	82.550 (3 ½)	107.950(41/4)	44.450 (1 ³ ⁄ ₄)
88.900 (3½)	GBR 567232 UU	GBR 567232 U	1 240	88.900 (3 ½)	114.300 (4½)	50.800(2)
95.250 (3 ³ ⁄ ₄)	GBR 607632 UU	GBR 607632 U	1 320	95.250(3¾)	120.650 (4 3/4)	50.800(2)
101.600 (4)	GBR 648032 UU	GBR 648032 U	1 380	101.600(4)	127.000(5)	50.800(2)
107.950 (4 ¹ ⁄ ₄)	GBR 688432 UU	GBR 688432 U	1 460	107.950(41/4)	133.350 (5 ½)	50.800(2)

Notes(1)	Maximum	permissible	corner	radius	of t	he	shaft	or	housing
----------	---------	-------------	--------	--------	------	----	-------	----	---------

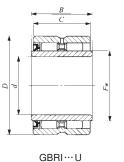
(2) Allowable rotational speed applies to grease lubrication.

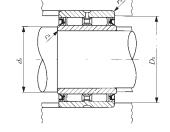

	mounting ons mm	Basic dynamic load rating	Basic static	Allowable rotational
	(1)	C	load rating $C_{ m 0}$	speed(²)
D_{a}	$r_{\rm as\ max}$			
Max.		N	N	rpm
69.2	1.5	87 500	161 000	1 400
75.7	1.5	93 300	179 000	1 300
82	1.5	97 200	197 000	1 100
88	1.5	101 000	215 000	1 100
99.9	1.5	127 000	231 000	950
106.3	1.5	170 000	347 000	900
112.6	1.5	175 000	371 000	850
119	1.5	182 000	395 000	800
125.3	1.5	186 000	419 000	750

Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring, Inch Series

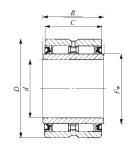

GBRI...UU


Shaft dia. 9.525 — 44.450mm

	Identification	on number	Mass (Ref.)	Boundary	/ dimensions	mm(inch)
Shaft dia. mm (inch)	With two seals	With one seal	g	d	D	C
9.525 (3/8)	GBRI 61816 UU	GBRI 61816 U	94.5	9.525(3/8)	28.575 (1½)	25.400(1)
12.700 (½)	GBRI 82016 UU	GBRI 82016 U	110	12.700(½)	31.750(11/4)	25.400(1)
15.875 (5/8)	GBRI 102216 UU	GBRI 102216 U	127	15.875(3/8)	34.925 (1 ³ / ₈)	25.400 (1)
19.050 (³ ⁄ ₄)	GBRI 122416 UU	GBRI 122416 U	143	19.050(3/4)	38.100(1½)	25.400(1)
22.225 (7/8)	GBRI 142620 UU	GBRI 142620 U	200	22.225(1/8)	41.275 (1 5/8)	31.750(11/4)
25.400 (1)	GBRI 162820 UU	GBRI 162820 U	220	25.400 (1)	44.450(1¾)	31.750(11/4)
28.575 (1 ¹ / ₈)	GBRI 183020 UU	GBRI 183020 U	240	28.575 (1½)	47.625 (1 ½)	31.750(11/4)
31.750 (1 ¹ ⁄ ₄)	GBRI 203320 UU	GBRI 203320 U	286	31.750(11/4)	52.388 (2 ½)	31.750(11/4)
34.925 (1 ³ / ₈)	GBRI 223520 UU	GBRI 223520 U	311	34.925 (1 ³ / ₈)	55.562 (2 ¾ ₆)	31.750(11/4)
38.100 (1½)	GBRI 243720 UU GBRI 243920 UU	GBRI 243720 U GBRI 243920 U	330 400	38.100(1½) 38.100(1½)	58.738 (2 ½) 61.912 (2 ½)	31.750(1½) 31.750(1½)
41.275 (1 ⁵ / ₈)	GBRI 264120 UU	GBRI 264120 U	425	41.275 (1 1/8)	65.088 (2 ½)	31.750(11/4)
44.450 (1 ³ / ₄)	GBRI 284828 UU	GBRI 284828 U	860	44.450 (1 ³ ⁄ ₄)	76.200 (3)	44.450 (1 ³ ⁄ ₄)

otes(1) Maximum permissible corner radius of the shaft or housing

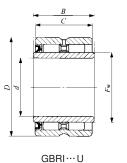
(2) Allowable rotational speed applies to grease lubrication.

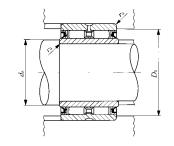

			tandard dimensic		ĭ	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
В	$F_{ m w}$	d Min.	a Max.	D_{a} Max.	$r_{\rm as\ max}^{(1)}$	N	N N	rpm	
25.650	15.875(5/8)	14	14.5	24.5	0.6	23 500	28 500	5 000	LRBZ 61016
25.650	19.050(3/4)	17.5	18	27	0.6	26 400	34 500	4 000	LRBZ 81216
25.650	22.225(7/8)	21	21.2	30	0.6	28 600	40 100	3 500	LRBZ 101416
25.650	25.400 (1)	24	24.4	33.3	0.6	31 000	46 100	3 000	LRBZ 121616
32.000	28.575 (1½)	27	27.5	36.3	0.6	43 900	75 300	3 000	LRBZ 141820
32.000	31.750(11/4)	30.5	30.7	39.6	0.6	46 600	83 900	2 500	LRBZ 162020
32.000	34.925 (1 ³ / ₈)	33.5	33.9	42.8	0.6	49 500	91 800	2 500	LRBZ 182220
32.000	38.100 (1½)	37	37.1	47.3	0.6	54 200	97 700	2 000	LRBZ 202420
32.000	41.275(15/8)	40.2	40.2	50.5	0.6	56 600	105 000	1 900	LRBZ 222620
32.000 32.000	44.450 (1 ³ ⁄ ₄) 47.625 (1 ⁷ ⁄ ₈)	43.3 43.3	43.4 45	53.7 56.2	0.6 1	58 900 61 100	114 000 121 000	1 800 1 700	LRBZ 242820 LRBZ 243020
32.000	50.800(2)	48	49	59.2	1	63 100	130 000	1 600	LRBZ 263220
44.700	57.150 (2 ½)	52.5	55	69.2	1.5	87 500	161 000	1 400	LRBZ 283628

Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

MACHINED TYPE NEEDLE ROLLER BEARINGS

With Seal, With Inner Ring, Inch Series


GBRI...UU


Shaft dia. 50.800 — 95.250mm

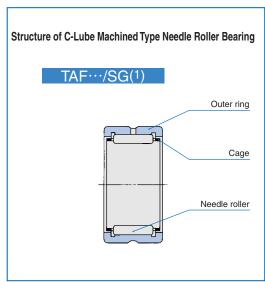
	Identification	on number	Mass Boundary dimensions mm(ir (Ref.)				
Shaft dia. mm			(кет.)				
(inch)	With two seals	With one seal	g	d	D	С	
50.800 (2)	GBRI 325228 UU	GBRI 325228 U	950	50.800 (2)	82.550 (3½)	44.450 (1 ³ / ₂)	
57.150 (2½)	GBRI 365628 UU	GBRI 365628 U	1 050	57.150 (2½)	88.900 (3½)	44.450(13)	
$(2\frac{1}{2})$	GBRI 406028 UU	GBRI 406028 U	1 140	63.500 (2½)	95.250 (3 ³ ⁄ ₄)	44.450 (1 ³ /	
$69.850 \\ (2\frac{3}{4})$	GBRI 446828 UU	GBRI 446828 U	1 490	69.850 (2 ³ ⁄ ₄)	107.950(4½)	44.450 (1 ³ / ₂)	
76.200 (3)	GBRI 487232 UU	GBRI 487232 U	1 880	76.200 (3)	114.300(4½)	50.800 (2	
82.550 (3 ¹ ⁄ ₄)	GBRI 527632 UU	GBRI 527632 U	2 010	82.550 (3½)	120.650(4¾)	50.800(2	
88.900 (3½)	GBRI 568032 UU	GBRI 568032 U	2 130	88.900(3½)	127.000(5)	50.800(2	
95.250 (3 ³ ⁄ ₄)	GBRI 608432 UU	GBRI 608432 U	2 260	95.250 (3 ³ ⁄ ₄)	133.350(51/4)	50.800(2	

(2) Allowable rotational speed applies to grease lubrication.

				mountin		Basic dynamic load rating	Basic static load rating	Allowable rotational	Assembled inner ring
В	F_{w}	d Min.	a Max.	D_{a}	$r_{\rm as\ max}^{(1)}$	<i>C</i> N	C_0 N	speed(²)	
44.700	63.500 (2 ½)	58	61	75.7	1.5	93 300	179 000	1 300	LRBZ 324028
44.700	69.850 (2 ¾)	65	67	82	1.5	97 200	197 000	1 100	LRBZ 364428
44.700	76.200 (3)	71	73	88	1.5	101 000	215 000	1 100	LRBZ 404828
44.700	82.550 (3 ½)	77	79	99.9	1.5	127 000	231 000	950	LRBZ 445228
51.050	88.900 (3 ½)	83.5	86	106.3	1.5	170 000	347 000	900	LRBZ 485632
51.050	95.250 (3 ¾ ₄)	91	93	112.6	1.5	175 000	371 000	850	LRBZ 526032
51.050	101.600(4)	97	99	119	1.5	182 000	395 000	800	LRBZ 566432
51.050	107.950(41/4)	103	105	125.3	1.5	186 000	419 000	750	LRBZ 606832

Bearings with seals on both sides are provided with prepacked grease. Bearings with a seal on one side are not provided with prepacked grease. Perform proper lubrication for use.

D


TAF···/SG

C-LUBE MACHINED TYPE NEEDLE ROLLER BEARINGS

Structure and features

C-Lube Machined Type Needle Roller Bearing is a bearing that is lubricated with a newly developed thermosetting solid-type lubricant. A large amount of lubricating oil and fine particles of ultra high molecular weight polyolefin resin are solidified by heat treatment to fill the inner space of the bearing. As the bearing rotates, the lubricating oil oozes out onto the raceway in proper quantities, maintaining the lubrication performance for a long period of time.

C-Lube Machined Type Needle Roller Bearings are bearings with a low sectional height and large load ratings. The outer ring has high rigidity and can easily be used even for light alloy housings.

Note(1) Thermosetting solid-type lubricant fills inner space of the bearing.

Type

C-Lube Machined Type Needle Roller Bearing is available in type shown in Table 1.

Table 1 Type of bearing

Туре	Needle bearing with cage
Series	Without inner ring
Metric series For light duty	TAF···/SG

■ Identification number

The identification number of C-Lube Machined Type Needle Roller Bearing consists of model code, dimensions and classification symbol. Example is shown below.

Example of identification number Model code Dimensions Model code symbol P6 TAF 12 19 12 /SG Type of bearing Roller set bore diameter (12mm) Nominal outside diameter (19mm) Bearing width (12mm) Accuracy class (Class 6)

Accuracy

C-Lube Machined Type Needle Roller Bearings are manufactured based on JIS (See page A31.). The tolerances for the smallest single roller set bore diameter of bearings without inner ring are based on Table 14 on page A33.

Fit

The recommended fits for C-Lube Machined Type Needle Roller Bearings are shown in Tables 21 to 23 on pages A41 and A42.

■ Allowable Rotational Speed

The allowable rotational speed of C-Lube Machined Type Needle Roller Bearing is affected by mounting and operating conditions. The reference $d_m n$ value (¹) is 20.000.

Note(1) $d_m n$ value = {(Bore diameter of bearing [mm] + Outside diameter of bearing [mm])/2} x rotational speed [rpm]

Lubrication

As the internal space of C-Lube Machined Type Needle Roller Bearing is filled with thermosetting solid-type lubricant C-Lube, regreasing is not possible due to the structure.

Oil hole

Table 2 shows the number of oil holes on the outer ring.

Table 2 Number of oil holes of outer ring

Nominal roller set bore diameter $F_{\rm w} \\ {\rm mm}$	Number of hole holes of outer ring
$F_{\rm w} \leq 26$	0
26 < F _w	1

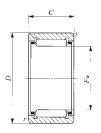
Remark If there is oil hole on the outer ring, care must be exercised not to let oil holes within the load range.

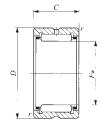
Mounting

- Mounting dimensions for C-Lube Machined Type Needle Roller Bearings are shown in the table of dimensions.
- **②** When mounting, pay special attention to avoid locating the oil hole within the loading zone. This may lead to a short bearing life.

Precaution for Use

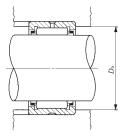
- Do not wash C-Lube Machined Type Needle Roller Bearing with organic solvent and/or white kerosene, which have the ability of removing fat nor leave them in contact with the above agents.
- To ensure normal rotation of the C-Lube Machined Type Needle Roller Bearing, apply a load of 1% or over of the dynamic load rating at use.
- The operating temperature range is -15 ~+80°C. For continuous operation, the recommended operating temperature is +60°C or less.
- When using two or more C-Lube Machined Type Needle Roller Bearings adjacent to each other on the same shaft, it is necessary to obtain an even load distribution. On request, a set of bearings is available, in which bearings are matched to obtain an even load distribution.


Further, C-Lube Machined Type Needle Roller Bearing for food machinery is also available. If needed, please contact **IKD**.


D91

C-LUBE MACHINED TYPE NEEDLE ROLLER BEARINGS

Without Inner Ring


TAF ···/SG $F_{\rm w} \leq 26$

TAF···/SG $F_{\rm w} >$ 26

Shaft dia. 10 – 45mm

		Mass	Bou	ındary dim	ensions	mm	Standard mounting	Basic dynamic	Basic static
Shaft	Identification number	(Ref.)					dimension	load rating	load rating
dia.	identification number		F_{w}	D	C	$r_{\rm s min}^{(1)}$	$D_{ m a}$	C	C_0
		g	T W	D	C	s min()	mm	N	N
10	TAF 101712/SG	11	10	17	12	0.2	15.4	5 880	5 970
	TAF 101716/SG	14.7	10	17	16	0.2	15.4	8 230	9 190
12	TAF 121912/SG	12.5	12	19	12	0.3	17	6 610	7 260
	TAF 121916/SG	16.8	12	19	16	0.3	17	9 250	11 200
14	TAF 142216/SG	22	14	22	16	0.3	20	11 700	13 700
	TAF 142220/SG	27.5	14	22	20	0.3	20	14 800	18 600
15	TAF 152316/SG	23.5	15	23	16	0.3	21	12 300	14 900
	TAF 152320/SG	29	15	23	20	0.3	21	15 600	20 200
16	TAF 162416/SG	24	16	24	16	0.3	22	12 300	15 100
	TAF 162420/SG	30	16	24	20	0.3	22	15 500	20 400
18	TAF 182616/SG	26.5	18	26	16	0.3	24	13 400	17 500
	TAF 182620/SG	33	18	26	20	0.3	24	17 000	23 600
19	TAF 192716/SG	28	19	27	16	0.3	25	14 000	18 700
	TAF 192720/SG	35.5	19	27	20	0.3	25	17 700	25 300
20	TAF 202816/SG	28.5	20	28	16	0.3	26	13 900	18 800
	TAF 202820/SG	37	20	28	20	0.3	26	17 600	25 400
21	TAF 212916/SG	30	21	29	16	0.3	27	14 400	20 000
	TAF 212920/SG	37.5	21	29	20	0.3	27	18 200	27 100
22	TAF 223016/SG	31	22	30	16	0.3	28	14 900	21 200
	TAF 223020/SG	39	22	30	20	0.3	28	18 900	28 700
24	TAF 243216/SG	33	24	32	16	0.3	30	15 300	22 500
	TAF 243220/SG	42	24	32	20	0.3	30	19 400	30 500
25	TAF 253316/SG	35	25	33	16	0.3	31	15 800	23 700
	TAF 253320/SG	43.5	25	33	20	0.3	31	20 000	32 100

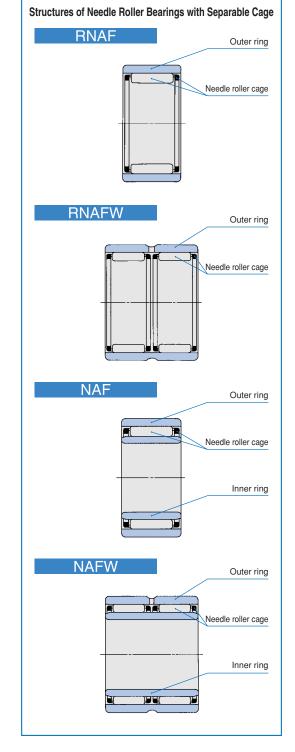
Note(1) Minimum allowable value of chamfer dimension r. Remarks1. Models with a nominal roller set bore diameter $F_{\rm w}$ of 26mm or less are provided without oil holes, other models are provided with one oil hole and oil groove.

TAF···/SG

Shaft	Identification number	Mass (Ref.)	Bou	ındary dim	ensions	mm	Standard mounting dimension $D_{ m a}$	Basic dynamic load rating	Basic static load rating C_0
dia.	identification number	g	F_{w}	D	С	$r_{\rm s min}^{(1)}$	Max. mm	N	N N
29	TAF 293820/SG TAF 293830/SG	59 88	29 29	38 38	20 30	0.3 0.3	36 36	21 600 30 900	37 200 59 100
30	TAF 304020/SG TAF 304030/SG	67 101	30 30	40 40	20 30	0.3 0.3	38 38	25 100 36 000	40 100 63 900
35	TAF 354520/SG TAF 354530/SG	76.5 116.5	35 35	45 45	20 30	0.3 0.3	43 43	26 900 38 600	46 200 73 600
40	TAF 405020/SG TAF 405030/SG	86 130	40 40	50 50	20 30	0.3 0.3	48 48	29 400 42 300	54 100 86 200
45	TAF 455520/SG TAF 455530/SG	95.5 144	45 45	55 55	20 30	0.3 0.3	53 53	31 000 44 600	60 200 95 800

^{2.} This bearing can not be re-lubricated as thermosetting solid-type lubricant C-Lube fills inner space of the bearing.

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE


- Needle Roller Bearings with Separable Cage Without Inner Ring
- Needle Roller Bearings with Separable Cage With Inner Ring

Structure and Features

In **IKU** Needle Roller Bearings with Separable Cage, the inner ring, outer ring and **IKU** Needle Roller Cage are combined, and they can be separated easily. This type has a simple structure with high accuracy. In addition, the radial clearance can be freely chosen by selecting and combining these component parts. As Needle Roller Cages are used, these bearings have excellent rotational performance.

These bearings are most suitable for mass-production high accuracy products such as machine tools, textile machinery, and printing machines.

D

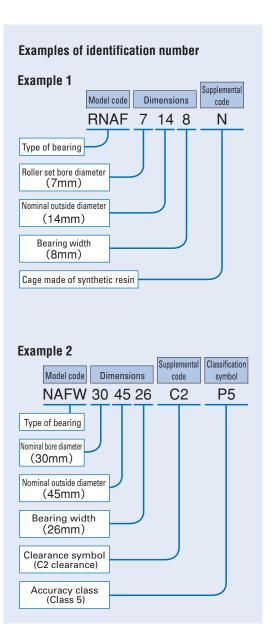
NAF

Needle Roller Bearings with Separable Cage are available in the types shown in Table 1.

Table 1 Type of bearing

Type	Single	e-row	Double-row			
Type	Without inner ring	With inner ring	Without inner ring	With inner ring		
Model code	RNAF	NAF	RNAFW	NAFW		

Needle Roller Bearings with Separable Cage - Without Inner Ring


The single-row as well as the double-row types are available with the same sectional height, and either of them can be selected according to load conditions. As shown in the section, "Design of shaft and housing" on page A44, any desired radial internal clearance can be selected by combining a shaft which is heat-treated and finished by grinding.

Needle Roller Bearings with Separable Cage - With Inner Ring

These bearings are made to the CN clearance shown in Table 19 on page A37. When especially high accuracy is required, it is possible to supply semi-finished inner rings which have a finishing allowance on their outside diameter so that they can be ground after being press-fitted to shafts.

Identification Number

The identification number of Needle Roller Bearings with Separable Cage consists of a model code, dimensions, any supplemental codes and a classification symbol. The arrangement examples are as follows.

Accuracy

Needle Roller Bearings with Separable Cage are manufactured to the accuracy based on JIS (See page A31.). Tolerances for the smallest single roller set bore diameter of bearings without inner ring are based on Table 14 on page A33.

Clearance

Radial internal clearances of Needle Roller Bearings with Separable Cage are made to the CN clearance shown in Table 18 on page A37.

Recommended fits for Needle Roller Bearings with Separable Cage are shown in Tables 21 to 23 on pages A41 and A42.

Lubrication

Needle Roller Bearings with Separable Cage are not provided with prepacked grease. Perform proper lubrication for use. Using them without lubrication will increase the wear of the rolling contact surfaces and shorten their lives.

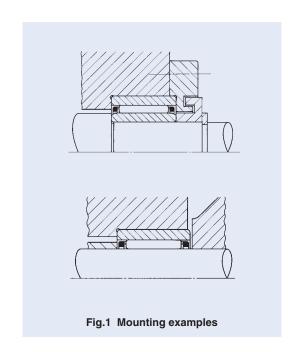
Oil Hole

The double-row type outer rings have both an oil hole and an oil groove, but the single-row type outer rings do not. When outer rings with an oil hole are required, attach "-OH" before the clearance symbol in the identification number, and when outer rings with both an oil hole and an oil groove are required, attach "-OG" to the same position.

Example: NAF 203517 - OH C2 P6

When outer rings with multiple oil holes or inner rings with oil hole(s) are required, please contact **IKD**.

■ Operating temperature range


For synthetic resin cages, "N" is added at the end of the identification number. The operating temperature range for Needle Roller Bearings with Separable Cage is $-20 \sim +120\,^{\circ}\text{C}$. However, the maximum allowable temperature for synthetic resin cages is $+110\,^{\circ}\text{C}$, and when they are continuously operated, it is $+100\,^{\circ}\text{C}$.

Mounting

Mounting examples of Needle Roller Bearings with Separable Cage are shown in Fig.1.

When mounting Needle Roller Bearings with Separable Cage, it is necessary to locate the needle cage axially. The needle cage is guided by shoulders of the shaft and housing or by side plates, and their guide surfaces must be heat-treated and finished by grinding at right angles to the shaft central axis.

Dimensions related to mounting are shown in the table of dimensions.

NAF

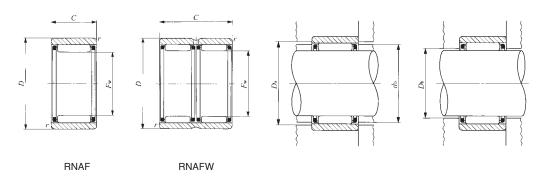
1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

Without Inner Ring

Shaft dia. 5 – 18mm

Shaft dia.	Identification number	Mass (Ref.)	Bound	ary dim	ensions	s mm		lard mou ensions	mm	Basic dynamic load rating	Basic static load rating
mm	identification number	g	F_{w}	D	С	$r_{\rm s min}^{(1)}$	d_{b}	$D_{ m a}$ Max.	$D_{\mathfrak{b}}$	N	C ₀
5	RNAF 5108N	2.8	5	10	8	0.2	6.7	8.4	5.4	2 420	1 950
6	RNAF 6138N	5.5	6	13	8	0.3	8.4	11	6.4	2 700	2 320
7	RNAF 7148N	6.1	7	14	8	0.3	9.4	12	7.4	2 960	2 690
8	RNAF 81510	8.2	8	15	10	0.3	10.4	13	8.4	3 630	3 600
	RNAFW 81620	20.5	8	16	20	0.3	10.8	14	8.4	6 220	7 200
10	RNAF 101710	9.6	10	17	10	0.3	12.4	15	10.4	4 160	4 550
	RNAF 102012	18.7	10	20	12	0.3	13.5	18	10.4	5 940	6 000
12	RNAF 122212	19.5	12	22	12	0.3	15.5	20	12.4	9 030	8 460
14	RNAF 142213	18.7	14	22	13	0.3	17.6	20	14.6	7 860	9 410
	RNAFW 142220	28.5	14	22	20	0.3	17.6	20	14.6	10 800	14 200
	RNAF 142612	29	14	26	12	0.3	19.4	24	14.6	9 790	9 680
15	RNAF 152313	19.7	15	23	13	0.3	18.6	21	15.6	8 250	10 200
	RNAFW 152320	30.5	15	23	20	0.3	18.6	21	15.6	11 400	15 400
16	RNAF 162413	21	16	24	13	0.3	19.6	22	16.6	8 620	11 000
	RNAFW 162420	32	16	24	20	0.3	19.6	22	16.6	11 900	16 700
	RNAF 162812	31.5	16	28	12	0.3	21.4	26	16.6	10 500	10 900
17	RNAF 172513	22	17	25	13	0.3	20.6	23	17.6	8 980	11 800
	RNAFW 172520	33.5	17	25	20	0.3	20.6	23	17.6	12 400	17 900
18	RNAF 182613	23	18	26	13	0.3	21.6	24	18.6	9 330	12 700
	RNAFW 182620	35	18	26	20	0.3	21.6	24	18.6	12 900	19 100
	RNAF 183012	34.5	18	30	12	0.3	23.4	28	18.6	11 800	13 100
	RNAFW 183024	69.5	18	30	24	0.3	23.4	28	18.6	20 200	26 200


Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.

Remarks1. The character "N" at the end of the identification number indicates that a synthetic resin cage is incorporated.

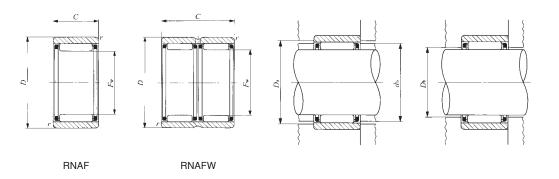
2. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

3. No grease is prepacked. Perform proper lubrication.

Allowable rotational speed(2)	
rpm	
85 000	
75 000	
65 000	
60 000 60 000	
50 000 50 000	
40 000	
35 000 35 000 35 000	
35 000 35 000	
30 000 30 000 30 000	
30 000 30 000	
30 000 30 000 30 000	

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

Without Inner Ring


Shaft dia. 20 — 40mm

Shaft		Mass (Ref.)	Bound	ary dim	ension	s mm		lard mou	unting mm	Basic dynamic load rating	Basic static
dia.	Identification number	(1101.)	$F_{\rm w}$	D	C	$r_{\rm smin}^{(1)}$	d_{b}	D_{a}	$D_{\mathfrak{b}}$	C	C_0
mm		g	- w			8 111111		Max.		N	N
20	RNAF 202813	25	20	28	13	0.3	23.6	26	20.6	9 590	13 500
	RNAFW 202826	49.5	20	28	26	0.3	23.6	26	20.6	16 400	27 100
20	RNAF 203212	37.5	20	32	12	0.3	25.4	30	20.6	12 400	14 300
	RNAFW 203224	75	20	32	24	0.3	25.4	30	20.6	21 200	28 600
00	RNAF 223013	27	22	30	13	0.3	25.6	28	22.6	10 200	15 200
	RNAFW 223026	53.5	22	30	26	0.3	25.6	28	22.6	17 500	30 300
22	RNAF 223516 RNAFW 223532	58.5 117	22 22	35 35	16 32	0.3	27.8 27.8	33 33	22.6 22.6	17 600 30 200	20 900 41 800
25	RNAF 253517 RNAFW 253526 RNAF 253716 RNAFW 253732	51 78 57 114	25 25 25 25 25	35 35 37 37	17 26 16 32	0.3 0.3 0.3 0.3	29.5 29.5 30.4 30.4	33 33 35 35	25.6 25.6 25.6 25.6	17 300 22 400 19 400 33 200	26 600 37 200 24 500 49 000
28	RNAF 284016	62.5	28	40	16	0.3	33.4	38	28.6	20 100	26 500
	RNAFW 284032	125	28	40	32	0.3	33.4	38	28.6	34 400	53 000
30	RNAF 304017	59	30	40	17	0.3	34.5	38	30.6	18 700	31 100
	RNAFW 304026	90.5	30	40	26	0.3	34.5	38	30.6	24 200	43 400
	RNAF 304216	66	30	42	16	0.3	35.4	40	30.6	20 800	28 400
	RNAFW 304232	132	30	42	32	0.3	35.4	40	30.6	35 700	56 800
35	RNAF 354517	67.5	35	45	17	0.3	39.5	43	35.6	20 500	36 900
	RNAFW 354526	103	35	45	26	0.3	39.5	43	35.6	26 600	51 500
	RNAF 354716	75.5	35	47	16	0.3	40.4	45	35.6	23 100	33 900
	RNAFW 354732	151	35	47	32	0.3	40.4	45	35.6	39 500	67 800
40	RNAF 405017	76	40	50	17	0.3	43.5	48	40.8	22 200	42 700
	RNAFW 405034	152	40	50	34	0.3	43.5	48	40.8	38 000	85 400
	RNAF 405520	140	40	55	20	0.3	45.2	53	40.8	31 400	48 000
	RNAFW 405540	280	40	55	40	0.3	45.2	53	40.8	53 900	96 000

Minimum allowable value of chamfer dimension r

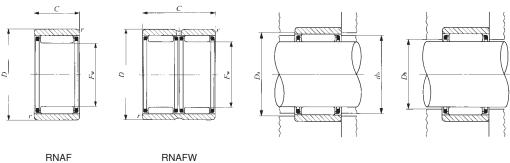
(²) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

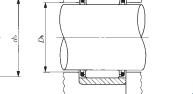
2. No grease is prepacked. Perform proper lubrication.

Allowable	
rotational	
speed(2)	
rpm	
25 000	
25 000	
25 000	
25 000	
25 000	
25 000	
25 000	
25 000	
20 000	
20 000	
20 000	
20 000	
18 000	
18 000	
17 000	
17 000	
17 000	
17 000	
14 000	
14 000	
14 000	
14 000	
12 000	
12 000	
12 000	
12 000	

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

Without Inner Ring




Shaft dia. 45 — 100mm

01 6		Mass (Ref.)	Bound	lary dim	ensions	s mm		lard mou	Basic dynamic	Basic static	
Shaft dia.	Identification number	(Itel.)		I	I	l (1)		$D_{\rm a}$	mm $D_{\rm h}$	C	load rating C_0
mm		g	$F_{\rm w}$	D	C	$r_{\rm s min}^{(1)}$	d_{b}	Max.	$D_{\mathfrak{b}}$	N	N
	RNAF 455517	83.5	45	55	17	0.3	48.5	53	45.8	23 300	47 100
45	RNAFW 455534	167	45	55	34	0.3	48.5	53	45.8	39 900	94 200
.0	RNAF 456220	184	45	62	20	0.3	50.9	60	45.8	33 200	53 300
	RNAFW 456240	370	45	62	40	0.3	50.9	60	45.8	56 900	107 000
	RNAF 506220	138	50	62	20	0.3	54.2	60	50.8	27 100	59 300
50	RNAFW 506240	275	50	62	40	0.3	54.2	60	50.8	46 400	119 000
	RNAF 506520	170	50	65	20	0.3	55.2	63	50.8	35 900	61 100
	RNAFW 506540	340	50	65	40	0.6	55.2	61	50.8	61 500	122 000
	RNAF 556820	167	55	68	20	0.3	59.5	66	55.8	28 600	66 000
55	RNAFW 556840	335	55	68	40	0.3	59.5	66	55.8	49 000	132 000
	RNAF 557220	220	55	72	20	1	60.9	67	55.8	37 400	66 400
	RNAFW 557240	440	55	72	40	1	60.9	67	55.8	64 100	133 000
60	RNAF 607820	255	60	78	20	1	66.3	73	60.8	38 900	71 700
	RNAFW 607840	510	60	78	40	1	66.3	73	60.8	66 700	143 000
65	RNAF 658530	470	65	85	30	1.5	72	77	66		127 000
	RNAFW 658560	945	65	85	60	1.5	72	77	66	102 000	255 000
70	RNAF 709030	500	70	90	30	1.5	77	82	71	61 200	136 000
	RNAFW 709060	1 000	70	90	60	1.5	77	82	71	105 000	272 000
75	RNAF 759530	530	75	95	30	1.5	82	87	76	63 100	144 000
73	RNAFW 759560	1 060	75	95	60	1.5	82	87	76	108 000	289 000
80	RNAF 8010030	560	80	100	30	1.5	87	92	81	65 000	153 000
80	RNAFW 8010060	1 120	80	100	60	1.5	87	92	81	111 000	306 000
85	RNAF 8510530	590	85	105	30	1.5	92	97	86	66 600	161 000
90	RNAF 9011030	625	90	110	30	1.5	97	102	91	69 600	174 000
95	RNAF 9511530	655	95	115	30	1.5	102	107	96	70 900	182 000
100	RNAF 10012030	685	100	120	30	1.5	107	112	101	72 500	191 000

Minimum allowable value of chamfer dimension r

(²) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. RNAF has no oil hole. RNAFW is provided with an oil groove and an oil hole on the outer ring.

NAF

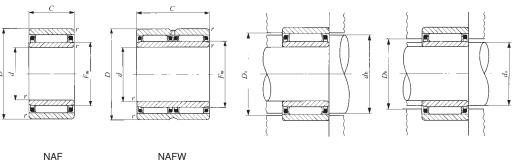
}	(

Allowable rotational speed(²)	
rpm	
11 000 11 000 11 000 11 000	
10 000 10 000 10 000 10 000	
9 000 9 000 9 000 9 000	
8 500 8 500	
7 500 7 500	
7 000 7 000	
6 500 6 500	
6 000 6 000	
6 000	
5 500	
5 500	
4 500	

^{2.} No grease is prepacked. Perform proper lubrication.

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

With Inner Ring



Shaft dia. 6 – 25mm

	I											
Shaft		Mass (Ref.)	Bour	idary dii	mensio	ns mm		Standa	rd moui	nting dir	nension	s mm
dia.	Identification number					(1)	l _	$d_{\rm b}$	D_{a}	a	!a	D_{b}
mm		g	d	D	C	$r_{\rm s min}$	F_{w}		Max.	Min.	Max.	
6	NAF 61710	13.5	6	17	10	0.3	10	12.4	15	8	9.7	10.4
7	NAF 72012	22.5	7	20	12	0.3	10	13.5	18	9	9.7	10.4
9	NAF 92212	24	9	22	12	0.3	12	15.5	20	11	11.5	12.4
	NAF 102213	26	10	22	13	0.3	14	17.6	20	12	13	14.6
10	NAFW 102220	40	10 10	22	20	0.3	14	17.6	20	12	13	14.6
	NAF 102612	36		26	12	0.3	14	19.4	24	12	13	14.6
12	NAF 122413 NAFW 122420	29.5 45.5	12 12	24 24	13 20	0.3	16 16	19.6 19.6	22 22	14 14	15 15	16.6 16.6
12	NAF 122812	40.5	12	28	12	0.3	16	21.4	26	14	15	16.6
	NAF 152813	38.5	15	28	13	0.3	20	23.6	26	17	19	20.6
15	NAFW 152826	77.5	15	28	26	0.3	20	23.6	26	17	19	20.6
	NAF 153212	50.5	15	32	12	0.3	20	25.4	30	17	19	20.6
	NAF 173013	42.5	17	30	13	0.3	22	25.6	28	19	21	22.6
17	NAFW 173026 NAF 173516	84.5 77.5	17 17	30 35	26 16	0.3	22 22	25.6 27.8	28 33	19 19	21 21	22.6 22.6
	NAFW 173532	155	17	35	32	0.3	22	27.8	33	19	21	22.6
	NAF 203517	74	20	35	17	0.3	25	29.5	33	22	24	25.6
20	NAFW 203526	114	20	35	26	0.3	25	29.5	33	22	24	25.6
	NAF 203716 NAFW 203732	79 158	20 20	37 37	16 32	0.3	25 25	30.4	35 35	22 22	24 24	25.6 25.6
			_									
	NAF 254017 NAFW 254026	87.5 135	25 25	40 40	17 26	0.3	30 30	34.5 34.5	38 38	27 27	29 29	30.6 30.6
25	NAF 254216	94	25	42	16	0.3	30	35.4	40	27	29	30.6
	NAFW 254232	186	25	42	32	0.3	30	35.4	40	27	29	30.6

Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.
 Remarks1. NAF has no oil hole. NAFW is provided with an oil groove and an oil hole on the outer ring.
 2. No grease is prepacked. Perform proper lubrication.

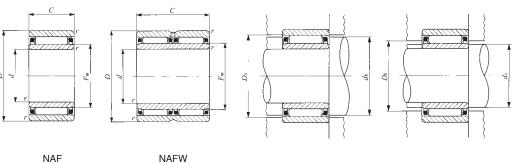
1	{

NAF

Basic dynamic load rating C	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
N	N	rpm	
4 160	4 550	50 000	LRT 61010
5 940	6 000	50 000	LRT 71012-1
9 030	8 460	40 000	LRT 91212
7 860	9 410	35 000	LRT 101413
10 800	14 200	35 000	LRT 101420
9 790	9 680	35 000	LRT 101412
8 620	11 000	30 000	LRT 121613
11 900	16 700	30 000	LRT 121620
10 500	10 900	30 000	LRT 121612
9 590	13 500	25 000	LRT 152013
16 400	27 100	25 000	LRT 152026
12 400	14 300	25 000	LRT 152012
10 200	15 200	25 000	LRT 172213
17 500	30 300	25 000	LRT 172226
17 600	20 900	25 000	LRT 172216
30 200	41 800	25 000	LRT 172232
17 300	26 600	20 000	LRT 202517
22 400	37 200	20 000	LRT 202526
19 400	24 500	20 000	LRT 202516
33 200	49 000	20 000	LRT 202532
18 700	31 100	17 000	LRT 253017
24 200	43 400	17 000	LRT 253026
20 800	28 400	17 000	LRT 253016
35 700	56 800	17 000	LRT 253032

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

With Inner Ring


Shaft dia. 30 — 65mm

Shaft		Mass (Ref.)	Bour	ndary dii	mensio	ns mm		Standa	rd mour	nting dir	nension	s mm
dia.	Identification number		d	D	C	(1)	F_{w}	d_{b}	D_{a}	a	a	D_{b}
mm		g	а	D	С	$r_{\rm s min}$	T W		Max.	Min.	Max.	
	NAF 304517	101	30	45	17	0.3	35	39.5	43	32	34	35.6
30	NAFW 304526 NAF 304716	155 107	30 30	45 47	26 16	0.3	35 35	39.5 40.4	43 45	32 32	34 34	35.6 35.6
	NAFW 304732	215	30	47	32	0.3	35	40.4	45	32	34	35.6
	NAF 355017	115	35	50	17	0.3	40	43.5	48	37	39	40.8
35	NAFW 355034	230	35	50	34	0.3	40	43.5	48	37	39	40.8
	NAF 355520 NAFW 355540	186 375	35 35	55 55	20 40	0.3	40 40	45.2 45.2	53 53	37 37	39 39	40.8 40.8
	NAF 405517	128	40	55	17	0.3	45	48.5	53	42	44	45.8
40	NAFW 405534	255	40	55	34	0.3	45	48.5	53	42	44	45.8
	NAF 406220 NAFW 406240	235 475	40 40	62 62	20 40	0.3	45 45	50.9 50.9	60 60	42 42	44 44	45.8 45.8
	NAF 456220	196	45	62	20	0.3	50	54.2	60	47	49	50.8
45	NAFW 456240	390	45	62	40	0.3	50	54.2	60	47	49	50.8
	NAF 457220 NAFW 457240	340 685	45 45	72 72	20 40	1 1	55 55	60.9	67 67	50 50	54 54	55.8 55.8
	NAF 506820	230	50	68	20	0.3	55	59.5	66	52	54	55.8
50	NAFW 506840	465	50	68	40	0.3	55	59.5	66	52	54	55.8
30	NAF 507820	390	50	78	20	1	60	66.3	73	55	59	60.8
	NAFW 507840	775	50	78	40	1	60	66.3	73	55	59	60.8
55	NAF 558530 NAFW 558560	690 1 380	55 55	85 85	30 60	1.5 1.5	65 65	72 72	77 77	63 63	63.5 63.5	66 66
60	NAF 609030	740	60	90	30	1.5	70	77	82	68	68.5	71
00	NAFW 609060	1 480	60	90	60	1.5	70	77	82	68	68.5	71
65	NAF 659530	790	65	95	30	1.5	75	82	87	73	73.5	76
	NAFW 659560	1 580	65	95	60	1.5	75	82	87	73	73.5	76

Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable. Remarks1. NAF has no oil hole. NAFW is provided with an oil groove and an oil hole on the outer ring.

2. No grease is prepacked. Perform proper lubrication.

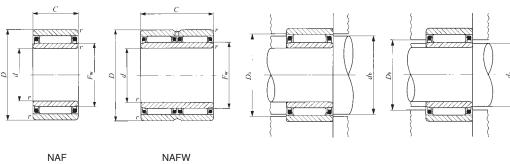
		_

N			
IA			

Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
N	N	rpm	
20 500	36 900	l	LRT 303517
26 600	51 500		LRT 303526
23 100	33 900		LRT 303516
39 500	67 800		LRT 303532
22 200 38 000 31 400 53 900	42 700 85 400 48 000 96 000	12 000 12 000	LRT 354017 LRT 354034 LRT 354020 LRT 354040
23 300	47 100	11 000	LRT 404517
39 900	94 200		LRT 404534
33 200	53 300		LRT 404520
56 900	107 000		LRT 404540
27 100	59 300	10 000	LRT 455020
46 400	119 000		LRT 455040
37 400	66 400		LRT 455520
64 100	133 000		LRT 455540
28 600	66 000	9 000	LRT 505520
49 000	132 000	9 000	LRT 505540
38 900	71 700	8 500	LRT 506020
66 700	143 000	8 500	LRT 506040
59 300	127 000	7 500	LRT 556530
102 000	255 000	7 500	LRT 556560
61 200	136 000	7 000	LRT 607030
105 000	272 000	7 000	LRT 607060
63 100	144 000	6 500	LRT 657530
108 000	289 000	6 500	LRT 657560

NEEDLE ROLLER BEARINGS WITH SEPARABLE CAGE

With Inner Ring



Shaft dia. 70 – 90mm

Shaft		Mass (Ref.)	Bour	ndary dii	mensior	ns mm		Standa	rd mour	nting dir	mension	s mm
dia.	Identification number	g	d	D	C	$r_{\rm s min}$	F_{w}	d_{b}	D_{a}	Min.	a Max.	$D_{\mathfrak{b}}$
70	NAF 7010030 NAFW 7010060	835 1 680	70 70	100 100	30 60	1.5 1.5	80 80	87 87	92 92	78 78	78.5 78.5	81 81
75	NAF 7510530	885	75	105	30	1.5	85	92	97	83	83.5	86
80	NAF 8011030	935	80	110	30	1.5	90	97	102	88	88.5	91
85	NAF 8511530	985	85	115	30	1.5	95	102	107	93	93.5	96
90	NAF 9012030	1 040	90	120	30	1.5	100	107	112	98	98.5	101

Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 50% of this value is allowable.
 Remarks1. NAF has no oil hole. NAFW is provided with an oil groove and an oil hole on the outer ring.
 2. No grease is prepacked. Perform proper lubrication.

		6
NAF	NAFW	

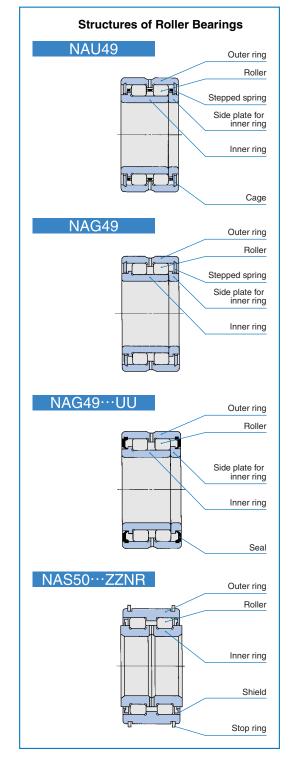
load rating $$	Basic static load rating C_0	Allowable rotational speed(2)	Assembled inner ring
N	N	rpm	
	153 000	6 000	LRT 708030-1
	306 000	6 000	LRT 708060
66 600	161 000	6 000	LRT 758530-1
69 600	174 000	5 500	LRT 809030-1
70 900	182 000	5 500	LRT 859530
72 500	191 000	4 500	LRT 9010030

E

NAG NAU

TRU

ROLLER BEARINGS


- **●**Caged Roller Bearings
- Full Complement Roller Bearings
- **●**Roller Bearings for Sheaves

Structure and Features

IKO Roller Bearings in which rollers are incorporated in two rows are non-separable heavy-duty bearings. They can withstand not only radial loads but axial loads as well, which are supported at the contacts between the shoulders of inner and outer rings and the end faces of rollers. Therefore, they are most suitable for use at the fixing side of a shaft. Like needle roller bearings, they are also compact.

Roller bearings include the caged type, full complement type and the type for sheaves, and any bearings suitable for the operating conditions can be selected. In particular, these bearings are used for heavy-duty machines such as construction machinery, and industrial machinery.

The types of Roller Bearings shown in Table 1 are available.

Table 1 Type of bearing

Type Series	Caged type	Full complement type	For sheaves
Standard	NAU49 TRU	NAG49	
With seal	With seal NAU49 ··· UU TRU ··· UU		NAS50 ··· UUNR
With shield			NAS50 ··· ZZNR

Caged Roller Bearings

These bearings are suitable for high-speed rotations and fluctuating loads. Also, as the axial distance between the double-row rollers is comparatively large, large moment loads can be supported.

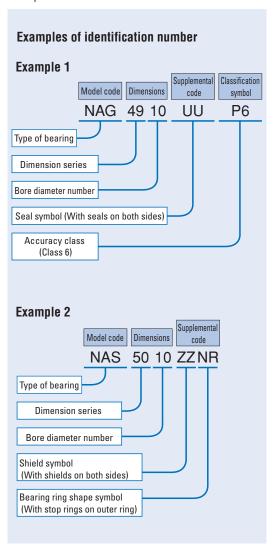
Caged roller bearings with seal incorporate seals on both sides. Synthetic resin rubber seals are excellent in the prevention of dust penetration and grease leakage, providing an excellent sealing effect.

Full Complement Roller Bearings

These bearings are suitable for low-speed rotations or oscillating motions and heavy loads. Similar to the caged type, the structure is advantageous for supporting moment loads.

The bearings with seal incorporate seals on both sides.

Roller Bearings for Sheaves


These bearings are the double-row full complement type with a low sectional height designed for use in sheaves. There are two types; the sealed type and the shield type. They can withstand heavy radial loads and shock loads at comparatively low-speed rotations, and can also withstand axial loads.

They can easily be fixed axially to sheaves using the stop rings of the outer ring. As the width of the inner ring is designed to be larger than that of the outer ring, they require no spacer between sheaves. The structure is stable because the double-row rollers can withstand the moment loads caused by rope transition

The surfaces of these bearings are treated to have high corrosion resistance.

Identification Number

The identification number of Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. The arrangement examples are shown below.

Accuracy

Roller Bearings are manufactured in accordance with JIS (See page A31.). A side plate for inner ring is assembled on one side of caged or full complement roller bearings. The tolerance of bore diameter of the side plate is shown below. Tolerances of Roller Bearings for Sheaves represent the values before surface treatment. The tolerance of internal distance between cir-clips is shown below.

Tolerance of bore diameter of the side plate d: E7 Tolerance of internal distance between cir-clips C_1 : 0 \sim +0.4mm

Clearance

Roller Bearings are manufactured to the CN clearance shown in Table 18 on page A37. However, Roller Bearings for Sheaves are manufactured so that proper operating clearances are obtained after being mounted with a specified fit.

Fit

The recommended fits for Roller Bearings are shown in Tables 21 to 22 on pages A41 and A42. The recommended fits for Roller Bearings for Sheaves are shown in Table 2.

Table 2 Recommended fits for Roller Bearings for Sheaves

Tolerance class of shaft	Tolerance class of housing bore
g6	N7

Lubrication

Bearings with prepacked grease are shown in Table 3. For Caged Roller Bearings and Full Complement Roller Bearings, ALVANIA GREASE S2 (SHOWA SHELL SEKIYU K.K.) is prepacked as the lubricating grease. For Roller Bearings for Sheaves, ALVANIA GREASE EP2 (SHOWA SHELL SEKIYU K.K.) is prepacked as the lubricating grease.

In the case of bearings without prepacked grease, perform proper lubrication for use. Operating without lubrication will increase the wear of the rolling contact surfaces and shorten their lirees.

Oil Hole

The number of oil holes of the inner and outer rings is shown in Table 4.

■ Operating Temperature Range

The operating temperature range for Roller Bearings is $-20\,^{\circ}\mathrm{C} \sim +120\,^{\circ}\mathrm{C}$. However, the maximum allowable temperature for Roller Bearings for Sheaves is $+110\,^{\circ}\mathrm{C}$.

Table 3 Bearings with prepacked grease

O: With prepacked grease X: Without prepacked grease

	Туре	Standard	With seals	With shields
Caged type	NAU , TRU	×	0	_
Full complement type	NAG	×	0	_
For sheaves	NAS	_	0	0

Table 4 Number of oil holes of the inner ring and outer ring

Type Nominal bore diameter d mm			Number	Number of oil holes					
			Standard	Standard With seals With shield		of the inner ring			
	NAU	<i>d</i> ≦ 17	0	0		0			
Caged type	NAU	17 < d	2	2	_	3			
	TRU		2	2	_	0			
Full complement type	NAG	<i>d</i> ≦ 17	0	0		0			
i un complement type	INAG	17 < d	2	2	_	0			
For sheaves	NAS		_	0	0	2			

Remark The bearings with oil holes are also provided with an oil groove

NAG NAU

TRU

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Axial Load Capacity

Axial load capacity is not determined from the basic dynamic load rating based on rolling fatigue, but is determined by the amount of heat generated by sliding contact between the ends of rollers and guide shoulders of the inner and outer rings. It is therefore limited by the load conditions, sliding speeds, lubrication methods, etc.

The axial load capacity of Roller Bearings is obtained from the following equation.

If the axial load increases in comparison with the radial load, it will start to interfere with the smooth rolling motion. The axial load should therefore be within 20% of the radial load.

a: Value determined by type of bearing

 $f_{\rm A}$: Axial load capacity factor (See Fig.1.)

Table 5 Value by type of bearing

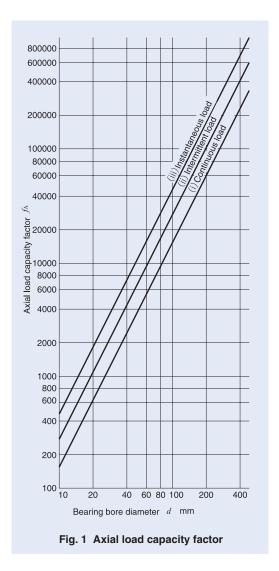
Type of bearing	а
NAS 50	1
NAG 49	0.78
NAU 49, TRU	0.7

(See Table 5.)

Calculation example

When a roller bearing for sheaves NAS 5016 ZZ NR is run at n=250 rpm under grease lubrication and subjected to an intermittent axial load, the axial load capacity is calculated as follows.

As the bearing bore diameter is 80 mm, $f_{\rm A}$ = 18000 is obtained from the axial load capacity line of Fig. 1 (ii).


$$d_{\rm m} = \frac{80 + 125}{2} = 102.5$$

 $d_{\rm m}n = 102.5 \times 250 = 25600$

From Fig. 2, $f_v = 0.87$

Therefore, the axial load capacity $C_{\rm A}$ is obtained.

$$C_{\rm A} = f_{\rm v} \, a \, f_{\rm A} = 0.87 \times 1 \times 18000 = 15700 \, \text{N}$$

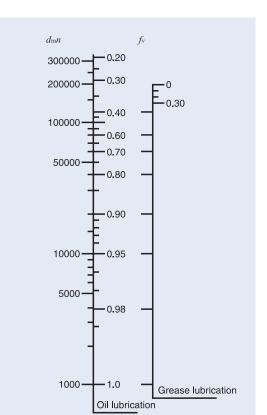


Fig. 2 Speed correction factor

Mounting

Unlike needle roller bearings, Caged and Full Complement Roller Bearings are non-separable.

As shown in Fig. 3 (1), the inner ring should be pressfitted until it makes close contact with the shaft shoulder, and fixed axially with a nut. Dimensions of the shoulders of the shaft and housing should be based on J and $E_{\rm W}$ shown in the table of dimensions, respectively.

In the case of Roller Bearings for Sheaves, as shown in Fig. 3 (2), the outer ring should be fixed by stop rings after being press-fitted into the sheaves, and the inner ring should be fixed securely in the axial direction.

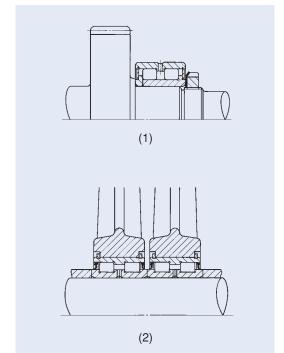


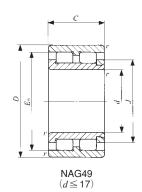
Fig. 3 Mounting examples

NAG NAU TRU

NAS

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

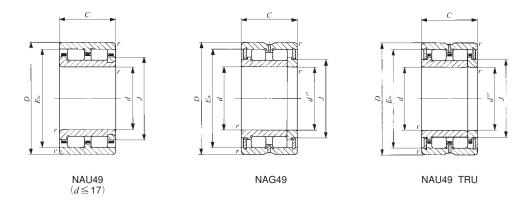
E


NAG NAU TRU

ROLLER BEARINGS

Caged Roller Bearings Full Complement Roller Bearings

Shaft dia. 10 – 35mm


Identification number Mass Roundary dimensions										
	Į.	Mass (Ref.)	Boundary dimensions mm							
Shaft dia. mm	Full complement type	Cag	ed type	g	d	D	C	(1) r _{s min}	J	$E_{ m w}$
10	NAG 4900 —	 NAU 4900		25.5 24.5	10 10	22 22	13 13	0.3 0.3	15.5 15.5	18.5 18.5
12	NAG 4901 —	— NAU 4901	_	28.5 27.5	12 12	24 24	13 13	0.3 0.3	17 17	20 20
15	NAG 4902 — —	NAU 4902	 TRU 153320	38 36.5 80.5	15 15 15	28 28 33	13 13 20	0.3 0.3 0.3	21 21 19.5	24 24 27
17	NAG 4903 —	NAU 4903			17 17 17	30 30 34	13 13 25	0.3 0.3 0.3	22.5 22.5 21.5	25.5 25.5 29.5
20	NAG 4904 — — —	NAU 4904 —	TRU 203820 TRU 203825	76.5 76 96.5 122	20 20 20 20	37 37 38 38	17 17 20 25	0.3 0.3 0.3 0.3	24 24 25 25	31.5 31.5 32.5 32.5
25	NAG 4905 — —	NAU 4905	 TRU 254425	89.5 89 154	25 25 25	42 42 44	17 17 25	0.3 0.3 0.3	29.5 29.5 30.5	37 37 38
28	_	_	TRU 284530	173	28	45	30	0.3	31.5	39.5
30	NAG 4906 —	NAU 4906			30 30 30	47 47 48	17 17 30	0.3 0.3 0.3	34 34 35	41.5 41.5 42.5
32	_	_	TRU 325230	260	32	52	30	0.6	38	46
35	NAG 4907 — —	NAU 4907	TRU 355630	172 168 270	35 35 35	55 55 56	20 20 30	0.6 0.6 0.6	40 40 40	49 49 49

Minimum allowable value of chamfer dimension r

(2) Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

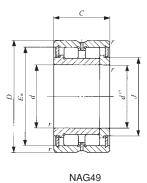
Remarks1. The NAG and NAU series with a bore diameter d of 17 mm or less have no oil hole. In others, the outer ring has an oil groove and

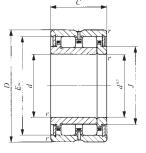
2. No grease is prepacked. Perform proper lubrication.

Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed (2)	
N	N	rpm	
9 650	10 800	17 000	
6 580	6 470	30 000	
10 300	12 000	15 000	
6 950	7 120	25 000	
11 800	15 200	12 000	
7 950	9 020	20 000	
10 400	10 400	20 000	
12 300	16 500	11 000	
8 240	9 670	19 000	
18 000	21 600	18 000	
15 600	18 900	9 500	
10 700	11 300	16 000	
12 100	13 400	16 000	
18 700	23 600	16 000	
17 500	23 200	7 500	
11 900	13 900	13 000	
21 000	28 900	13 000	
28 700	43 800	12 000	
19 400	27 600	6 500	
13 000	16 200	12 000	
29 400	46 600	11 000	
29 800	44 200	10 000	
28 700	43 800	5 500	
19 500	26 300	10 000	
32 200	49 800	10 000	

ROLLER BEARINGS

Caged Roller Bearings
Full Complement Roller Bearings




Shaft dia. 40 — 80mm

	Į.	Mass (Ref.)		Во		dimensionm	ons			
Shaft dia. mm	Full complement type	Cag	ed type	g	d	D	C	$r_{\rm s min}^{(1)}$	J	$E_{ m w}$
40	NAG 4908 — —	 NAU 4908	TRU 405930		40 40 40	62 59 62	22 30 22	0.6 0.6 0.6	46 45 46	56 52.5 56
42	_	_	TRU 426230	290	42	62	30	0.6	48	56.5
45	NAG 4909 —	 NAU 4909	TRU 456430	265 295 260	45 45 45	68 64 68	22 30 22	0.6 0.6 0.6	51 50.5 51	61 58.5 61
50	NAG 4910 —	NAU 4910	 TRU 507745	270 265 710	50 50 50	72 72 77	22 22 45	0.6 0.6 1	55.5 55.5 58	65.5 65.5 69
55	NAG 4911 — —	NAU 4911	— — TRU 558138	395 385 615	55 55 55	80 80 81	25 25 38	1 1 1	61.5 61.5 61.5	72.5 72.5 72.5
60	NAG 4912 — —	NAU 4912	TRU 608945	425 415 880	60 60 60	85 85 89	25 25 45	1 1 1	67 67 69.5	77.5 77.5 81.5
65	NAG 4913 —	— NAU 4913	_ _	455 440	65 65	90 90	25 25	1 1	72 72	83 83
70	NAG 4914 —	— NAU 4914	_ _	725 705	70 70	100 100	30 30	1 1	79 79	91.5 91.5
75	NAG 4915 — —	NAU 4915	 TRU 7510845	775 750 1 240	75 75 75	105 105 108	30 30 45	1 1 1	83.5 83.5 85.5	95.5 95.5 98.5
80	NAG 4916 —	NAU 4916		815 790	80 80	110 110	30 30	1	89.5 89.5	102 102

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

NAU49 TRU

NAG NAU TRU NAS

Basic dynamic	Basic static	Allowable	
load rating $\cal C$	load rating C_{0}	rotational speed (2)	
C	C 0		
N	N	rpm	
34 600	49 500	5 000	
34 700	62 500	8 500	
23 400	29 400	8 500	
34 600	57 800	8 000	
36 400	54 700	4 500	
32 600	59 700	8 000	
24 800	32 800	8 000	
38 200	59 900	4 000	
26 200	36 200	7 000	
75 700	134 000	7 000	
48 100	77 700	3 500	
33 000	47 000	6 500	
61 400	104 000	6 500	
50 300	84 300	3 500	
34 700	51 400	6 000	
88 100	152 000	6 000	
53 200	93 000	3 000	
36 900	57 100	5 500	
77 700	139 000	3 000	
53 700	84 600	5 000	
80 000	146 000	2 500	
54 800	88 200	5 000	
103 000	190 000	4 500	
83 000	157 000	2 500	
57 200	95 500	4 500	

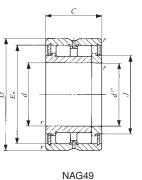
Remarks1. The outer ring has an oil groove and two oil holes.

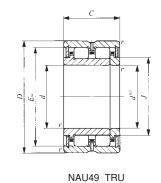
^{2.} No grease is prepacked. Perform proper lubrication.

NAG NAU TRU NAS

ROLLER BEARINGS

Caged Roller Bearings
Full Complement Roller Bearings




Shaft dia. 85 — 140mm

	I	dentification nu	mber	Mass (Ref.)	Boundary dimensions mm					
Shaft	Full complement	Cag	Caged type				1	(1)	I	
dia. mm	type				d	D	C	$r_{\rm s min}$	J	$E_{\rm w}$
	NAG 4917	_	_	1 190	85	120	35	1.5	96	110
85	_	_	TRU 8511850	1 530	85	118	50	1	94.5	107.5
00	_	NAU 4917		1 150	85	120	35	1.5	96	110
		_	TRU 8512045	1 500	85	120	45	1.5	96.5	110
	NAG 4918	-	_	1 250	90	125	35	1.5	101	115.5
90		NAU 4918	— TDU 0010550	1 210	90	125	35	1.5	101	115.5
			TRU 9012550	1 740	90	125	50	1.5	101	114
95	NAG 4919	— NAU 4040	_	1 300	95 95	130 130	35 35	1.5 1.5	106	120.5
		NAU 4919	_	1 270					106	120.5
100	NAG 4920	_	— TDU 40040550	1 850	100 100	140 135	40 50	1.5 1.5	114.5 112	129.5
100		NAU 4920	TRU 10013550	1 900 1 770	100	140	40	1.5		125.5 129.5
105	_		TRU 10515350	2 890	105	153	50	1.5	120	138
103	NAO 4000		1110 10313030							
110	NAG 4922	NAU 4922	_	2 010 1 930	110 110	150 150	40 40	1.5 1.5	123 123	138.5 138.5
	NAO 4004	NAU 4922			-					
120	NAG 4924	MAU 4924	_	2 780 2 680	120 120	165 165	45 45	1.5 1.5	136 136	153.5 153.5
405		NAU 4924	TDU 40547000		-					
125		_	TRU 12517860	4 490	125	178	60	1.5	143.5	
130	NAG 4926	_	_	3 750	130	180	50	2	147	165.5
		NAU 4926	_	3 610	130	180	50	2	147	165.5
135	_	_	TRU 13518860	4 790	135	188	60	1.5	154	172.5
140	NAG 4928	_	_	3 990	140	190	50	2	157.5	176
140	_	NAU 4928	_	3 840	140	190	50	2	157.5	176

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

|--|

Basic dynamic	Basic static	Allowable	
load rating ${\it C}$	load rating ${\it C}_{0}$	rotational speed (2)	
C			
N	N	rpm	
111 000	200 000	2 500	
114 000	222 000	4 000	
75 400	120 000	4 000	
110 000	215 000	4 000	
114 000	211 000	2 500	
79 500	130 000	4 000	
119 000	240 000	4 000	
117 000	222 000	2 000	
81 000	136 000	4 000	
152 000	292 000	2 000	
124 000	264 000	3 500	
106 000	181 000	3 500	
159 000	286 000	3 500	
161 000	322 000	1 900	
113 000	200 000	3 500	
208 000	431 000	1 700	
146 000	268 000	3 000	
211 000	408 000	3 000	
240 000	495 000	1 600	
166 000	304 000	2 500	
220 000	442 000	2 500	
249 000	531 000	1 500	
174 000	327 000	2 500	

Remarks1. The outer ring has an oil groove and two oil holes.

^{2.} No grease is prepacked. Perform proper lubrication.

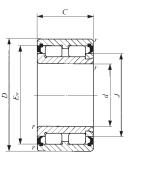
Е

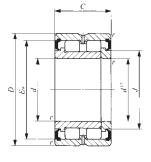
NAG NAU TRU NAS

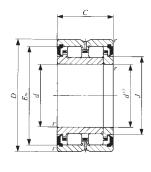
ROLLER BEARINGS

Caged Roller Bearings With Seal Full Complement Roller Bearings With Seal

Shaft dia. 10 – 40mm


		Identification numl	Mass (Ref.)	Boundary dimensions mm						
Shaft dia. mm	Full complement type	Cag	ed type	g	d	D	C	$r_{\rm s min}^{(1)}$	J	
10	NAG 4900UU	_	25.5	10	22	13	0.3	15.5		
12	NAG 4901UU	_	_	28.5	12	24	13	0.3	17	
15	NAG 4902UU —	_	 TRU 153320UU	38 80.5	15 15	28 33	13 20	0.3 0.3	21 19.5	
17	NAG 4903UU —	_	 TRU 173425UU	41 100	17 17	30 34	13 25	0.3 0.3	22.5 21.5	
20	NAG 4904UU — — — —	NAU 4904UU — —	TRU 203820UU TRU 203825UU	76.5 76 96.5 122	20 20 20 20	37 37 38 38	17 17 20 25	0.3 0.3 0.3 0.3	24 24 25 25	
25	NAG 4905UU — —	NAU 4905UU	TRU 254425UU	89.5 89 154	25 25 25	42 42 44	17 17 25	0.3 0.3 0.3	29.5 29.5 30.5	
28	_	_	TRU 284530UU	173	28	45	30	0.3	31.5	
30	NAG 4906UU — —	NAU 4906UU	TRU 304830UU	103 102 197	30 30 30	47 47 48	17 17 30	0.3 0.3 0.3	34 34 35	
32	_	_	TRU 325230UU	260	32	52	30	0.6	38	
35	NAG 4907UU — —	NAU 4907UU	TRU 355630UU	172 168 270	35 35 35	55 55 56	20 20 30	0.6 0.6 0.6	40 40 40	
40	NAG 4908UU — —		TRU 405930UU —	225 265 220	40 40 40	62 59 62	22 30 22	0.6 0.6 0.6	46 45 46	


Notes(1) Minimum allowable value of chamfer dimension r


(2) Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

Remarks1. The NAG and NAU series with a bore diameter, d, of 17 mm or less have no oil hole. In others, the outer ring has an oil groove and two oil holes.

2. The bearings with seals are provided with prepacked grease.

 $\mathsf{NAG49} \cdots \mathsf{UU} \atop (d \,{\leq}\, \mathsf{17})$

NAG49…UU

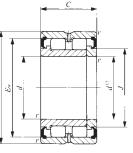
NAU49…UU TRU…UU

$E_{ m w}$	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(²)	
$L_{ m W}$	N	N	rpm	
19.5	9 650	10 800	10 000	
21	10 300	12 000	9 000	
25	11 800	15 200	7 000	
27	10 400	10 400	9 500	
26.5	12 300	16 500	6 500	
29.5	18 000	21 600	8 500	
31.5	15 600	18 900	5 500	
31.5	10 700	11 300	8 000	
32.5	12 100	13 400	7 500	
32.5	18 700	23 600	7 500	
37	17 500	23 200	4 500	
37	11 900	13 900	6 500	
38	21 000	28 900	6 000	
39.5	28 700	43 800	6 000	
41.5	19 400	27 600	4 000	
41.5	13 000	16 200	5 500	
42.5	29 400	46 600	5 500	
46	29 800	44 200	5 000	
49	28 700	43 800	3 500	
49	19 500	26 300	4 500	
49	32 200	49 800	4 500	
56	34 600	49 500	3 000	
52.5	34 700	62 500	4 000	
56	23 400	29 400	4 000	

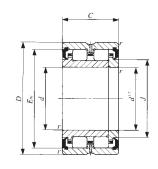
ROLLER BEARINGS

Caged Roller Bearings With Seal Full Complement Roller Bearings With Seal

gs With Seal



Shaft dia. 42 – 80mm


01.6		Identification numb	ber	Mass (Ref.)	Boundary dimensions mm					
Shaft dia. mm	Full complement type	Cago	ed type	g	d	D	C	$r_{\rm s min}$	J	
42	_	_	TRU 426230UU	290	42	62	30	0.6	48	
45	NAG 4909UU — —	 NAU 4909UU	TRU 456430UU	265 295 260	45 45 45	68 64 68	22 30 22	0.6 0.6 0.6	51 50.5 51	
50	NAG 4910UU — —	NAU 4910UU —	 TRU 507745UU	270 265 710	50 50 50	72 72 77	22 22 45	0.6 0.6 1	55.5 55.5 58	
55	NAG 4911UU — —	NAU 4911UU —	 TRU 558138UU	395 385 615	55 55 55	80 80 81	25 25 38	1 1 1	61.5 61.5 61.5	
60	NAG 4912UU — —	NAU 4912UU	 	425 415 880	60 60 60	85 85 89	25 25 45	1 1 1	67 67 69.5	
65	NAG 4913UU —	 NAU 4913UU		455 440	65 65	90 90	25 25	1	72 72	
70	NAG 4914UU —	 NAU 4914UU		725 705	70 70	100 100	30 30	1 1	79 79	
75	NAG 4915UU — —	NAU 4915UU	 TRU 7510845UU	775 750 1 240	75 75 75	105 105 108	30 30 45	1 1 1	83.5 83.5 85.5	
80	NAG 4916UU —	 NAU 4916UU		815 790	80 80	110 110	30 30	1 1	89.5 89.5	

⁽²⁾ Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

NAU49…UU TRU…UU

	Basic dynamic	Basic static	Allowable	
	load rating $\cal C$	load rating C_{0}	rotational speed(²)	
E_{w}				
**	N	N	rpm	
56.5	34 600	57 800	4 000	
61	36 400	54 700	2 500	
58.5	32 600	59 700	3 500	
61	24 800	32 800	3 500	
65.5	38 200	59 900	2 500	
65.5	26 200	36 200	3 500	
69	75 700	134 000	3 500	
72.5	48 100	77 700	2 000	
72.5 72.5	33 000 61 400	47 000 104 000	3 000 3 000	
77.5 77.5	50 300 34 700	84 300 51 400	2 000 3 000	
81.5	88 100	152 000	3 000	
83	53 200	93 000	1 900	
83	36 900	57 100	2 500	
91.5	77 700	139 000	1 800	
91.5	53 700	84 600	2 500	
95.5	80 000	146 000	1 700	
95.5	54 800	88 200	2 500	
98.5	103 000	190 000	2 000	
102	83 000	157 000	1 600	
102	57 200	95 500	2 000	

E16

NAG NAU TRU NAS

Remarks1. The outer ring has an oil groove and two oil holes.

^{2.} The bearings with seals are provided with prepacked grease.

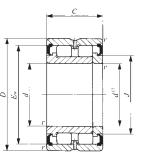
Е

NAG NAU TRU NAS

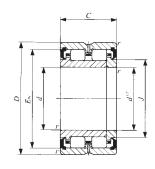
ROLLER BEARINGS

Caged Roller Bearings With Seal Full Complement Roller Bearings With Seal

Shaft dia. 85 — 140mm


		Identification num	hor	Mass		D =	di		
		identification num	pei	(Ref.)	Boundary dimensions mm				
Shaft dia. mm	Full complement type	Cag	ed type	g	d	D	C	$r_{\rm s min}^{(1)}$	J
	NAG 4917UU		_	1 190	85	120	35	1.5	96
85		— NAU 40171111	TRU 8511850UU	1 530 1 150	85 85	118 120	50 35	1 1.5	94.5 96
	_	NAU 4917UU —	TRU 8512045UU	1 500	85	120	45	1.5	96.5
	NAG 4918UU	_	_	1 250	90	125	35	1.5	101
90	_	NAU 4918UU		1 210	90	125	35	1.5	101
	_	_	TRU 9012550UU	1 740	90	125	50	1.5	101
95	NAG 4919UU	— NAU 4919UU	_	1 300 1 270	95 95	130 130	35 35	1.5 1.5	106 106
	NAG 4920UU	NAU 491900	_						114.5
100	MAG 492000	_	TRU 10013550UU	1 850 1 900	100	140 135	40 50	1.5 1.5	114.5
100	_	NAU 4920UU	_	1 770	100	140	40	1.5	114.5
105	—	_	TRU 10515350UU	2 890	105	153	50	1.5	120
110	NAG 4922UU	_	_	2 010	110	150	40	1.5	123
	_	NAU 4922UU	_	1 930	110	150	40	1.5	123
120	NAG 4924UU		_	2 780	120	165	45	1.5	136
	_	NAU 4924UU	_	2 680	120	165	45	1.5	136
125	_	_	TRU 12517860UU	4 490	125	178	60	1.5	143.5
130	NAG 4926UU		_	3 750	130	180	50	2	147
	_	NAU 4926UU	_	3 610	130	180	50	2	147
135	_	_	TRU 13518860UU	4 790	135	188	60	1.5	154
140	NAG 4928UU		_	3 990	140	190	50	2	157.5
		NAU 4928UU	_	3 840	140	190	50	2	157.5

Notes($\frac{1}{2}$) Minimum allowable value of chamfer dimension r


(2) Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

Remarks1. The outer ring has an oil groove and two oil holes.

2. The bearings with seals are provided with prepacked grease.

NAU49…UU TRU…UU

	Basic dynamic load rating	Basic static	Allowable rotational	
	C	C_0	speed(2)	
$E_{\rm w}$	N	N	rpm	
110	111 000	200 000	1 500	
107.5	114 000	222 000	2 000	
110	75 400	120 000	2 000	
110	110 000	215 000	2 000	
115.5	114 000	211 000	1 400	
115.5	79 500	130 000 240 000	1 900	
114	119 000		1 900	
120.5	117 000	222 000	1 300	
120.5	81 000	136 000	1 800	
129.5	152 000	292 000	1 200	
125.5	124 000	264 000	1 700	
129.5	106 000	181 000	1 700	
138	159 000	286 000	1 600	
138.5	161 000	322 000	1 100	
138.5	113 000	200 000	1 600	
153.5	208 000	431 000	1 000	
153.5	146 000	268 000	1 400	
162	211 000	408 000	1 400	
165.5	240 000	495 000	950	
165.5	166 000	304 000	1 300	
172.5	220 000	442 000	1 300	
176	249 000	531 000	900	
176	174 000	327 000	1 200	

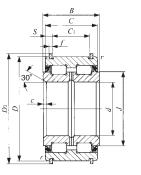
Е

NAG NAU TRU NAS

ROLLER BEARINGS

Roller Bearings for Sheaves

Shaft dia. 40 — 170mm

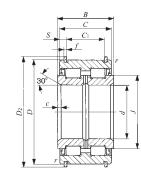

	Identificati	on number	Mass (Ref.)	Boundary dimensions mm						
Shaft dia. mm	Sealed type	Shield type	kg	d	D	D_2	В	C	C_1	S
40	NAS 5008UUNR	NAS 5008ZZNR	0.55	40	68	71.8	38	37	28	4.5
45	NAS 5009UUNR	NAS 5009ZZNR	0.70	45	75	78.8	40	39	30	4.5
50	NAS 5010UUNR	NAS 5010ZZNR	0.75	50	80	83.8	40	39	30	4.5
55	NAS 5011UUNR	NAS 5011ZZNR	1.15	55	90	94.8	46	45	34	5.5
60	NAS 5012UUNR	NAS 5012ZZNR	1.20	60	95	99.8	46	45	34	5.5
65	NAS 5013UUNR	NAS 5013ZZNR	1.30	65	100	104.8	46	45	34	5.5
70	NAS 5014UUNR	NAS 5014ZZNR	1.90	70	110	114.5	54	53	42	5.5
75	NAS 5015UUNR	NAS 5015ZZNR	2.00	75	115	119.5	54	53	42	5.5
80	NAS 5016UUNR	NAS 5016ZZNR	2.65	80	125	129.5	60	59	48	5.5
85	NAS 5017UUNR	NAS 5017ZZNR	2.80	85	130	134.5	60	59	48	5.5
90	NAS 5018UUNR	NAS 5018ZZNR	3.70	90	140	145.4	67	66	54	6
95	NAS 5019UUNR	NAS 5019ZZNR	3.90	95	145	150.4	67	66	54	6
100	NAS 5020UUNR	NAS 5020ZZNR	4.05	100	150	155.4	67	66	54	6
110	NAS 5022UUNR	NAS 5022ZZNR	6.50	110	170	175.4	80	79	65	7
120	NAS 5024UUNR	NAS 5024ZZNR	6.95	120	180	188.4	80	79	65	7
130	NAS 5026UUNR	NAS 5026ZZNR	10.5	130	200	208.4	95	94	77	8.5
140	NAS 5028UUNR	NAS 5028ZZNR	11.0	140	210	218.4	95	94	77	8.5
150	NAS 5030UUNR	NAS 5030ZZNR	13.5	150	225	233.4	100	99	81	9
160	NAS 5032UUNR	NAS 5032ZZNR	16.5	160	240	248.4	109	108	89	9.5
170	NAS 5034UUNR	NAS 5034ZZNR	22.5	170	260	270	122	121	99	11

Minimum allowable value of chamfer dimension r

Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.

Remarks1. The inner ring has an oil groove and two oil holes.

2. Roller Bearings for Sheaves are provided with prepacked grease.


3.5

1.5 204.5

857 000

1 730 000

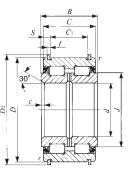
600

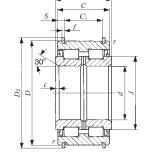
NAS50 ··· ZZNR

				Basic dynamic load rating	Basic static load rating	Allowable rotational
		(1)		C	C_0	speed(²)
f	С	$r_{\rm s min}$	J	N	N	rpm
2	1.5	0.6	50	79 500	116 000	2 500
2	1.5	0.6	56	95 500	144 000	2 000
2	1.5	0.6	61	100 000	158 000	2 000
2.5	2	0.6	68	118 000	193 000	1 800
2.5	2	0.6	73	123 000	208 000	1 700
2.5	2	0.6	78	128 000	224 000	1 600
2.5	2	0.6	84	171 000	284 000	1 400
2.5	2	0.6	91	179 000	308 000	1 300
2.5	2	0.6	97	251 000	428 000	1 300
2.5	2	0.6	101	257 000	446 000	1 200
2.5	2.5	0.6	110	305 000	540 000	1 100
2.5	2.5	0.6	114	312 000	562 000	1 100
2.5	2.5	0.6	118	318 000	584 000	1 000
2.5	3	1	130	384 000	697 000	900
3	3	1	139.5	400 000	750 000	850
3	3	1	156	537 000	1 000 000	750
3	3	1	167	543 000	1 070 000	700
3	3.5	1	176.5	623 000	1 210 000	650
3	3.5	1.5	188.5	720 000	1 390 000	650

ROLLER BEARINGS

Roller Bearings for Sheaves


Shaft dia. 180 — 440mm


		<u> </u>								
	Identificati	Mass (Ref.)	Boundary dimensions mm							
Shaft dia. mm	Sealed type	Shield type	kg	d	D	D_2	В	C	C_1	S
180	NAS 5036UUNR	NAS 5036ZZNR	30.0	180	280	294	136	135	110	12.5
190	NAS 5038UUNR	NAS 5038ZZNR	31.5	190	290	306	136	135	110	12.5
200	NAS 5040UUNR	NAS 5040ZZNR	40.5	200	310	326	150	149	120	14.5
220	NAS 5044UUNR	NAS 5044ZZNR	52.0	220	340	356	160	159	130	14.5
240	NAS 5048UUNR	NAS 5048ZZNR	55.5	240	360	376	160	159	130	14.5
260	NAS 5052UUNR	NAS 5052ZZNR	85.0	260	400	416	190	189	154	17.5
280	NAS 5056UUNR	NAS 5056ZZNR	90.9	280	420	440	190	189	154	17.5
300	NAS 5060UU	NAS 5060ZZ	130	300	460		218	216	_	_
320	NAS 5064UU	NAS 5064ZZ	135	320	480		218	216	_	
340	NAS 5068UU	NAS 5068ZZ	180	340	520	_	243	241		
360	NAS 5072UU	NAS 5072ZZ	190	360	540		243	241		
380	NAS 5076UU	NAS 5076ZZ	200	380	560	_	243	241	_	
400	NAS 5080UU	NAS 5080ZZ	265	400	600	_	272	270	_	
420	NAS 5084UU	NAS 5084ZZ	275	420	620	_	272	270	_	
440	NAS 5088UU	NAS 5088ZZ	310	440	650	_	280	278	_	_

(²) Allowable rotational speed applies to grease lubrication. Considering that the axial load acts under practical operating conditions, up to 1/10 of this value is recommended for actual use.
 Remarks1. The bearings with a bore diameter d of 300 mm or more has neither stop rings nor stop ring grooves.
 2. The inner ring has an oil groove and two oil holes.

- 3. Roller Bearings for Sheaves are provided with prepacked grease.

NAS50 ··· UUNR

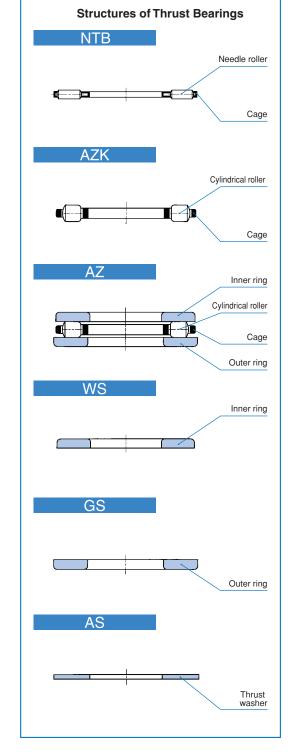
NAS50 ··· ZZNR

		I	(¹)	l	Basic dynamic load rating	Basic static load rating C_0	Allowable rotational speed(2)
	f	С	$r_{\rm s min}$	J	N	N	rpm
	5	3.5	1.5	217	1 070 000	2 140 000	550
	5	3.5	1.5	225	1 120 000	2 230 000	500
	5	3.5	1.5	242	1 310 000	2 650 000	500
ĺ	6	4	1.5	260	1 510 000	3 110 000	450
	6	4	1.5	278.5	1 570 000	3 350 000	400
Ī	7	5	2	312	2 130 000	4 510 000	350
	7	5	2	335	2 210 000	4 860 000	350
	_	5	2	359	2 670 000	5 870 000	300
	_	5	2	375	2 700 000	6 140 000	300
	_	6	2.5	404	3 370 000	7 560 000	300
	_	6	2.5	423	3 420 000	7 940 000	250
	_	6	2.5	442	3 580 000	8 300 000	250
	_	6	2.5	471	4 250 000	10 100 000	250
Ī	_	6	2.5	490	4 390 000	10 400 000	250
	_	8	3	516	4 570 000	10 900 000	200

NAG NAU TRU NAS

THRUST BEARINGS

- Thrust Needle Roller Bearings
- ●Thrust Roller Bearings



Structure and Features

IKO Thrust Bearings consist of a precisely made cage and rollers. They have high rigidity and high load capacities and can be used in small spaces.

Thrust Needle Roller Bearings incorporate needle rollers, while Thrust Roller Bearings incorporate cylindrical rollers. Various types of raceway rings are available, and suitable bearings can be selected according to the operating conditions.

When the bearing mounting surfaces of a machine are heat-treated and finished by grinding as raceways, Thrust Bearings can be used without raceway rings allowing the machine to be made more compact. They are most suited to applications where high accuracy is required at high speeds and under fluctuating heavy loads, such as driving mechanisms for automobiles, machine tools, and high-pressure pumps.

NTB AS AZK WS·GS

F1 F2

In **IKO** Thrust Bearings, the types shown in Table 1 are available.

Table 1.1 Type of bearing

Type	Thrust needle	Thrust roller bearings			
Туре	roller bearings	Without inner and outer rings	With inner and outer rings		
Model code	NTB	AZK	AZ		

Table 1.2 Type of bearing ring

Туре	Type Inner ring		Thrust washer	
Model code	WS	GS	AS	

Thrust Needle Roller Bearings

These bearings consist of a cage made from a steel plate, which is precisely press formed and surface-hardened, and needle rollers with a diameter variation within 2μ m. They have a rigid structure and a high lubricant-retaining capacity.

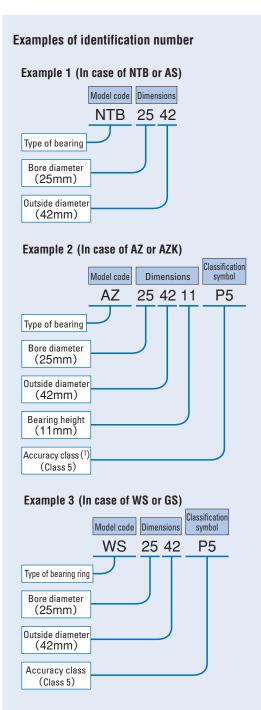
As they have the lowest sectional height compared with other thrust bearings, they can be used instead of conventional thrust washers and can withstand high-speed rotations with a low coefficient of friction.

Specially designed thin inner rings (WS) and outer rings (GS), and especially thin (1 mm thick) thrust washers (AS), are available for use in various applications.

These bearings are generally used by utilizing their inner surface as the guide surface.

Thrust Roller Bearings

In this series, the caged cylindrical rollers AZK and the complete bearings AZ in which AZK are combined with an inner ring (WS) and an outer ring (GS) are available.


The cage has a special precise structure which is highly rigid, and cylindrical rollers are outwardly arranged and guided by the cage with exact precision to enable them to withstand heavy loads even at high rotational speeds.

Owing to the high accuracy of the bearing height T, they are suitable for use in machine tools, ultra-high pressure pumps, etc.

These bearings are generally used by utilizing their inner surface as the guide surface.

Identification Number

The identification number of Thrust Bearings consists of a model code, dimensions and a classification symbol. Some examples are shown below.

Note(1) Not applicable to the model AZK.

The accuracy of Thrust Bearings is based on JIS B 1514-2, -3:2006 as shown in Table 2.

Table 2.1 Tolerances

Table 2.1 Tolerances			unit: μ m			
Type of bearing	Dimension	Dimension symbol		Tolerance		
		Bore diameter	d	E11		
Thrust needle roller bearings	NTB	Outside diameter	D	c12		
		Width	D_{w}	Equivalent to	o JIS B 1506 Class 2	
		Bore diameter	d_{c}	Λc	nor Table 2.2	
Thrust roller bearings	AZK	Outside diameter	$D_{\rm c}$	As per Table 2.2		
		Width	$D_{ m w}$	$1 \le D_{\mathrm{w}} \le 10$	Equivalent to JIS B 1506 Class 2	
			D _W	$10 < D_{\rm w} \le 30$	Equivalent to JIS B 1506 Class 3	
	AZ	Height	T	As	per Table 2.3	
		Bore diameter	d	As	per Table 2.4	
Inner rings	WS	Outside diameter	D		b12	
		Width	В		h11	
		Bore diameter	d		B12	
Outer rings	GS	Outside diameter	D	As	per Table 2.4	
		Width	В		h11	
		Bore diameter	d	E12		
Thrust washers	AS	Outside diameter	D	e12		
		Width	S	±50		

Table 2.2 Tolerances of bore and outside diameters for AZK series

ı	ınit.	11	

unit: μ r									
Nominal dimension mm			dc e diameter ation	$\Delta_{D ext{c}}$ Cage outside diameter deviation					
0ver	Incl.	High	Low	High	Low				
_	50	+100	0	0	- 300				
50	100	+200	0	0	- 400				
100	200	+300	0	0	- 500				
200	300	+500	0	0	– 700				
300	400	+700	0	0	— 1000				
400	500	_	_	0	- 1200				

Table 2.3 Tolerances of height for AZ series

unit /

F4

Nominal bear m	ring bore dia.	$\Delta_{T_{ m S}}$ Deviation of an actual bearing height		
Over	Incl.	High	Low	
_	18	0	- 75	
18	30	0	- 75	
30	50	0	- 100	
50	80	0	- 125	
80	120	0	— 150	
120	180	0	— 175	
180	250	0	- 200	
250	315	0	- 225	
315	400	0	- 300	
400	400 500		- 400	

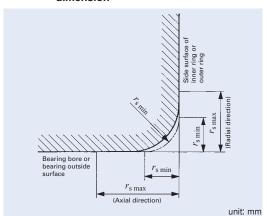
1N=0.102kgf=0.2248lbs. 1mm=0.03937inch NTB

AS

AZK

ws-gs

Table 2.4 Tolerances and allowable values for WS and GS


unit:	П	m

d or	D (1)		Inner ring			Outer ring		Inne	r ring or oute	r ring
Nominal bearing bore dia. or outside dia.		Single plane	mp e mean bore deviation	$V_{d{ m sp}}$ Bore diameter variation in a sin-	, , , , , , , , , , , , , , , , , , ,		$V_{D{ m sp}}$ Outside diameter variation in a sin-	Bearing r	$S_{ m i}$ or $S_{ m e}$ (2) ing thickness	variation
m	m			gle radial plane			gle radial plane	Class 0	Class 6	Class 5
Over	Incl.	High	Low	Max.	High	Low	Max.		Max.	
_	18	0	- 8	6	0	- 11	8	10	5	3
18	30	0	- 10	8	0	- 13	10	10	5	3
30	50	0	- 12	9	0	- 16	12	10	6	3
50	80	0	- 15	11	0	- 19	14	10	7	4
80	120	0	- 20	15	0	- 22	17	15	8	4
120	180	0	- 25	19	0	- 25	19	15	9	5
180	250	0	- 30	23	0	-30	23	20	10	5
250	315	0	- 35	26	0	- 35	26	25	13	7
315	400	0	- 40	30	0	-40	30	30	15	7
400	500	0	- 45	34	0	- 45	34	30	18	9

Notes(¹) d for Δ_{dmp} and V_{dp} , and D for Δ_{Dmp} and V_{Dp} , respectively. d for thickness variations of inner and outer rings .

(2) d_i for thickness variations of rings for NAX(I) and NBX(I)

Table 2.5 Permissible limit values for chamfer dimension

$r_{ m smin}$	Radial and axial directions
's min	$r_{ m s\ max}$
0.3	0.8
0.6	1.5
1	2.2
1.1	2.7
1.5	3.5
2	4
2.1	4.5
3	5.5
4	6.5
5	8

The recommended fits for Thrust Bearings are shown in Table 3.

Table 3 Recommended fits

Type of bearing		Tolerance class		
Type of bearing		Shaft	Housing bore	
Thrust needle roller bearings NTB		h8		
Thrust roller bearings	AZK	h6		
Tillust foller beatings	AZ	110	H7	
Inner rings	ws	h6		
Outer rings	GS		H7	
Thrust washers	AS	h8		

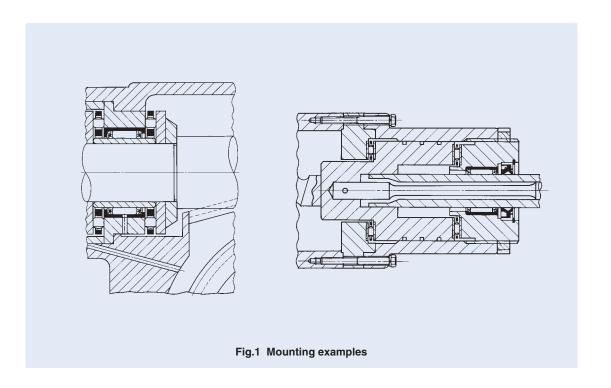
Mounting

When mounting Thrust Bearings, the following items should be considered.

1 When inner and outer rings are not used, the hardness of the raceway surfaces should be $58 \sim 64$ HRC, the effective hardening depth should be adequate, and the surface roughness should be less than 0.2 μ mR_{a}

2When mounting inner and outer rings to shaft and housing bore, dimensions related to mounting should be based on the dimension tables.

Also, the mounting surfaces should be finished at right angles to the center axis and they should be sufficiently rigid.


3To avoid elastic deformation, the thrust washer AS must be seated uniformly on its mating surface.

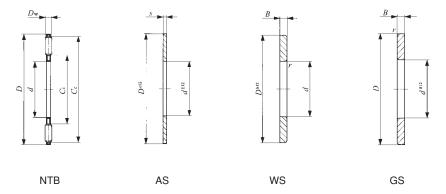
A small warp in an AS washer will be corrected automatically when an axial load is applied.

4 Thrust Roller Bearings are combinations of a copper alloy component and cylindrical rollers. When handling the AZK itself, care should be taken to prevent deformations, blemishes, etc.

ws⋅gs

THRUST BEARINGS

Thrust Needle Roller Bearings



Shaft dia. 10 — 85mm

Shaft			Identification number								
dia.	Thrust needle roller bearing	Mass (Ref.) g	Thrust washer	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g				
10	NTB 1024	3.3	AS 1024	2.9	WS 1024	GS 1024	8				
12	NTB 1226	3.8	AS 1226	3.2	WS 1226	GS 1226	8.9				
15	NTB 1528	4.1	AS 1528	3.4	WS 1528	GS 1528	9.3				
16	NTB 1629	4.3	AS 1629	3.6	WS 1629	GS 1629	9.8				
17	NTB 1730	4.5	AS 1730	3.7	WS 1730	GS 1730	10.2				
18	NTB 1831	4.7	AS 1831	3.9	WS 1831	GS 1831	10.7				
20	NTB 2035	6.1	AS 2035	5	WS 2035	GS 2035	13.8				
25	NTB 2542	8.2	AS 2542	6.9	WS 2542	GS 2542	21				
30	NTB 3047	9.4	AS 3047	7.9	WS 3047	GS 3047	24				
35	NTB 3552	10.6	AS 3552	8.9	WS 3552	GS 3552	31.5				
40	NTB 40603	22	AS 4060	12.1	WS 4060	GS 4060	42.5				
45	NTB 4565	24.5	AS 4565	13.3	WS 4565	GS 4565	53.5				
50	NTB 5070	26.5	AS 5070	14.5	WS 5070	GS 5070	58.5				
55	NTB 5578	33.5	AS 5578	18.5	WS 5578	GS 5578	93				
60	NTB 6085	38.5	AS 6085	22	WS 6085	GS 6085	105				
65	NTB 6590	41.5	AS 6590	23.5	WS 6590	GS 6590	124				
70	NTB 7095	61	AS 7095	25	WS 7095	GS 7095	132				
75	NTB 75100	65	AS 75100	26.5	WS 75100	GS 75100	153				
80	NTB 80105	68.5	AS 80105	28	WS 80105	GS 80105	162				
85	NTB 85110	72	AS 85110	29.5	WS 85110	GS 85110	170				

Notes(1) Minimum allowable value of chamfer dimension r

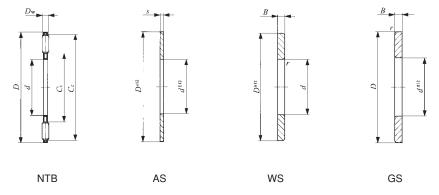
		Boui	ndary	dimen	sions			Basic dynamic	Basic static	Allowable	
mm								load rating	load rating	rotational	
					(1)			C	C_0	speed(2)	
d	D	D_{w}	S	В	$r_{\rm s min}$	$C_{\rm i}$	Ce	N	N	rpm	
10	24	2	1	2.75	0.3	14	22	7 820	23 900	15 000	
12	26	2	1	2.75	0.3	16	24	8 340	26 900	13 000	
15	28	2	1	2.75	0.3	18	26	8 830	29 900	12 000	
16	29	2	1	2.75	0.3	19	27	9 070	31 400	11 000	
17	30	2	1	2.75	0.3	20	28	9 320	32 900	11 000	
18	31	2	1	2.75	0.3	21	29	9 550	34 400	10 000	
20	35	2	1	2.75	0.3	23	33	11 700	46 500	9 000	
25	42	2	1	3	0.6	29	40	14 400	64 700	7 500	
30	47	2	1	3	0.6	34	45	15 400	73 300	6 500	
35	52	2	1	3.5	0.6	39	50	16 300	81 900	5 500	
40	60	3	1	3.5	0.6	45	57	24 200	108 000	5 000	
45	65	3	1	4	0.6	50	62	25 900	121 000	4 500	
50	70	3	1	4	0.6	55	67	27 600	135 000	4 000	
55	78	3	1	5	0.6	61	75	32 400	171 000	4 000	
60	85	3	1	4.75	1	66	82	38 200	219 000	3 500	
65	90	3	1	5.25	1	71	87	40 100	237 000	3 000	
70	95	4	1	5.25	1	75	91	47 400	244 000	3 000	
75	100	4	1	5.75	1	80	96	48 400	256 000	3 000	
80	105	4	1	5.75	1	85	101	49 500	267 000	2 500	
85	110	4	1	5.75	1	90	106	50 300	279 000	2 500	

AS AZK WS·GS

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

THRUST BEARINGS

Thrust Needle Roller Bearings



Shaft dia. 90 — 130mm

	Identification number								
Shaft dia. mm	Thrust needle roller bearing	Mass (Ref.)	Thrust washer	Mass (Ref.)	Inner ring	Outer ring	Mass (Ref.)		
90	NTB 90120	92	AS 90120	38	WS 90120	GS 90120	250		
100	NTB 100135	119	AS 100135	50	WS 100135	GS 100135	350		
110	NTB 110145	129	_	_	WS 110145	GS 110145	380		
120	NTB 120155	139	_	_	WS 120155	GS 120155	410		
130	NTB 130170	225	_		WS 130170	GS 130170	660		

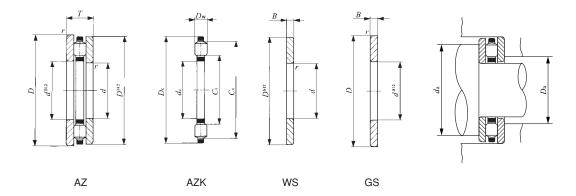
Notes(1) Minimum allowable value of chamfer dimension r

Boundary dimensions mm								Basic dynamic load rating	Basic static load rating	Allowable rotational	
		1			(1)	(1)		C	C_0	speed(²)	
d	D	D_{w}	S	В	$r_{\rm s min}^{(1)}$	$C_{\rm i}$	$C_{\rm e}$	N	N	rpm	
90	120	4	1	6.5	1	96	116	64 500	394 000	2 500	
100	135	4	1	7	1	107	131	80 300	541 000	2 000	
110	145	4	_	7	1	117	141	83 200	578 000	2 000	
120	155	4	_	7	1	127	151	87 900	634 000	1 800	
130	170	5	_	9	1	137	165	120 000	839 000	1 700	

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

THRUST BEARINGS

Thrust Roller Bearings



Shaft dia. 10 — 65mm

Shaft			Identificat	ion number								
dia.	Thrust roller bearing	Mass (Ref.) g	Thrust roller bearing	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g					
10	AZ 10249	24.6	AZK 10243.5	8.6	WS 1024	GS 1024	8					
12	AZ 12269	26.5	AZK 12263.5	8.7	WS 1226	GS 1226	8.9					
15	AZ 15289	28	AZK 15283.5	9.4	WS 1528	GS 1528	9.3					
17	AZ 17309	30.5	AZK 17303.5	10.1	WS 1730	GS 1730	10.2					
20	AZ 203510	45.5	AZK 20354.5	17.9	WS 2035	GS 2035	13.8					
25	AZ 254211	70	AZK 25425	28	WS 2542	GS 2542	21					
30	AZ 304711 AZ 305216	79 160	AZK 30475 AZK 30527.5	31 70	WS 3047 WS 3052	GS 3047 GS 3052	24 45					
35	AZ 355212 AZ 356218	99 260	AZK 35525 AZK 35627.5	36 98	WS 3552 WS 3562	GS 3552 GS 3562	31.5 81					
40	AZ 406013 AZ 406819	139 310	AZK 40606 AZK 40689	54 132	WS 4060 WS 4068	GS 4060 GS 4068	42.5 89					
45	AZ 456514 AZ 457320	169 360	AZK 45656 AZK 45739	62 144	WS 4565 WS 4573	GS 4565 GS 4573	53.5 108					
50	AZ 507014 AZ 507822	185 430	AZK 50706 AZK 507811	68 194	WS 5070 WS 5078	GS 5070 GS 5078	58.5 118					
55	AZ 557816 AZ 559025	275 725	AZK 55786 AZK 559011	89 275	WS 5578 WS 5590	GS 5578 GS 5590	93 225					
60	AZ 608517 AZ 609526 AZ 6013026	345 770 2 090	AZK 60857.5 AZK 609511 AZK 6013010	135 290 790	WS 6085 WS 6095 WS 60130	GS 6085 GS 6095 GS 60130	105 240 650					
65	AZ 659018 AZ 6510027	380 860	AZK 65907.5 AZK 6510011	132 310	WS 6590 WS 65100	GS 6590 GS 65100	124 275					

Notes(1) Minimum allowable value of chamfer dimension r

			Во	undary c		ons				Standard dimension		Basic dynamic	Basic static	Allowable
d	D	T	$d_{\rm c}$	$D_{\rm c}$	D_{w}	В	$r_{\rm smin}^{(1)}$	$C_{\rm i}$	$C_{\rm e}$	d_{a} Min.	D_{a} Max.	C N	C_0	speed(²)
10	24	9	10.04	23.6	3.5	2.75	0.3	13	21	21	13	8 990	19 100	18 000
12	26	9	12.04	25.6	3.5	2.75	0.3	15	23	23	16	10 400	23 900	16 000
15	28	9	15.04	27.6	3.5	2.75	0.3	17	25	25	18	10 200	23 900	14 000
17	30	9	17.04	29.6	3.5	2.75	0.3	19	27	27	20	11 400	28 600	13 000
20	35	10	20.04	34.6	4.5	2.75	0.3	22	33	33	23	19 000	48 700	11 000
25	42	11	25.05	41.6	5	3	0.6	28	39	39	28	22 700	60 700	9 000
30	47	11	30.05	46.5	5	3	0.6	33	44	44	33	27 400	81 000	8 000
30	52	16	30.05	51.5	7.5	4.25	0.6	35	49	48	36	38 400	95 700	7 500
35	52	12	35.05	51.5	5	3.5	0.6	38	49	49	39	29 100	91 100	7 000
35	62	18	35.05	61.5	7.5	5.25		42	58	57	43	47 900	135 000	6 500
40	60	13	40.05	59.5	6	3.5	0.6	44	57	57	44	41 700	133 000	6 000
40	68	19	40.05	67.5	9	5	1	45	64	64	46	68 700	195 000	5 500
45	65	14	45.05	64.5	6	4	0.6	49	62	62	49	40 800	133 000	5 500
45	73	20	45.05	72.5	9	5.5	1	50	69	69	51	75 700	227 000	5 000
50	70	14	50.05	69.5	6	4	0.6	54	67	67	54	43 300	148 000	5 000
50	78	22	50.05	77.5	11	5.5	1	55	74	73	56	84 300	232 000	4 500
55	78	16	55.05	77.5	6	5	0.6	59	75	75	60	51 700	192 000	4 500
55	90	25	55.05	89.5	11	7	1	63	85	84	63	108 000	332 000	4 000
60	85	17	60.05	84.5	7.5	4.75	1	65	81	81	66	64 600	224 000	4 000
60	95	26	60.05	94.5	11	7.5	1	68	90	89	68	106 000	332 000	4 000
60	130	26	60.05	129.5	10	8	1.5	79	119	119	80	158 000	634 000	3 000
65	90	18	65.05	89.5	7.5	5.25	1	70	86	86	71	68 300	247 000	4 000
65	100	27	65.05	99.5	11	8		73	95	94	73	116 000	379 000	3 500

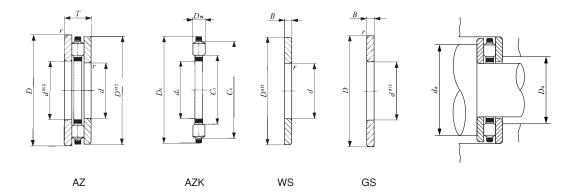
NTB AS AZK WS·GS

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

NTB AS AZK WS·GS

THRUST BEARINGS

Thrust Roller Bearings



Shaft dia. 70 — 130mm

			Identifica	tion number			
Shaft dia.	Thrust roller bearing	Mass (Ref.) g	Thrust roller bearing	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g
70	AZ 709518	420	AZK 70957.5	156	WS 7095	GS 7095	132
	AZ 7010527	905	AZK 7010511	325	WS 70105	GS 70105	290
	AZ 7014026	2 250	AZK 7014010	890	WS 70140	GS 70140	680
75	AZ 7510019	465	AZK 751007.5	159	WS 75100	GS 75100	153
	AZ 7511027	960	AZK 7511011	340	WS 75110	GS 75110	310
80	AZ 8010519	495	AZK 801057.5	171	WS 80105	GS 80105	162
	AZ 8011528	1 060	AZK 8011511	370	WS 80115	GS 80115	345
	AZ 8015026	2 500	AZK 8015010	920	WS 80150	GS 80150	790
85	AZ 8511019	530	AZK 851107.5	190	WS 85110	GS 85110	170
	AZ 8512531	1 460	AZK 8512512	510	WS 85125	GS 85125	475
90	AZ 9012022	790	AZK 901209	290	WS 90120	GS 90120	250
	AZ 9013535	2 040	AZK 9013514	750	WS 90135	GS 90135	645
	AZ 9016026	2 710	AZK 9016010	1 000	WS 90160	GS 90160	855
100	AZ 10013525	1 190	AZK 10013511	490	WS 100135	GS 100135	350
	AZ 10015038	2 720	AZK 10015015	980	WS 100150	GS 100150	870
	AZ 10019039	5 960	AZK 10019015	2 120	WS 100190	GS 100190	1 920
110	AZ 11014525	1 350	AZK 11014511	590	WS 110145	GS 110145	380
	AZ 11016040	3 220	AZK 11016017	1 320	WS 110160	GS 110160	950
	AZ 11020039	6 400	AZK 11020015	2 280	WS 110200	GS 110200	2 060
120	AZ 12015525	1 450	AZK 12015511	630	WS 120155	GS 120155	410
	AZ 12017542	4 020	AZK 12017518	1 640	WS 120175	GS 120175	1 190
	AZ 12022039	7 730	AZK 12022015	2 730	WS 120220	GS 120220	2 500
130	AZ 13017030	2 180	AZK 13017012	860	WS 130170	GS 130170	660
	AZ 13018542	4 300	AZK 13018518	1 760	WS 130185	GS 130185	1 270
	AZ 13023039	8 240	AZK 13023015	2 940	WS 130230	GS 130230	2 650

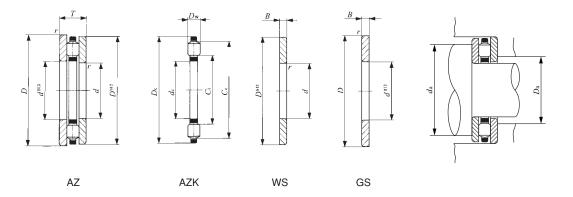
Notes(1) Minimum allowable value of chamfer dimension r

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Во	undary d		ons				Basic dynamic	Basic static	Allowable		
d D T d _c D _e D _w B r _{smin} C _i C _e Min. Max. Mon. Max. N N rpm 70 95 18 70.05 94.5 7.5 5.25 1 75 91 91 76 72 000 269 000 3 500 70 140 26 70.05 139.5 10 8 1.1 89 129 129 90 169 000 713 000 3 500 75 100 19 75.05 199.5 7.5 5.75 1 80 96 96 81 71 100 269 000 3 500 75 110 27 75.05 109.5 11 8 1 83 105 104 83 123 000 427 000 3 000 80 105 19 80.05 104.5 7.5 5.75 1 85 101 101 86 74 500 292 000 3 000 <			ı		mı	m							load rating	load rating	rotational speed(2)
70 105 27 70.05 104.5 11 8 1 78 100 99 78 114 000 379 000 3 500 70 140 26 70.05 139.5 10 8 1.1 89 129 129 90 169 000 713 000 3 000 75 100 19 75.05 19.5 7.5 5.75 1 80 96 96 81 71 100 269 000 3 500 80 105 19 80.05 104.5 7.5 5.75 1 85 101 101 86 74 500 292 000 3 000 80 150 26 80.05 149.5 10 8 1.5 99 139 139 100 180 000 792 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000	d	D	Т	$d_{\rm c}$	$D_{\rm c}$	$D_{ m w}$	В			Ce					
70 140 26 70.05 139.5 10 8 1.1 89 129 129 90 169 000 713 000 3 000 75 100 19 75.05 99.5 7.5 5.75 1 80 96 96 81 71 100 269 000 3 500 75 110 27 75.05 109.5 11 8 1 83 105 104 83 123 000 427 000 3 000 80 105 19 80.05 104.5 7.5 5.75 1 85 101 101 86 74 500 292 000 3 000 80 150 26 80.05 149.5 10 8 1.5 99 139 139 100 180 000 792 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 196 91 77 800 314 000 3 000	70	95	18	70.05	94.5	7.5	5.25	1	75	91	91	76	72 000	269 000	3 500
75 100 19 75.05 99.5 7.5 5.75 1 80 96 96 81 71 100 269 000 3 500 75 110 27 75.05 109.5 11 8 1 83 105 104 83 123 000 427 000 3 000 80 105 19 80.05 104.5 7.5 5.75 1 85 101 101 86 74 500 292 000 3 000 80 150 26 80.05 149.5 10 8 1.5 99 139 139 100 180 000 792 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000 85 125 31 85.05 194.5 12.5 1.95 195 119 118 95 145 000 513 000 3 000 90															
75 110 27 75.05 109.5 11 8 1 83 105 104 83 123 000 427 000 3 000 80 105 19 80.05 104.5 7.5 5.75 1 85 101 101 86 74 500 292 000 3 000 80 115 28 80.05 114.5 11 8.5 1 88 110 109 88 122 000 427 000 3 000 85 150 26 80.05 149.5 10 8 1.5 99 139 139 100 180 000 792 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000 85 125 31 85.05 124.5 12 9.5 1 95 119 118 95 145 000 513 000 3 000 <td>70</td> <td>140</td> <td>26</td> <td>70.05</td> <td>139.5</td> <td>10</td> <td>8</td> <td>1.1</td> <td>89</td> <td>129</td> <td>129</td> <td>90</td> <td>169 000</td> <td>713 000</td> <td>3 000</td>	70	140	26	70.05	139.5	10	8	1.1	89	129	129	90	169 000	713 000	3 000
80 105 19 80.05 104.5 7.5 5.75 1 85 101 101 86 74 500 292 000 3 000 80 115 28 80.05 114.5 11 8.5 1 88 110 109 88 122 000 427 000 3 000 80 150 26 80.05 149.5 10 8 1.5 99 139 139 100 180 000 792 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000 85 120 29.05 119.5 9 6.5 1 97 116 115 97 99 700 390 000 3 000 90 120 22 90.05 134.5 14 10.5 1.1 100 129 128 101 181 000 626 000 2 500			_									_			
80 115 28 80.05 114.5 11 8.5 1 88 110 109 88 122 000 427 000 3 000 3 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000 85 125 31 85.05 124.5 12 9.5 1 95 119 118 95 145 000 513 000 3 000 90 120 22 90.05 119.5 9 6.5 1 97 116 115 97 99 700 390 000 3 000 90 135 35 90.05 134.5 14 10.5 1.1 100 129 128 101 181 000 626 000 2 500 90 160 26 90.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 135 25 100.05 134.5 11 </td <td>75</td> <td>110</td> <td>27</td> <td>75.05</td> <td>109.5</td> <td>11</td> <td>8</td> <td>1</td> <td>83</td> <td>105</td> <td>104</td> <td>83</td> <td>123 000</td> <td>427 000</td> <td>3 000</td>	75	110	27	75.05	109.5	11	8	1	83	105	104	83	123 000	427 000	3 000
80 150 26 80.05 149.5 10 8 1.5 99 139 139 100 180 000 792 000 2 500 85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000 85 125 31 85.05 124.5 12 9.5 1 95 119 118 95 145 000 513 000 3 000 90 120 22 90.05 119.5 9 6.5 1 97 116 115 97 99 700 390 000 3 000 90 160 26 90.05 159.5 10 8 1.5 109 149 149 110 189 000 871 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 135 25 100.05 149.5 15 11.5 1.1	80		_	80.05	104.5	7.5		1		-	-				
85 110 19 85.05 109.5 7.5 5.75 1 90 106 106 91 77 800 314 000 3 000 85 125 31 85.05 124.5 12 9.5 1 95 119 118 95 145 000 513 000 3 000 90 120 22 90.05 119.5 9 6.5 1 97 116 115 97 99 700 390 000 3 000 90 160 26 90.05 159.5 10 8 1.5 109 149 149 110 189 000 871 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500		_	_					-							
85 125 31 85.05 124.5 12 9.5 1 95 119 118 95 145 000 513 000 3 000 90 120 22 90.05 119.5 9 6.5 1 97 116 115 97 99 700 390 000 3 000 90 135 35 90.05 134.5 14 10.5 1.1 100 129 128 101 181 000 626 000 2 500 90 160 26 90.05 159.5 10 8 1.5 109 149 149 110 189 000 871 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 150 38 100.05 149.5 15 11.5 1.1 112 143 142 113 219 000 796 000 2 500	80	150	26	80.05	149.5	10	8	1.5	99	139	139	100	180 000	792 000	2 500
90 120 22 90.05 119.5 9 6.5 1 97 116 115 97 99 700 390 000 3 000 90 135 35 90.05 134.5 14 10.5 1.1 100 129 128 101 181 000 626 000 2 500 90 160 26 90.05 159.5 10 8 1.5 109 149 149 110 189 000 871 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 150 38 100.05 149.5 15 11.5 1.1 112 143 142 113 219 000 796 000 2 500 100 190 39 100.1 189.3 15 12 1.5 119 179 177 120 333 000 1 420 000 2 500 110 145 25 110.1 144.5 11 7		-						-				_			
90 135 35 90.05 134.5 14 10.5 1.1 100 129 128 101 181 000 626 000 2 500 90 160 26 90.05 159.5 10 8 1.5 109 149 149 110 189 000 871 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 150 38 100.05 149.5 15 11.5 1.1 112 143 142 113 219 000 796 000 2 500 100 190 39 100.1 189.3 15 12 1.5 119 179 177 120 333 000 1 420 000 2 500 110 145 25 110.1 144.5 11 7 1 118 140 139 118 142 000 569 000 2 500 110 160 40 110.1 159.5 17 11.5	85	125	31	85.05	124.5	12	9.5	1	95	119	118	95	145 000	513 000	3 000
90 160 26 90.05 159.5 10 8 1.5 109 149 149 110 189 000 871 000 2 500 100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 150 38 100.05 149.5 15 11.5 1.1 112 143 142 113 219 000 796 000 2 500 100 190 39 100.1 189.3 15 12 1.5 119 179 177 120 333 000 1 420 000 2 500 110 145 25 110.1 144.5 11 7 1 118 140 139 118 142 000 569 000 2 500 110 160 40 110.1 159.5 17 11.5 1.1 120 154 153 121 282 000 1 030 000 2 000 110 20 39 110.1 199.3 15 12	90	120	22	90.05	119.5	9	6.5	1	97	116	115	97	99 700	390 000	3 000
100 135 25 100.05 134.5 11 7 1 108 130 129 108 136 000 522 000 2 500 100 150 38 100.05 149.5 15 11.5 1.1 112 143 142 113 219 000 796 000 2 500 100 190 39 100.1 189.3 15 12 1.5 119 177 120 333 000 1 420 000 2 500 110 145 25 110.1 144.5 11 7 1 118 140 139 118 142 000 569 000 2 500 110 160 40 110.1 159.5 17 11.5 1.1 120 154 153 121 282 000 1 030 000 2 000 110 200 39 110.1 199.3 15 12 2 129 188 187 130 388 000 1 770 000 2 000 120 155 25 120.1 154.5 11 7 1										_		_			
100 150 38 100.05 149.5 15 11.5 1.1 112 143 142 113 219 000 796 000 2 500 100 190 39 100.1 189.3 15 12 1.5 119 179 177 120 333 000 1 420 000 2 500 110 145 25 110.1 144.5 11 7 1 118 140 139 118 142 000 569 000 2 500 110 160 40 110.1 159.5 17 11.5 1.1 120 154 153 121 282 000 1 030 000 2 000 110 200 39 110.1 199.3 15 12 2 129 188 187 130 388 000 1 770 000 2 000 120 155 25 120.1 154.5 11 7 1 128 150 149 128 149 000 617 000 2 000 120 175 42 120.1 174.5 18 12 <td>90</td> <td>160</td> <td>26</td> <td>90.05</td> <td>159.5</td> <td>10</td> <td>8</td> <td>1.5</td> <td>109</td> <td>149</td> <td>149</td> <td>110</td> <td>189 000</td> <td>871 000</td> <td>2 500</td>	90	160	26	90.05	159.5	10	8	1.5	109	149	149	110	189 000	871 000	2 500
100 190 39 100.1 189.3 15 12 1.5 119 179 177 120 333 000 1 420 000 2 000 110 145 25 110.1 144.5 11 7 1 118 140 139 118 142 000 569 000 2 500 110 160 40 110.1 159.5 17 11.5 1.1 120 154 153 121 282 000 1 030 000 2 000 110 200 39 110.1 199.3 15 12 2 129 188 187 130 388 000 1 770 000 2 000 120 155 25 120.1 154.5 11 7 1 128 150 149 128 149 000 617 000 2 000 120 175 42 120.1 174.5 18 12 1.1 132 168 167 133 313 000 1 160 000 2 000 120 220 39 120.1 219 15 12							· ·								
110 145 25 110.1 144.5 11 7 1 118 140 139 118 142 000 569 000 2 500 110 160 40 110.1 159.5 17 11.5 1.1 120 154 153 121 282 000 1 030 000 2 000 110 200 39 110.1 199.3 15 12 2 129 188 187 130 388 000 1 770 000 2 000 120 155 25 120.1 154.5 11 7 1 128 150 149 128 149 000 617 000 2 000 120 175 42 120.1 174.5 18 12 1.1 132 168 167 133 313 000 1 160 000 2 000 120 220 39 120.1 219 15 12 2.1 141 207 206 142 415 000 1 980 000 1 800 130 170 30 130.1 169.5 12 9							-								
110 160 40 110.1 159.5 17 11.5 1.1 120 154 153 121 282 000 1 030 000 2 000 110 200 39 110.1 199.3 15 12 2 129 188 187 130 388 000 1 770 000 2 000 120 155 25 120.1 154.5 11 7 1 128 150 149 128 149 000 617 000 2 000 120 175 42 120.1 174.5 18 12 1.1 132 168 167 133 313 000 1 160 000 2 000 120 220 39 120.1 219 15 12 2.1 141 207 206 142 415 000 1 980 000 1 800 130 170 30 130.1 169.5 12 9 1 140 164 163 140 176 000 741 000 2 000 130 185 42 130.1 184.5 18 12	100	190	39	100.1	189.3	15	12	1.5	119	179	177	120	333 000	1 420 000	2 000
110 200 39 110.1 199.3 15 12 2 129 188 187 130 388 000 1 770 000 2 000 120 155 25 120.1 154.5 11 7 1 128 150 149 128 149 000 617 000 2 000 120 175 42 120.1 174.5 18 12 1.1 132 168 167 133 313 000 1 160 000 2 000 120 220 39 120.1 219 15 12 2.1 141 207 206 142 415 000 1 980 000 1 800 130 170 30 130.1 169.5 12 9 1 140 164 163 140 176 000 741 000 2 000 130 185 42 130.1 184.5 18 12 1.5 142 178 177 143 333 000 1 290 000 1 900		_					*	-				_			
120 155 25 120.1 154.5 11 7 1 128 150 149 128 149 000 617 000 2 000 120 175 42 120.1 174.5 18 12 1.1 132 168 167 133 313 000 1 160 000 2 000 120 220 39 120.1 219 15 12 2.1 141 207 206 142 415 000 1 980 000 1 800 130 170 30 130.1 169.5 12 9 1 140 164 163 140 176 000 741 000 2 000 130 185 42 130.1 184.5 18 12 1.5 142 178 177 143 333 000 1 290 000 1 900				_			_		_						
120 175 42 120.1 174.5 18 12 1.1 132 168 167 133 313 000 1 160 000 2 000 120 220 39 120.1 219 15 12 2.1 141 207 206 142 415 000 1 980 000 1 800 130 170 30 130.1 169.5 12 9 1 140 164 163 140 176 000 741 000 2 000 130 185 42 130.1 184.5 18 12 1.5 142 178 177 143 333 000 1 290 000 1 900	110	200	39	110.1	199.3	15	12	2	129	188	187	130	388 000	1 770 000	2 000
120 220 39 120.1 219 15 12 2.1 141 207 206 142 415 000 1 980 000 1 800 130 170 30 130.1 169.5 12 9 1 140 164 163 140 176 000 741 000 2 000 130 185 42 130.1 184.5 18 12 1.5 142 178 177 143 333 000 1 290 000 1 900			_	-					_						
130 170 30 130.1 169.5 12 9 1 140 164 163 140 176 000 741 000 2 000 130 185 42 130.1 184.5 18 12 1.5 142 178 177 143 333 000 1 290 000 1 900		_													
130 185 42 130.1 184.5 18 12 1.5 142 178 177 143 333 000 1 290 000 1 900				-											
							_	-		_		_			
130 230 39 130.1 229 15 12 2.1 151 217 216 152 440 000 2 180 000 1 700						_						_			
	130	230	39	130.1	229	15	12	2.1	101	21/	216	152	440 000	2 180 000	1 /00

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

THRUST BEARINGS

Thrust Roller Bearings



Shaft dia. 140 — 280mm

	Identification number												
Shaft dia. mm	Thrust roller bearing	Mass (Ref.) g	Thrust roller bearing	Mass (Ref.) g	Inner ring	Outer ring	Mass (Ref.) g						
140	AZ 14018031	2 410	AZK 14018012	920	WS 140180	GS 140180	745						
	AZ 14019542	4 560	AZK 14019518	1 860	WS 140195	GS 140195	1 350						
	AZ 14024039	8 680	AZK 14024015	3 100	WS 140240	GS 140240	2 790						
150	AZ 15019031	2 560	AZK 15019012	980	WS 150190	GS 150190	790						
	AZ 15020542	4 840	AZK 15020518	1 980	WS 150205	GS 150205	1 430						
	AZ 15025039	9 140	AZK 15025015	3 260	WS 150250	GS 150250	2 940						
160	AZ 16020031	2 710	AZK 16020012	1 030	WS 160200	GS 160200	840						
	AZ 16027039	10 800	AZK 16027015	3 840	WS 160270	GS 160270	3 480						
170	AZ 17023045	6 220	AZK 17023019	2 420	WS 170230	GS 170230	1 900						
	AZ 17028039	11 300	AZK 17028015	4 020	WS 170280	GS 170280	3 640						
180	AZ 18024045	6 540	AZK 18024019	2 540	WS 180240	GS 180240	2 000						
	AZ 18031039	14 600	AZK 18031015	5 200	WS 180310	GS 180310	4 700						
190	AZ 19025548	8 060	AZK 19025520	3 100	WS 190255	GS 190255	2 480						
	AZ 19032039	15 000	AZK 19032015	5 280	WS 190320	GS 190320	4 860						
200	AZ 20026548	8 430	AZK 20026520	3 250	WS 200265	GS 200265	2 590						
	AZ 20034039	17 200	AZK 20034015	6 120	WS 200340	GS 200340	5 540						
220	AZ 22029050	10 400	AZK 22029022	4 280	WS 220290	GS 220290	3 060						
	AZ 22036052	24 000	AZK 22036020	8 000	WS 220360	GS 220360	8 000						
240	AZ 24031554	13 200	AZK 24031524	5 520	WS 240315	GS 240315	3 840						
	AZ 24038052	26 500	AZK 24038020	9 440	WS 240380	GS 240380	8 530						
260	AZ 26034055	15 400	AZK 26034025	6 600	WS 260340	GS 260340	4 400						
	AZ 26042080	51 600	AZK 26042030	18 200	WS 260420	GS 260420	16 700						
280	AZ 28044080	54 600	AZK 28044030	19 200	WS 280440	GS 280440	17 700						

Notes(1) Minimum allowable value of chamfer dimension r

			Во	undary d		ons						Basic dynamic	Basic static	Allowable
	ı	ı	l I	mr	m		l (1)	ı	ı		s mm	load rating ${\it C}$	load rating C_0	rotational speed(2)
d	D	T	$d_{\rm c}$	$D_{\rm c}$	D_{w}	В	$r_{ m smin}^{(1)}$	$C_{\rm i}$	Ce	$d_{ m a}$ Min.	D_{a} Max.	N	N	rpm
140	180	31	140.1	179.5	12	9.5	1	150	174	173	150	184 000	798 000	1 900
140	195	42	140.1	194.5	18	12	1.5	152	188	187	153	353 000	1 420 000	1 800
140	240	39	140.1	239	15	12	2.1	161	227	226	162	435 000	2 180 000	1 600
150	190	31	150.1	189.5	12	9.5	1	160	184	183	160	181 000	798 000	1 800
150 150	205 250	42 39	150.1 150.1	204.5 249	18 15	12 12	1.5	162 171	198 237	197 236	163 172	349 000 459 000	1 420 000 2 380 000	1 700 1 500
160 160	200 270	31 39	160.1 160.1	199.5 269	12 15	9.5 12	3	170 183	194 256	193 255	170 184	189 000 519 000	855 000 2 850 000	1 700 1 400
170 170	230 280	45 39	170.1 170.1	229 279	19 15	13 12	1.5	183 193	221 266	220 265	184 194	406 000 543 000	1 730 000 3 070 000	1 500 1 300
180	240	45	-	239		13	1.5	193	231	230	194		1 870 000	1 400
180	310	39	180.1 180.1	308	19 15	12	3	204	294	293	205	426 000 619 000	3 710 000	1 200
190	255	48	190.1	254	20	14	2	205	245	244	206	470 000	2 080 000	1 300
190	320	39	190.1	318	15	12	4	214	304	303	215	647 000	3 980 000	1 200
200	265	48	200.15	264	20	14	2	215	255	254	216	465 000	2 080 000	1 300
200	340	39	200.15	338	15	12	4	227	323	322	228	710 000	4 580 000	1 100
220	290	50	220.15	289	22	14	2	236	280	278	237	557 000	2 530 000	1 300
220	360	52	220.15	358	20	16	4	246	343	342	247	943 000	5 520 000	1 000
240	315	54	240.15	314	24	15	2	256	304	302	257	695 000	3 250 000	1 100
240	380	52	240.15	378	20	16	4	266	363	362	267	977 000	5 910 000	1 000
260	340	55	260.15	339	25	15	2.1	278	328	326	279	739 000	3 510 000	1 000
260	420	80	260.15	418	30	25	5	289	402	400	291	1 430 000	7 490 000	900
280	440	80	280.15	438	30	25	5	309	422	420	311	1 420 000	7 490 000	800

NTB AS AZK WS·GS

⁽²⁾ Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 25% of this value is allowable.

COMBINED TYPE NEEDLE ROLLER BEARINGS

- Needle Roller Bearings with Thrust Ball Bearing
- Needle Roller Bearings with Thrust Roller Bearing
- Needle Roller Bearings with Angular Contact Ball Bearing
- Needle Roller Bearings with Three-point Contact Ball Bearing

■ Structure and Features

IKO Combined Type Needle Roller Bearings are combinations of a radial bearing and a thrust bearing. Caged needle roller bearings are used as radial bearings and thrust ball bearings or thrust roller bearings are used as thrust bearings. They are compact and very economical, and can be subjected to radial loads and axial loads simultaneously.

They are widely used for machine tools, textile machinery, and industrial machinery.

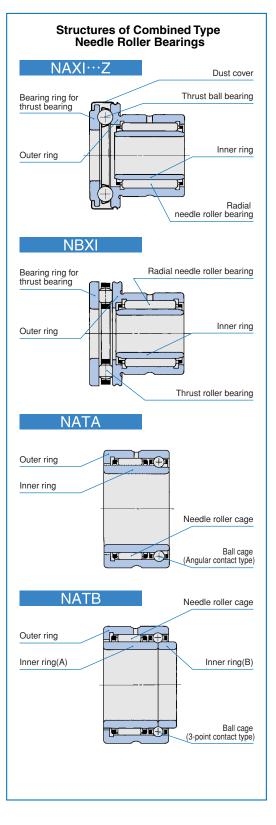
Types

The types of Combined Type Needle Roller Bearings shown in Table 1 are available.

Table 1.1 Type of bearing

Туре	Combin thrust ba		Combined with thrust roller bearing			
	Without inner ring	With inner ring	Without inner ring	With inner ring		
	NAX	NAXI	NBX	NBXI		
With dust cover	NAX…Z	NAXIZ	NBX ··· Z	NBXI…Z		

Table 1.2 Type of bearing


Туре	Combined with angular contact ball bearing	Combined with three-point contact ball bearing
Model code	NATA	NATB

Needle Roller Bearings with Thrust Ball Bearing

In this series, needle roller bearings are combined with thrust ball bearings to receive thrust loads.

In bearings with a dust cover, the dust cover is formed from a thin steel plate and fixed to a groove cut on the outer cylindrical surface of the outer ring collar. The cover forms a labyrinth with the thrust raceway ring, and is therefore effective in preventing leakage of grease and penetration of dust and dirt.

In the case of bearings without an inner ring, the tolerances of roller set bore diameter $F_{\rm w}$ are shown in Table 14 on page A33. Therefore, the required radial internal clearances can be selected by combining the bearings with shafts that have been heat-treated and finished by grinding as shown in Table 23 on page A42 and Table 26 on page A44.

G1

NAX NBX NATA

NATB

Needle Roller Bearings with Thrust Roller Bearing

In this series, needle roller bearings are combined with thrust roller bearings to receive thrust loads.

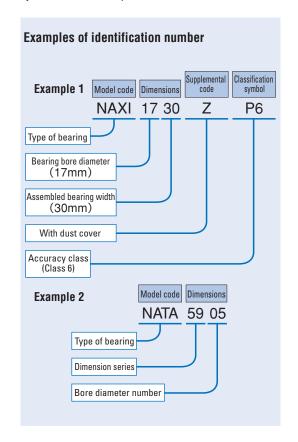
Their axial load ratings are greater than those of bearings that are combined with thrust ball bearings. Also, elastic deformation of the rolling contact surfaces under load is minimal. Furthermore, the thrust bearing section is finished to high accuracy, and therefore high rotational accuracy is obtained in the case of both vertical and horizontal shafts.

Like the needle roller bearings with thrust ball bearing, this series also includes bearings with a dust cover and bearings with an inner ring.

Needle Roller Bearings with Angular Contact Ball Bearing

In this series, caged needle roller bearings are combined with angular contact ball bearings to receive thrust loads. These bearings conform to the international dimension series #59, which is based on the ISO Standard. They can withstand heavy radial loads and unidirectional axial loads simultaneously.

When the axial load exceeds 25% of the radial load, the radial load will be induced in the angular contact ball bearing, and bearing life will be affected. The relationship between the two loads must therefore be taken into careful consideration.


Needle Roller Bearings with Three-point Contact Ball Bearing

These bearings can withstand heavy radial loads and bi-directional axial loads at the same time during highspeed rotation.

Since the non-interchangeable inner rings are separated at the center of the ball raceway surface, they must be firmly tightened against the shaft in the axial direction. The axial clearance of this bearing is 0.1 \sim 0.3 mm, and like NATA59, the axial load should not exceed 25% of the radial load.

Identification Number

The identification number of Combined Type Needle Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Some examples are shown below.

Accuracy

Dimensional accuracy and rotational accuracy of Combined Type Needle Roller Bearings are based on Table 2 below and Tables 12 and 13 on page A31. Thickness variations of thrust rings of NAX(I) and NBX(I) are based on Table 2.4 on page F5.

Bore diameter of the small width inner ring of NATB59 is made for a transition fit with k5 tolerance shaft.

Table 2 Tolerances

Type of bearing	Dimension	Dimension symbol	Tolerance
	Bore dia. of bearing ring for thrust bearing	d_{i}	E7
NAX(I)(1) NBX(I)(1)	Assembled bearing width	L	0 - 0.25
	Bearing height of thrust bearing	Н	0 - 0.20
NATB59	Width of inner ring	В	0 - 0.3

Note(1) Also applicable to bearings with dust cover

Clearance

Combined Type Needle Roller Bearings are manufactured to have the radial internal clearance CN shown in Table 18 on page A37.

Fit

The recommended fits for Combined Type Needle Roller Bearings are shown in Table 3.

Table 3 Recommended fits

Item		Tolerance class	
Type of	Sh	Housing bore	
bearing	Without inner ring	With inner ring	
NAX(I)(1)	h5, k5	k5	K6. M6
NBX(I)(1)			
NATA59 NATB59	_	k5(²)	M6(²)

Notes(1) The housing bore for the thrust bearing must be machined to be more than 0.5 mm larger than the outside diameters D_1 and D_2 to ensure that it does not incur radial loads.

(2) If the fit is made tighter than specified in this table, radial loads will act upon the thrust bearing, limiting its function.

Lubrication

Grease is not prepacked in Combined Type Needle Roller Bearings, so perform proper lubrication for use. Operating without lubrication will increase the wear of the rolling contact surfaces and shorten the bearing life.

Oil Hole

The outer ring of Combined Type Needle Roller Bearings has an oil groove and an oil hole. When outer rings with multiple oil holes or inner rings with oil hole(s) are required, please contact **IKO**.

Rating Life

unit: mm

In Combined Type Needle Roller Bearings, caged needle roller bearings are subjected to radial loads while thrust bearings receive axial loads. Therefore, it is necessary to calculate their lives respectively (page A17).

Mounting

Fig.1 shows mounting examples of Combined Type Needle Roller Bearings. When applying preload to the NAX and NBX models, it is recommended that thrust raceway rings are not tightened directly with nuts, but are tightened using springs as shown in Fig. 2.

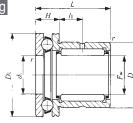
Mounting two NATA models symmetrically allows them to be subjected to two-way axial loads. When mounting these models, an axial clearance of 0.2 \sim 0.3 mm should be provided in the angular contact ball bearings so that radial loads are not applied to the angular contact ball bearings.

Dimensions related to mounting should be based on the table of dimensions.

Fig.2 Mounting example when applying preload

NAX NBX NATA NATB

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

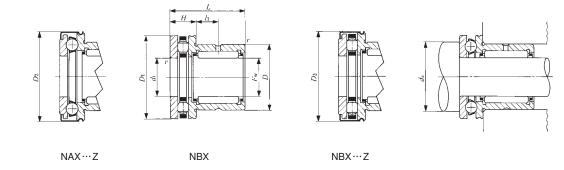

COMBINED TYPE NEEDLE ROLLER BEARINGS

Needle Roller Bearings with Thrust Ball Bearing Needle Roller Bearings with Thrust Roller Bearing Without Inner Ring

Without Inner Ring

NAX

Shaft dia. 10 – 70mm


Ona	it dia. 10 70	<u>///////</u>						
			ld	entificati	on number			
Shaft dia. mm		Mass (Ref.)	With dust cover	Mass (Ref.)		Mass (Ref.) g	With dust cover	Mass (Ref.)
10	NAX 1023	38.5	NAX 1023Z	40	_	_	_	
12	NAX 1223	43.5	NAX 1223Z	45.5	_	_	_	_
15	NAX 1523	47.5 —	NAX 1523Z	48.5 —	 NBX 1523	 54	 NBX 1523Z	
17	NAX 1725	54 —	NAX 1725Z	56 —	— NBX 1725	— 61	 NBX 1725Z	- 63
20	NAX 2030	85.5 —	NAX 2030Z	89 —	 NBX 2030	94	 NBX 2030Z	— 97.5
25	NAX 2530	131	NAX 2530Z	135	 NBX 2530	 143	 NBX 2530Z	— 147
30	NAX 3030	145	NAX 3030Z	151 —	 NBX 3030	 160	NBX 3030Z	 166
35	NAX 3530	169 —	NAX 3530Z	176 —	 NBX 3530	 186	 NBX 3530Z	— 193
40	NAX 4032	219	NAX 4032Z	227 —	 NBX 4032	240	 NBX 4032Z	248
45	NAX 4532	264	NAX 4532Z	273 —	 NBX 4532		 NBX 4532Z	302
50	NAX 5035	287	NAX 5035Z	297	— NBX 5035	 315	 NBX 5035Z	325
60	NAX 6040	417	NAX 6040Z	454	 NBX 6040	 501	 NBX 6040Z	 538
70	NAX 7040	555	NAX 7040Z	606	_	_		_

Notes(1)

Minimum allowable value of chamfer dimension r

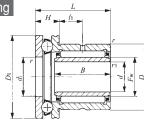
Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 70% of this value is allowable in the NAX series, and a maximum of 25% of this value is allowable in the NBX series.

Remarks1. The outer ring has an oil groove and an oil hole. 2. No grease is prepacked. Perform proper lubrication.

		E	Bounda	ry din mm	nensi	ons			Standard mounting dimension d_a	Baoio ayilalii	ic load rating	_	load rating	Allowable rotational speed(2)
$F_{ m w}$	D	D_1	D_2	L	H	l_1	$r_{\rm s min}^{(1)}$	d_{i}	Min.	Radial	Axial	Radial	Axial	speeu()
vv		1				1	SIIIII	W 1	mm	N	N	N	N	rpm
10	19	24	25	23	9	6.5	0.3	10	18	8 230	10 000	9 190	11 100	9 500
12	21	26	27	23	9	6.5	0.3	12	20	9 250	9 670	11 200	11 100	9 000
15	24	28	29	23	9	6.5	0.3	15	23	12 300	9 930	14 900	12 200	8 500
15	24	28	29	23		6.5	0.3	15	26	12 300	10 200	14 900	23 900	14 000
17 17	26 26	30 30	31 31	25 25	9	8	0.3 0.3	17 17	25 28	12 900 12 900	10 800 11 400	16 300 16 300	14 500 28 600	8 500 13 000
20	30	35	36	30	10	10.5	0.3	20	29	17 600	14 200	25 400	19 700	7 500
20	30	35	36	30	10	10.5	0.3	20	33	17 600	19 000	25 400	48 700	11 000
25	37	42	43	30	11	9.5	0.6	25	35	20 000	19 600	32 100	29 700	7 000
25	37	42	43	30	11	9.5	0.6	25	40	20 000	22 700	32 100	60 700	9 000
30	42	47	48	30	11	9.5	0.6	30	40	25 100	20 400	40 100	33 600	6 500
30	42	47	48	30	11	9.5	0.6	30	45	25 100	27 400	40 100	81 000	8 000
35	47	52	53	30	12	9	0.6	35	45	26 900	21 200	46 200	37 600	6 000
35	47	52	53	30	12	9	0.6	35	50	26 900	29 100	46 200	91 100	7 000
40	52	60	61	32	13	10	0.6	40	52	29 400	26 900	54 100	50 000	5 500
40	52	60	61	32	13	10	0.6	40	57	29 400	41 700	54 100	133 000	6 000
45	58	65	66.5	32	14	9	0.6	45	57	31 000	27 900	60 200	55 100	5 000
45	58	65	66.5	32	14	9	0.6	45	62	31 000	40 800	60 200	133 000	5 500
50	62	70	71.5	35	14	10	0.6	50	62	42 200	28 800	83 400	60 100	4 500
50	62	70	71.5	35	14	10	0.6	50	67	42 200	43 300	83 400	148 000	5 000
60	72	85	86.5	40	17	12	1	60	75	47 500	41 400	103 000	89 700	4 000
60	72	85	86.5	40	17	12		60	82	47 500	64 600	103 000	224 000	4 000
70	85	95	96.5	40	18	11	1	70	85	55 500	43 100	120 000	101 000	3 500

G NAX NBX NATA NATB

G NAX NBX NATA NATB

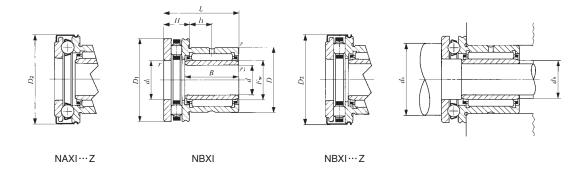

COMBINED TYPE NEEDLE ROLLER BEARINGS

Needle Roller Bearings with Thrust Ball Bearing Needle Roller Bearings with Thrust Roller Bearing With Inner Ring

With Inner Ring

NAXI

Shaft dia. 7 – 60mm


Shaft				lde	ntification numb	er					
dia.			With dust cover Mass (Ref.)				With dust cover Mass (Ref.)		d	D	D_1
7	NAXI 723	43.5	NAXI 723Z	45	_	_	_	_	7	19	24
9	NAXI 923	49.5	NAXI 923Z	51.5	_	_	_	_	9	21	26
12	NAXI 1223	55.5 —	NAXI 1223Z	56.5 —	 NBXI 1223	— 62	— NBXI 1223Z	— 63	12 12	24 24	28 28
14	NAXI 1425	63.5	NAXI 1425Z	65.5 —	NBXI 1425	— 70.5	NBXI 1425Z	— 72.5	14 14	26 26	30
17	NAXI 1730	99	NAXI 1730Z	103	— NBXI 1730	108	— NBXI 1730Z	111	17 17	30 30	35 35
20	NAXI 2030	159	NAXI 2030Z	163	NBXI 2030	171	NBXI 2030Z	175	20 20	37 37	42 42
25	NAXI 2530	179 —	NAXI 2530Z	185 —	NBXI 2530	_ 194	— NBXI 2530Z	 200	25 25	42 42	47 47
30	NAXI 3030	208	NAXI 3030Z	215 —		 225	NBXI 3030Z	 232	30 30	47 47	52 52
35	NAXI 3532	265 —	NAXI 3532Z	273 —	NBXI 3532	 286		 294	35 35	52 52	60 60
40	NAXI 4032	315 —	NAXI 4032Z	324	NBXI 4032	344	 NBXI 4032Z	 353	40 40	58 58	65 65
45	NAXI 4535	358 —	NAXI 4535Z	368	 NBXI 4535	 386	— NBXI 4535Z	 396	45 45	62 62	70 70
50	NAXI 5040	582 —	NAXI 5040Z	619 —	 NBXI 5040	666	 NBXI 5040Z	 703	50 50	72 72	85 85
60	NAXI 6040	750	NAXI 6040Z	801	_	_	_	_	60	85	95

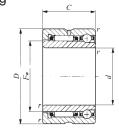
Notes(1) Minimum allowable value of chamfer dimension r or r_1

Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 70% of this value is allowable in the NAXI series, and a maximum of 25% of this value is allowable in the NBXI series.

Remarks1. The outer ring has an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication.

		Boun	ıdar	y dime mm	nsio				dimer m	nsions m	Basic dynam	C .	Basic static	0	Allowable rotational speed(2)	Assembled inner ring
D_2	L	В	Н	l_1	(1) <i>F</i> _{S min}	(1) I _{lsmin}	F_{w}	d_i	d_{a} Min.	$d_{\mathfrak{b}}$	Radial N	Axial N	Radial N	Axial N	rpm	
25	23	16	9	6.5	0.3	0.2	10	10	18	9	8 230	10 000	9 190	11 100	9 500	LRT 71016
27	23	16	9	6.5	0.3	0.3	12	12	20	11	9 250	9 670	11 200	11 100	9 000	LRT 91216
29 29	23 23	16.5 16.5	9	6.5 6.5		0.3 0.3	15 15	15 15	23 26	14 14	12 300 12 300	9 930 10 200	14 900 14 900	12 200 23 900	8 500 14 000	
31 31	25 25	17 17	9	8		0.3 0.3	17 17	17 17	25 28	16 16	12 900 12 900	10 800 11 400	16 300 16 300	14 500 28 600	8 500 13 000	LRT 141717 LRT 141717
36 36	30 30	20.5 20.5	10 10	10.5 10.5		0.3 0.3		20 20	29 33	19 19	17 600 17 600	14 200 19 000	25 400 25 400	19 700 48 700	7 500 11 000	LRT 172020 LRT 172020
43 43	30 30	20.5 20.5	11 11	9.5 9.5		0.3 0.3		25 25	35 40	24 24	20 000 20 000	19 600 22 700	32 100 32 100	29 700 60 700	7 000 9 000	LRT 202520 LRT 202520
48 48	30 30	20.5 20.5	11 11	9.5 9.5	0.6 0.6		30 30	30 30	40 45	29 29	25 100 25 100	20 400 27 400	40 100 40 100	33 600 81 000	6 500 8 000	
53 53	30 30	20 20	12 12	9 9	0.6 0.6	0.3 0.3	35 35	35 35	45 50	34 34	26 900 26 900	21 200 29 100	46 200 46 200	37 600 91 100	6 000 7 000	LRT 303520 LRT 303520
61 61	32 32	20 20	13 13	10 10		0.3 0.3	40 40	40 40	52 57	39 39	29 400 29 400	26 900 41 700	54 100 54 100	50 000 133 000	5 500 6 000	
66.5 66.5	32 32	20 20	14 14	9 9	0.6 0.6		45 45	45 45	57 62	44 44	31 000 31 000	27 900 40 800	60 200 60 200	55 100 133 000	5 000 5 500	LRT 404520 LRT 404520
71.5 71.5	35 35	25 25	14 14	10 10	0.6 0.6	0.3 0.3	50 50	50 50	62 67	49 49	42 200 42 200	28 800 43 300	83 400 83 400	60 100 148 000	4 500 5 000	LRT 455025 LRT 455025
86.5 86.5	40 40	25.5 25.5	17 17	12 12	1	1 1	60 60	60 60	75 82	59 59	47 500 47 500	41 400 64 600	103 000 103 000	89 700 224 000	4 000 4 000	LRT 506025 LRT 506025
96.5	40	25.5	18	11	1	1	70	70	85	68	55 500	43 100	120 000	101 000	3 500	LRT 607025

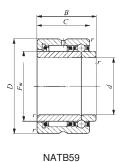

G NAX NBX NATA NATB

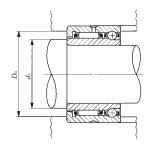
COMBINED TYPE NEEDLE ROLLER BEARINGS

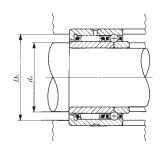
Needle Roller Bearings with Angular Contact Ball Bearing Needle Roller Bearings with Three-point Contact Ball Bearing

NATA59

Shaft dia. 15 - 70mm


		Identificati	on number			В		y dimen	sions	
Shaft dia. mm	Angular contact type	Mass (Ref.) g	ef.)		d	D	С	mm B	$r_{\rm s min}(^1)$	F_{w}
15	NATA 5902	50.5	NATB 5902	53	15	28	18	20	0.3	20
17	NATA 5903	55.5	NATB 5903	58.5	17	30	18	20	0.3	22
20	NATA 5904	111	NATB 5904	115	20	37	23	25	0.3	25
25	NATA 5905	131	NATB 5905	136	25	42	23	25	0.3	30
30	NATA 5906	151	NATB 5906	157	30	47	23	25	0.3	35
35	NATA 5907	250	NATB 5907	260	35	55	27	30	0.6	42
40	NATA 5908	355	NATB 5908	375	40	62	30	34	0.6	48
45	NATA 5909	410	NATB 5909	435	45	68	30	34	0.6	55
50	NATA 5910	420	NATB 5910	445	50	72	30	34	0.6	58
55	NATA 5911	585	NATB 5911	615	55	80	34	38	1	63
60	NATA 5912	625	NATB 5912	660	60	85	34	38	1	68
65	NATA 5913	665	NATB 5913	710	65	90	34	38	1	75
70	NATA 5914	1 070	NATB 5914	1 130	70	100	40	45	1	80


Notes(1)	Minimum allowable value of chamfer dimension r


⁽²) Allowable rotational speed applies to oil lubrication.

Remarks1. The outer ring has an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication. Allowable rotational speed applies to oil lubrication. For grease lubrication, a maximum of 60% of this value is allowable.

		ting dimensions m	,	ic load rating		load rating	Allowable rotational
	d_{a}	D_{a}	Radial	Axial	Radial	Axial	speed(2)
ı	Min.	Max.	N	N	N	N	rpm
	17	26	7 710	1 900	10 200	2 920	20 000
	19	28	8 220	2 050	11 500	3 340	18 000
	22	35	14 300	3 810	18 400	6 110	16 000
Ī	27	40	15 800	4 300	22 100	7 520	13 000
	32	45	17 700	4 550	26 800	8 460	11 000
Ī	39	51	24 000	4 890	42 100	9 870	9 500
	44	58	30 600	5 350	60 400	11 800	8 500
	49	64	32 600	5 450	68 500	12 700	7 000
	54	68	33 600	5 660	72 500	13 600	7 000
I	60	75	39 500	10 400	74 400	24 700	6 500
	65	80	41 800	10 700	82 200	26 700	6 000
Ī	70	85	43 800	11 000	90 200	28 700	5 500
	75	95	56 400	13 500	127 000	35 000	5 000

1mm=0.03937inch

INNER RINGS

- ●Inner Rings for Shell Type Needle Roller Bearings
- ●Inner Rings for General Usage

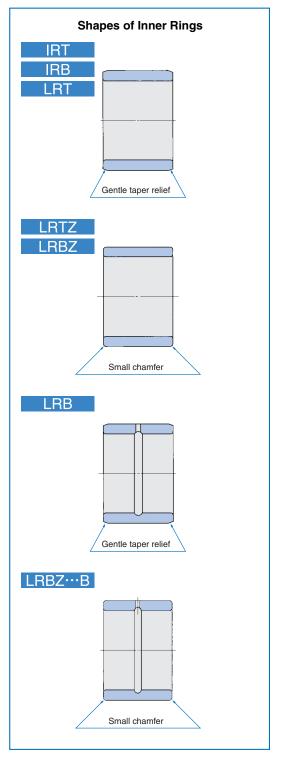
■ Structure and Features

IKO Inner Rings are heat-treated and finished by grinding to a high degree of accuracy. In the case of needle roller bearings, normally, the shafts are heat-treated and finished by grinding, and used as the raceway surfaces. However, when it is impossible to make shaft surfaces according to the specified surface hardness or surface roughness, inner rings are used.

Inner rings include those for Shell Type Needle Roller Bearings and those for general use and are available in a variety of dimensions. When shafts move axially or seals are used adjacent to bearings, wide inner rings can be selected.

Inner rings can also be used economically as bushings without requiring any additional machining.

For Inner Rings, the types shown in Table 1 are available.

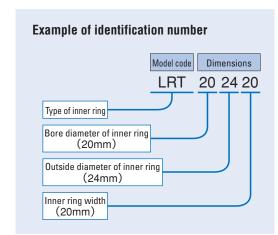

Table 1.1 Inner Rings for Shell Type Needle Roller Bearings

Sei	ries	Model codes of assembled bearings
Metric series	IRT	TA…Z, TLA…Z TAM, TLAM, YT, YTL
Inch series	IRB	BA…Z, BHA…Z BAM, BHAM, YB, YBH

Remark For Inner Rings for Shell Type Needle Roller Bearings with Seal, please consult **IKU**.

Table 1.2 Inner Rings for General Usage

S	eries	Model codes of assembled bearings
Metric series	LRT	RNA 49, RNA 69 RNA 48, TAF, TR RNAF, NAX, NBX
	LRTZ	RNA 49 ··· UU, RNA 69 ··· UU GTR
	LRB	BR
Inch series	LRBZB	BR…UU
	LRBZ	GBR, GBRUU
	Metric series	Metric series LRTZ LRB Inch series LRBZ···B



H1

IRT
IRB
LRT
LRB

Identification number

The identification number of Inner Rings consists of a model code and dimensions. An example is shown below.

Accuracy

Dimensional accuracy of Inner Rings is based on Table 2. Inner Rings for Shell Type Needle Roller Bearings are manufactured so that exact radial internal clearances can be obtained when assembled with Shell Type Needle Roller Bearings. Inner Rings for General Usage produce CN clearance when used in the assembled bearings shown in Table 1.2. LRB and LRBZ ··· B models produce the radial internal clearances shown in Table 4 on page D5.

When clearances other than CN clearance or accuracy other than Class 0 are required, please consult IKO.

Table 2 Tolerances for inner ring

Model code	Tolerance
IRT LRT、LRTZ LRBZ	JIS Class 0 (See the table 12, page A31)
IRB	Based on Table 3
LRB LRBZ…B	Based on Table 4
D	And the following a second of the control of the co

Remark Tolerances of outside diameter of inner ring are based on Table 5.

Table 3 Tolerances of IRB

	Nominal insi of inno m	Single mear	mp plane bore deviation	Deviati single in	iner ring	$K_{ m ia}$ Radial runout of assembled bearing inner ring	
	Over	Incl.	High	Low	High	Low	Max.
İ	2.5	10	0	- 13	0	- 250	10
	10	18	0	- 13	0	- 250	10
	18	30	0	- 13	0	- 250	13
ĺ	30	50	0	- 13	0	- 250	15
	50	80	0	- 13	0	- 250	20

Table 4 Tolerances of LRB,LRBZ ··· B

Nominal ins of inn m	Single mean	mp plane bore deviation	Deviati single in	iner ring	$K_{ m ia}$ Radial runout of assembled bearing inner ring	
Over	High	Low	High	Low	Max.	
_	19.050	0	- 10	0	- 130	10
19.050	30.162	0	- 13	0	- 130	13
30.162	50.800	0	- 13	0	- 130	15
50.800	82.550	0	- 15	0	- 130	20
82.550	120.650	0	- 20	0	- 130	25

Table 5 Tolerances of outside diameter of inner ring

Model code	Tolerance			
IRT	g5			
IRB	0~-13			
LRT, LRTZ, LRBZ	Based on Table 6			
LRB, LRBZ···B	Based on Table 7			

Table 7 Tolerances of outside diameters of LRB and LRBZ···B unit: μ m

Nominal outs of inno m	er ring	Tolerance				
Over	Incl.	High	Low			
_	18.034	- 13	- 23			
18.034	25.908	- 18	- 30			
25.908	30.226	-23	- 36			
30.226	35.052	- 23	- 38			
35.052	50.038	- 25	- 41			
50.038	80.010	- 28	- 46			
80.010	100.076	- 32	- 56			
100.076	102.108	- 37	- 66			

unit: μ m

The recommended fits between Inner Rings and shafts are shown in Table 22 on page A42.

The number of oil holes is shown in Table 8.

When Inner Rings with an oil hole are especially required for a model without an oil hole, attach an "OH" to the end of the identification number when ordering.

Example: LRT 202420 OH

For Inner Rings with multiple oil holes, please consult

IKO.

Table 8 Number of oil holes

ı	Bearing typ	e	Bore diameter of inner ring d mm	Number of oil holes
For Shell Type Needle Roller	Metric series	IRT		0
Bearings	Inch series	IRB		0
	Metric series	LRT		0
	Menic Series	LRTZ		0
For General		LRB	<i>d</i> ≦ 76.200	1
Usage	Inch series	LND	76.200 < d	2
	111011 301103	LRBZ	В	1
		LRBZ		0

Remark Inner rings with an oil hole are provided with an oil groove.

Н

IRT

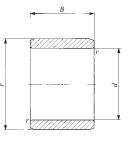
LRT

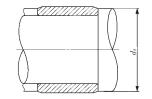
LRB

Table 6	Tolera	nces of	outside	diamete	rs for Ll	RT, LR1	ΓZ and L	RBZ (W	hen the	clearan	ce is CN	l cleara	nce)															unit: μ m
	d							ì	F											F							C	\overline{d}
Bore dia	ameter of						Outside	diameter o	of inner ring	g mm								Outside	diameter	of inner ri	ng mm						Bore dia	meter of
inner ri	ing mm	3<.	F ≤ 6	6 < F	⁷ ≦ 10	10 <	F ≦ 18	18 <	F ≦ 30	30 < 1	F ≦ 50	50 < 1	F ≦ 80		80 < F	` ≦ 120	120 < <i>I</i>	7 ≦ 180	180 < 1	F ≤ 250	250 < I	F ≦ 315	315 < F	7 ≦ 400	400 < F	7 ≦ 500	inner rin	ig mm
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low		High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
_	24	- 10	- 27	-7	- 23	-4	- 18	0	- 12																		_	24
24	30							0	- 12	+5	- 4																24	30
30	40									0	- 9																30	40 50
40	50									- 5	- 19	0	— 11														40	
50	65											- 10	-21														50	65
65	80											<u> </u>	<u> </u>		- 4	<u> </u>											65	80
80	100														- 14	- 27	_										80	100
100	120														- 14	- 32	- 7	- 22									100	120
120 140	140 160																- 17 - 27	- 37 - 52									120 140	140 160
160	180																-27	- 52	– 25	- 46							160	180
180	200																		- 25 - 40	- 46							180	200
200	225																		- 40	- 86							200	225
225	250																		33	00	- 54	- 87					225	250
250	280																				- 69	- 107					250	280
280	315																				- 00		- 68	- 107			280	315
315	355																						- 83	- 127			315	355
355	400																						- 128	- 182	- 122	- 172	355	400
400	450																								- 142	- 202	400	450
450	500																								- 152	- 222	450	500

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

INNER RINGS


Inner Rings for Shell Type Needle Roller Bearings



Shaft dia. 7 – 17mm

Shaft		Mass (Ref.)	Bou	ndar	y dime mm	nsions	Standard dimension	d mounting on mm	А	ssembled bearing	s
dia. mm	Identification number	g	d	F	В	$r_{\rm s min}^{(1)}$	Min.	$d_{\rm a}$	TA…Z (TAM)	TLA…Z (TLAM)	YT YTL
	IRT 710	3.2	7	10	10.5	0.3	9	9.7	TA 1010Z	TLA 1010Z	_
7	IRT 712	3.9	7	10	12.5	0.3	9	9.7	TA 1010Z	TLA 1010Z	_
•	IRT 715	4.8	7	10	15.5	0.3	9	9.7	TA 1015Z	TLA 1015Z	_
	IRT 810	5.1	8	12	10.5	0.3	10	11	_	TLA 1210Z	YTL 1210
8	IRT 812	6	8	12	12.5	0.3	10	11	TA 1212Z	TLA 1212Z	YT 1212
	IRT 815	7.5	8	12	15.5	0.3	10	11	TA 1215Z	_	_
	IRT 1012	5.2	10	13	12.5	0.3	12	12.7	_	TLA 1312Z	_
	IRT 1012-2	7.2	10	14	12.5	0.3	12	13	_	TLA 1412Z	_
	IRT 1016-2	9.6	10	14	16.5	0.3	12	13	TA 1416Z	TLA 1416Z	_
	IRT 1020-2	11.9	10	14	20.5	0.3	12	13	TA 1420Z		_
10	IRT 1010-1	7.9	10	15	10.5	0.3	12	14	TA 1510Z	_	_
	IRT 1012-1	9.4	10	15	12.5	0.3	12	14	TA 1512Z	TLA 1512Z	_
	IRT 1015-1	11.7	10	15	15.5	0.3	12	14	TA 1515Z	_	_
	IRT 1020-1	15.5	10	15	20.5	0.3	12	14	TA 1520Z		_
	IRT 1025-1	19.3	10	15	25.5	0.3	12	14	TA 1525Z	_	
	IRT 1212	6.1	12	15	12.5	0.3	14	14.5	TA 1512Z	TLA 1512Z	—
	IRT 1216	8.1	12	15	16.5	0.3	14	14.5	_	TLA 1516Z	_
	IRT 1222	11	12	15	22.5	0.3	14	14.5	_	TLA 1522Z	_
	IRT 1212-1	8.5	12	16	12.5	0.3	14	15	_	TLA 1612Z	_
12	IRT 1216-1	11.2	12	16	16.5	0.3	14	15	TA 1616Z	TLA 1616Z	_
	IRT 1220-1	13.9	12	_	20.5	0.3	14	15	TA 1620Z		_
	IRT 1222-1	15.2	12	_	22.5	0.3	14	15	_	TLA 1622Z	
	IRT 1215-2	13.6	12	17	15.5	0.3	14	16	TA 1715Z		YT 1715
	IRT 1220-2 IRT 1225-2	18 22.5	12	17	20.5 25.5	0.3	14	16 16	TA 1720Z TA 1725Z		— YT 1725
									17 17232		11 1/25
15	IRT 1512	7.5	15	18	_	0.3	17	17.5		TLA 1812Z	_
	IRT 1513	8.1	15	18	13.5	0.3	17	17.5	TA 1813Z	_	_

Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

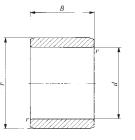
IRT

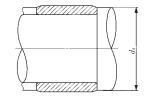
Shaft		Mass (Ref.)	Bou		y dime mm	nsions	Standard	d mounting	As	ssembled bearing	js
dia. mm	Identification number	g	d	F	В	$r_{\rm s min}^{(1)}$		$d_{ m a}$ Max.	TA…Z (TAM)	TLA…Z (TLAM)	YT YTL
	IRT 1515	9.3	15	18	15.5	0.3	17	17.5	TA 1815Z	_	_
	IRT 1516	9.9	15	18	16.5	0.3	17	17.5	_	TLA 1816Z	_
	IRT 1517	10.5	15	18	17.5	0.3	17	17.5	TA 1817Z	_	
	IRT 1519	11.7	15	18	19.5	0.3	17	17.5	TA 1819Z	_	_
	IRT 1520	12.3	15	18	20.5	0.3	17	17.5	TA 1820Z	_	_
	IRT 1525	15.2	15	18	25.5	0.3	17	17.5	TA 1825Z	_	_
15	IRT 1516-1	13.6	15	19	16.5	0.3	17	18	TA 1916Z	_	_
	IRT 1520-1	16.8	15	19	20.5	0.3	17	18	TA 1920Z	_	_
	IRT 1515-2	16.4	15	20	15.5	0.3	17	19	TA 2015Z	_	YT 2015
	IRT 1520-2	21.5	15	20	20.5	0.3	17	19	TA 2020Z	TLA 2020Z	YT 202820
									TA 202820Z		
	IRT 1525-2	27	15	20	25.5		17	19	TA 2025Z	_	YT 2025
	IRT 1530-2	32	15	20	30.5	0.3	17	19	TA 2030Z	TLA 2030Z	
	IRT 1716	11.1	17	20	16.5	0.3	19	19.5		TLA 2016Z	_
	IRT 1720	13.7	17	20	20.5		19	19.5	TA 2020Z	TLA 2020Z	YT 202820
									TA 202820Z		11202020
	IRT 1730	20.5	17	20	30.5	0.3	19	19.5	TA 2030Z	TLA 2030Z	_
	IRT 1716-1	15.1	17	21	16.5	0.3	19	20	TA 2116Z	_	YT 2116
	IRT 1720-1	18.8	17	21	20.5	0.3	19	20	TA 2120Z	_	YT 2120
17	IRT 1710-2	12.4	17	22	10.5	0.3	19	21	TA 2210Z	_	_
	IRT 1715-2	18.3	17	22	15.5	0.3	19	21	TA 2215Z	_	_
	IRT 1716-2	19.4	17	22	16.5	0.3	19	21	TA 223016Z	TLA 2216Z	YT 223016
	IRT 1720-2	24	17	22	20.5	0.3	19	21	TA 2220Z	TLA 2220Z	YT 223020
									TA 223020Z		
	IRT 1725-2	30	17	22	25.5	0.3	19	21	TA 2225Z	_	_
	IRT 1730-2	36	17	22	30.5	0.3	19	21	TA 2230Z	_	_

Note(1) Minimum allowable value of chamfer dimension r

Remark No oil hole is provided.

INNER RINGS


Inner Rings for Shell Type Needle Roller Bearings



Shaft dia. 20 — 45mm

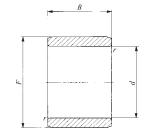
Shaft dia.	ld-aif-ai-	Mass (Ref.)	Bou		/ dime mm	nsions		I mounting		ssembled bearing	JS	
mm	Identification number	g	d	F	В	$r_{\rm s min}^{(1)}$		$d_{ m a}$ Max.	TA…Z (TAM)	TLA…Z (TLAM)		YT YTL
	IRT 2016	17.5	20	24	16.5	0.3	22	23	TA 243216Z	_	ΥT	243216
	IRT 2020	22	20	24	20.5	0.3	22	23	TA 2420Z	_	YT	243220
	IDT coop	00.5			20.5				TA 243220Z			0.400
	IRT 2028	30.5	20	24	28.5	0.3	22	23	TA 2428Z	_	YT	2428
20	IRT 2010-1 IRT 2015-1	14.3 21	20	25	10.5 15.5	0.3	22	24 24	TA 2510Z TA 2515Z		YT YT	2510 2515
20	IRT 2015-1	28	20	25 25	20.5	0.3	22	24	TA 2515Z	TLA 2520Z	YT	2520
	IRT 2025-1	34.5	20	25	25.5	0.3	22	24	TA 2525Z	TLA 2520Z	YT	2525
	IRT 2026-1	36	20	25	26.5	0.3	22	24		TLA 2526Z		2526
	IRT 2030-1	41.5	20	25	30.5	0.3	22	24	TA 2530Z			_
	IRT 2038-1	52.5	20	25	38.5	0.3	22	24	_	TLAW 2538Z		_
	IRT 2216	19.1	22	26	16.5	0.3	24	25	TA 2616Z	_	ΥT	2616
00	IRT 2220	24	22	26	20.5	0.3	24	25	TA 2620Z	_	ΥT	2620
22	IRT 2220-1	37	22	28	20.5	0.3	24	27	TA 2820Z	TLA 2820Z	ΥT	2820
	IRT 2230-1	55.5	22	28	30.5	0.3	24	27	TA 2830Z	_		_
	IRT 2520	26.5	25	29	20.5	0.3	27	28	TA 2920Z	_	ΥT	2920
	IRT 2530	40	25	29	30.5	0.3	27	28	TA 2930Z	_		_
	IRT 2515-1	25.5	25	30	15.5	0.3	27	29	TA 3015Z	_		_
25	IRT 2520-1	34	25	30	20.5	0.3	27	29	TA 3020Z	TLA 3020Z		_
	IRT 2525-1	42.5	25	30	25.5	0.3	27	29	TA 3025Z			_
	IRT 2526-1	44	25	30	26.5	0.3	27	29	TA 20207	TLA 3026Z		
	IRT 2530-1 IRT 2538-1	50.5 64	25 25	30	30.5 38.5	0.3	27 27	29 29	TA 3030Z	—		_
										TLAW 3038Z		
28	IRT 2820	29.5	28	32	20.5	0.3	30	31	TA 3220Z	_	YT	3220
	IRT 2830	44	28	32	30.5	0.3	30	31	TA 3230Z	_		
30	IRT 3012	24.5	30	35	12.5	0.6	34	34.5		TLA 3512Z		_
	IRT 3015	30.5	30	35	15.5	0.6	34	34.5	TA 3515Z	_		_

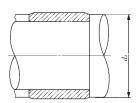
Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

IRT

		Mass	Bou	ndar	y dime	nsions	Standard	I mounting		A	ssembled bearing	js
Shaft dia.	Identification number	(Ref.)			mm		dimensio	n mm				ı
mm		g	d	F	В	$r_{\rm s min}^{(1)}$		la ∣Max.		A…Z AM)	TLA…Z (TLAM)	YT YTL
30	IRT 3020 IRT 3025	40 50	30 30	35 35	20.5 25.5	0.6 0.6	34 34	34.5 34.5	TA TA	3520Z 3525Z	TLA 3520Z	_
00	IRT 3030	60	30	35	30.5	0.6	34	34.5	TA	3530Z	_	_
	IRT 3220	42.5	32	37	20.5	0.6	36	36.5	TA	3720Z	_	YT 3720
	IRT 3230 IRT 3215-1	63.5 39.5	32	37 38	30.5 15.5	0.6	36 36	36.5 37	TA TA	3730Z 3815Z	_	_
32	IRT 3220-1	52	32	38	20.5	0.6	36	37	TA	3820Z	_	_
	IRT 3225-1 IRT 3230-1	64.5 77.5	32	38 38	25.5 30.5	0.6	36 36	37 37	TA TA	3825Z 3830Z	_	_
	IRT 3245-1	115	32	38	45.5	0.6	36	37	TAW 3845Z		_	_
	IRT 3515	35	35	40	15.5	0.6	39	39.5	TA	4015Z	_	YT 4015
35	IRT 3520 IRT 3525	46.5 58	35 35	40 40	20.5 25.5	0.6	39	39.5 39.5	TA TA	4020Z 4025Z	TLA 4020Z	YT 4025
	IRT 3530	69	35	40	30.5	0.6	39	39.5	TA	4030Z	_	_
	IRT 3540	91.5	35	40	40.5	0.6	39	39.5	TA	4040Z		
40	IRT 4020 IRT 4025	52.5 65.5	40	45 45	20.5 25.5	0.6	44	45.5 45.5	TA TA	4520Z 4525Z	TLA 4520Z	YT 4520 YT 4525
40	IRT 4030	78.5	40	45	30.5	0.6	44	45.5	TA	4530Z	_	_
	IRT 4040	104	40	45	40.5	0.6	44	45.5	TA	4540Z	_	_
	IRT 4512 IRT 4515	36 44.5	45 45	50 50	12.5 15.5	0.6	49 49	49.5 49.5	TA TA	5012Z 5015Z	_	_
45	IRT 4520	59	45	50	20.5	0.6	49	49.5	TA	5020Z	TLA 5020Z	_
45	IRT 4525 IRT 4530	73 87.5	45 45	50 50	25.5 30.5	0.6	49 49	49.5 49.5	TA TA	5025Z 5030Z	TLA 5025Z	_
	IRT 4540	116	45	50	40.5	0.6	49	49.5	TA	5040Z	_	_
	IRT 4545	131	45	50	45.5	0.6	49	49.5	TAW	5045Z	_	_

Note(1) Minimum allowable value of chamfer dimension r


Remark No oil hole is provided.

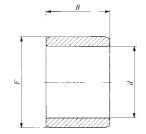


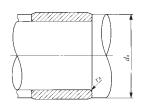
INNER RINGS

Inner Rings for Shell Type Needle Roller Bearings

IRT

Shaft dia. 50 — 60mm


Shaft dia.	Identification number	Mass (Ref.)	Bou		y dime mm	nsions	Standard dimensio	l mounting		А	ssembled bearing	s
mm	identification number	g	d	F	В	$r_{\rm s min}^{(1)}$		$l_{ m a}$ Max.		A···Z AM)	TLA…Z (TLAM)	YT YTL
	IRT 5020-1	65	50	55	20.5	0.6	54	54.5	TA	5520 Z	TLA 5520Z	_
	IRT 5025-1	81	50		25.5	0.6	54	54.5	TA	5525 Z	TLA 5525Z	_
	IRT 5030-1	96.5	50		30.5	0.6	54	54.5	TA	5530 Z	_	_
	IRT 5040-1	128	50	55	40.5	0.6	54	54.5	TA	5540Z	_	_
	IRT 5045-1	144	50	55	45.5	0.6	54	54.5		5545Z	_	_
50	IRT 5050-1	160	50	55	50.5	0.6	54	54.5		5550Z	_	_
	IRT 5025	169	50	60	25.5	1.5	58	59	TA	6025Z	_	_
	IRT 5030	205	50		30.5	1.5	58	59	TA	6030Z		_
	IRT 5040 IRT 5045	270 300	50 50		40.5 45.5	1.5 1.5	58 58	59 59	TA	6040Z 6045Z	_	_
	IRT 5045	335	50		50.5	1.5	58	59 59		6050Z	_	_
52	IRT 5212	86	52	62	12.5	1.5	60	60.5	TA	6212 Z		
	IRT 5525	185	55	65	25.5	1.5	63	63.5	TA	6525 Z	_	_
55	IRT 5530	220	55	65	30.5	1.5	63	63.5	TA	6530 Z	_	_
33	IRT 5545	330	55	65	45.5	1.5	63	63.5		6545 Z	_	_
	IRT 5550	365	55	65	50.5	1.5	63	63.5	TAW	6550Z	_	
	IRT 6025	200	60	70	25.5	1.5	68	68.5	TA	7025Z	_	_
60	IRT 6030	240	60	70	30.5	1.5	68	68.5	TA	7030Z	_	_
00	IRT 6040	320	60	70	40.5	1.5	68	68.5	TA	7040Z	_	_
	IRT 6050	395	60	70	50.5	1.5	68	68.5	TAW	7050Z	_	_


 ${
m Note}(^{
m 1})$ Minimum allowable value of chamfer dimension r

Remark No oil hole is provided.

Inner Rings for Shell Type Needle Roller Bearings Inch Series

IRB

Shaft dia. 7.938 — 15.875mm

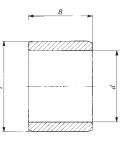
Shaft dia.	Identi	fication	Mass (Ref.)		ary dimensions nm(inch)	•	dimen	ard mo		Asse	mbled bearin	ngs
mm (inch)	nu	mber	g	d	F	В	d Min.	a Max.	r _{as max}	BA…Z (BAM)	BHA···Z (BHAM)	YB YBH
7.938 (⁵ / ₁₆)	IRB	58	8	7.938 (5/16)	12.700 (1/2)	13.08	11.3	11.7	0.3	BA 88Z	BHA 88Z	YB 88
9.525	IRB IRB	68 68-1	8.9 12.6	9.525 (³ / ₈) 9.525 (³ / ₈)	14.288 (%) 15.875 (5/8)	13.08 13.08	12.8 12.8	13.2 14	0.3 0.3	BA 98Z BA 108Z	BHA 98Z BHA 108Z	YB 98 YB 108 YBH 108
(3/8)	IRB IRB	612 612-1	13.2 18.8	9.525 (3/8) 9.525 (3/8)	14.288 (%) 15.875 (5/8)	19.43 19.43	12.8 12.8	13.2 14	0.3 0.3	BA 912Z BA 1012Z	 BHA 1012Z	YB 912 YB 1012
11.112	IRB	78 712	10.1 15	11.112 (½) 11.112 (½)	15.875 (½) 15.875 (½)	13.08 19.43	14.4	14.8	0.3	BA 108Z BA 1012Z	BHA 108Z BHA 1012Z	YB 108 YBH 108 YB 1012
(½ ₁₆)	IRB IRB	714 716	17.4 19.9	11.112 (7/6) 11.112 (7/6) 11.112 (7/6)	15.875 (5/8) 15.875 (5/8)	22.60 25.78	14.4 14.4 14.4	14.8 14.8	0.3 0.3	BA 1014Z BA 1016Z	BHA 1016Z	— —
12.700 (½)	IRB IRB IRB IRB IRB IRB	86 88 812 88-1 810-1 812-1 814-1 816-1	8.5 11.2 16.7 15.8 19.6 23.5 27.5 31	12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½) 12.700 (½)	17.462 (1/6) 17.462 (1/6) 17.462 (1/6) 19.050 (3/4) 19.050 (3/4) 19.050 (3/4) 19.050 (3/4)	9.90 13.08 19.43 13.08 16.25 19.43 22.60 25.78	16.9 16.9 16.9 16.9 16.9 16.9 16.9	16.9 16.9 17.5 17.5 17.5 17.5	0.3 0.3 0.6 0.6 0.6 0.6 0.6	BA 116Z BA 118Z BA 1112Z BA 128Z BA 1210Z BA 1212Z BA 1214Z BA 1216Z	BHA 118Z BHA 1112Z ——————————————————————————————————	YB 1112 YB 128 YB 1210 YB 1212
14.288 (9/16)	IRB IRB IRB IRB IRB	98 910 912 914 916 920	17.3 21.5 26 30 34.5 43	14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%) 14.288 (%)	20.638 (¹³ / ₁₆) 20.638 (¹³ / ₁₆)	13.08 16.25 19.43 22.60 25.78 32.13	19 19 19 19 19	19.6 19.6 19.6 19.6 19.6 19.6	0.6 0.6 0.6 0.6 0.6 0.6	BA 138Z BA 1310Z BA 1312Z BA 1314Z BA 1316Z BA 1320Z	BHA 138Z BHA 1310Z BHA 1312Z	YB 138 YBH 1310 YBH 1312 — —
15.875 (5/ ₈)	IRB IRB IRB	106 108 1012	14.5 18.9 28	15.875 (5/8) 15.875 (5/8) 15.875 (5/8)	22.225 (½) 22.225 (½) 22.225 (½)	9.90 13.08 19.43	20.7 20.7 20.7	21.2 21.2 21.2	0.6 0.6 0.6	BA 146Z BA 148Z BA 1412Z	 BHA 1412Z	YB 148 YB 1412

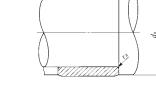
Note(1) Maximum allowable fillet corner radius of shaft

Remark No oil hole is provided.

H10

INNER RINGS


Inner Rings for Shell Type Needle Roller Bearings Inch Series



Shaft dia. 15.875 — 63.500mm

Shaft dia.	Identification	Mass (Ref.)		ary dimensions nm(inch)	•	dimen	ard mo sions		Asse	mbled bearir	ngs
mm (inch)	number	g	d	F	В		a Max.	r _{as max}	BA···Z (BAM)	BHA···Z (BHAM)	YB YBH
15.875 (5/8)	IRB 1014 IRB 1016 IRB 1022	33 37.5 51.5	15.875 (½) 15.875 (½) 15.875 (½)	22.225 (½8) 22.225 (½8) 22.225 (½8)	22.60 25.78 35.30	20.7 20.7 20.7	21.2 21.2 21.2	0.6 0.6 0.6	BA 1414Z BA 1416Z BA 1422Z	BHA 1416Z	YB 1416
17.462 (11/ ₁₆)	IRB 1110 IRB 1116	25.5 40.5	17.462 (½) 17.462 (½)	23.812 (½) 23.812 (½)	16.25 25.78	22.3 22.3	22.8 22.8	0.6 0.6	BA 1510Z BA 1516Z		
19.050	IRB 128 IRB 1212	22 33	19.050 (³ / ₄) 19.050 (³ / ₄)	25.400(1) 25.400(1)	13.08 19.43	23.9	24.4	0.6	BA 168Z BA 1612Z	BHA 168Z BHA 1612Z	YB 168 YBH 168 YB 1612 YBH 1612
(3/4)	IRB 1214 IRB 1216 IRB 1220	38.5 43.5 54.5	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)	25.400(1) 25.400(1) 25.400(1)	22.60 25.78 32.13	23.9 23.9 23.9	24.4 24.4 24.4	0.6 0.6	BA 1614Z BA 1616Z BA 1620Z	BHA 1614Z BHA 1616Z BHA 1620Z	YB 1616 YBH 1616
20.638 (13/ ₁₆)	IRB 1316	34	20.638(13/16)	25.400 (1)	25.78	24.9	24.9	0.6	BA 1616Z	BHA 1616Z	YB 1616 YBH 1616
22.225 (7/8)	IRB 148 IRB 1412 IRB 1416 IRB 1420	25 37.5 50 62.5	22.225 (½8) 22.225 (½8) 22.225 (½8) 22.225 (½8)	28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½)	13.08 19.43 25.78 32.13	27 27 27 27	27.5 27.5 27.5 27.5 27.5	0.6 0.6 0.6 0.6	BA 188Z BA 1812Z BA 1816Z BA 1820Z	BHA 1812Z BHA 1816Z BHA 1820Z	YB 188 YB 1812 YB 1816
25.400 (1)	IRB 168 IRB 1610 IRB 1612 IRB 1616 IRB 1620 IRB 168-1 IRB 1610-1 IRB 1612-1	28.5 35.5 42.5 56 70 36.5 45.5 54.5	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	$\begin{array}{c} \textbf{31.750} \ (1 \ \climatrix/4) \\ \textbf{31.750} \ (1 \ \climatrix/4) \\ \textbf{31.750} \ (1 \ \climatrix/4) \\ \textbf{31.750} \ (1 \ \climatrix/4) \\ \textbf{31.750} \ (1 \ \climatrix/4) \\ \textbf{33.338} \ (1 \ \climatrix/6) \\ \textbf{33.338} \ (1 \ \climatrix/6) \\ \textbf{33.338} \ (1 \ \climatrix/6) \end{array}$	13.08 16.25 19.43 25.78 32.13 13.08 16.25 19.43	30 30 30 30 30 30 30 30 30	30.7 30.7 30.7 30.7 30.7 32.1 32.1 32.1	0.6 0.6 0.6 0.6 0.6 0.6 0.6	BA 208Z BA 2010Z BA 2012Z BA 2016Z BA 2020Z BA 218Z BA 2110Z BA 2112Z	BHA 2012Z BHA 2016Z BHA 2020Z	YB 2010 YB 2012 YB 2016 ————————————————————————————————————

Note(1) Maximum allowable fillet corner radius of shaft Remark No oil hole is provided.

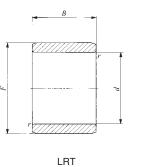
IRB

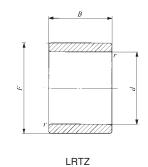
Shaft dia.	Identification	Mass (Ref.)		ary dimensions nm(inch)	3		ard mo		Asse	mbled bearin	gs
mm (inch)	number	g	d	F	В		Max.	r _{as max}	BA···Z (BAM)	BHA···Z (BHAM)	YB YBH
28.575 (1½)	IRB 188 IRB 1812 IRB 1816 IRB 1820	31.5 47 62.5 78	28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½) 28.575 (1 ½)	34.925 (1 $\frac{3}{8}$) 34.925 (1 $\frac{3}{8}$) 34.925 (1 $\frac{3}{8}$) 34.925 (1 $\frac{3}{8}$)	13.08 19.43 25.78 32.13	33.2 33.2 33.2 33.2	33.9 33.9 33.9 33.9	0.6 0.6 0.6 0.6	BA 228Z BA 2212Z BA 2216Z BA 2220Z	BHA 228Z BHA 2212Z BHA 2216Z BHA 2220Z	YB 228 YB 2212 YB 2220
31.750 (1 ¹ ⁄ ₄)	IRB 2010 IRB 2014 IRB 2016 IRB 2020	43 60 68.5 85.5	31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½)	38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	16.25 22.60 25.78 32.13	37 37 37 37	37.1 37.1 37.1 37.1	0.6 0.6 0.6 0.6	BA 2410Z BA 2414Z BA 2416Z BA 2420Z	_ _ _ _	YB 2414 YB 2416 YB 2420
34.925 (1 ³ / ₈)	IRB 2210 IRB 2220	47 93.5	34.925 (1 ³ / ₈) 34.925 (1 ³ / ₈)	41.275 (1 ½) 41.275 (1 ½)	16.25 32.13	40.2 40.2	40.2 40.2	0.6 0.6	BA 2610Z BA 2620Z		YB 2610 —
36.512 (1 ⁷ / ₁₆)	IRB 2316	99	36.512 (1 ½)	44.450 (1 ³ ⁄ ₄)	25.78	42.5	43.2	0.6	BA 2816Z	_	_
38.100 (1½)	IRB 2412 IRB 2416 IRB 2424 IRB 248-1 IRB 2410-1	62 81 121 64 79.5	38.100(1½) 38.100(1½) 38.100(1½) 38.100(1½) 38.100(1½)	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 47.625 (1 ¾) 47.625 (1 ⅓)	19.43 25.78 38.48 13.08 16.25	43.3 43.3 43.3 44.5 44.5		0.6 0.6 0.6 1	BA 2812Z BA 2816Z BA 2824Z BA 308Z BA 3010Z	BHA 2824Z	YB 2816 — —
41.275 (1 ⁵ / ₈)	IRB 2616 IRB 2628	136 235	41.275 (1 ½) 41.275 (1 ½)	50.800 (2) 50.800 (2)	25.78 44.83	47.5 47.5	48.5 48.5	1 1	BA 3216Z BAW 3228Z	_	_
42.862 (1 11/16)	IRB 2720	146	42.862 (1 ¹¹ / ₁₆)	50.800 (2)	32.13	48.5	49.5	0.6	BA 3220Z	_	_
47.625 (1½)	IRB 3016 IRB 3024	100 149	47.625 (1 ½) 47.625 (1 ½)	53.975 (2 ½) 53.975 (2 ½)	25.78 38.48	52.9 52.9	52.9 52.9	0.6 0.6	BA 3416Z BA 3424Z	_ _	_
57.150 (2½)	IRB 3616	183	57.150 (2 ½)	66.675 (2 ⁵ ⁄ ₈)	25.78	63.5	64.5	1	BA 4216Z	_ _	
63.500 (2½)	IRB 4016 IRB 4020	131 164	63.500 (2 ½) 63.500 (2 ½)	69.850 (2 ³ ⁄ ₄) 69.850 (2 ³ ⁄ ₄)	25.78 32.13	68.7 68.7	68.8 68.8	0.6 0.6	BA 4416Z BA 4420Z	_ _	_ _

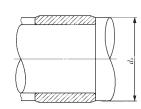
Note(1) Maximum allowable fillet corner radius of shaft Remark No oil hole is provided.

INNER RINGS

Inner Rings for General Usage






Shaft dia. 5 – 20mm

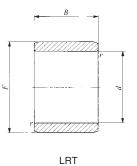
			Mass (Ref.)	Boun			sions	Standard n		Assembled bearings
Shaft dia.	Identifica	tion number	(nei.)		m	m	l ds			
mm			g	d	F	В	$r_{\rm s \ min}^{(1)}$	Min.		
	LRT 5710	_	1.4	5	7	10	0.15	6.2	6.7	RNA 495
5	LRT 5812	_	2.8	5	8	12	0.2	6.6	7.7	TAF 81512
	LRT 5816	_	3.8	5	8	16	0.2	6.6	7.7	TAF 81516
	LRT 6810	_	1.7	6	8	10	0.15	7.2	7.7	RNA 496
6	LRT 6912	_	3.2	6	9	12	0.2	7.6	8.7	TAF 91612
J	LRT 6916	_	4.3	6	9	16	0.2	7.6		TAF 91616
	LRT 61010	_	3.9	6	10	10	0.3	8	9.7	RNAF 101710
	LRT 7910	_	1.9	7	9	10	0.15	8.2	8.7	RNA 497
7	LRT 71012	_	3.6	7	10	12	0.2	8.6	9.7	TAF 101712
•	LRT 71012-1	_	3.6	7	10	12	0.3	9		RNAF 102012
	LRT 71016	_	4.9	7	10	16	0.2	8.6	9.7	TAF 101716 NAX 1023
8	LRT 81011	_	2.4	8	10	11	0.2	9.6	9.9	RNA 498
	LRT 91211	_	3.1	9	12	11	0.3	11	11.5	RNA 499
9	LRT 91212	_	4.5	9	12	12	0.3	11	11.5	TAF 121912 RNAF 122212
	LRT 91216	_	6	9	12	16	0.3	11	11.5	TAF 121916 NAX 1223
	LRT 101412	_	7	10	14	12	0.3	12	13	RNAF 142612
	LRT 101413	_	7.5	10	14	13	0.3	12	13	RNA 4900 RNAF 142213
10	_	LRTZ 101414	8.2	10	14	14	0.3	12	13	RNA 4900 UU
	LRT 101416	_	9	10	14	16	0.3	12	13	TAF 142216
	LRT 101420	_	11.5	10	14	20	0.3	12	13	TAF 142220 RNAFW142220
	LRT 121516	_	8	12	15	16.5	0.3	14	14.5	NAX 1523 NBX 1523
	LRT 121612	_	8.5	12	16	12	0.3	14	15	RNAF 162812
12	LRT 121613	_	8.5	12	16	13	0.3	14	15	RNA 4901 RNAF 162413
	_	LRTZ 121614	9.6	12	16	14	0.3	14	15	RNA 4901 UU
	LRT 121616	_	10.5	12	16	16	0.3	14	15	TAF 162416
	LRT 121620	_	13.5	12	16	20	0.3	14	15	TAF 162420 RNAFW162420

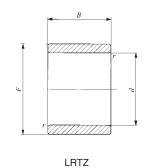
Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

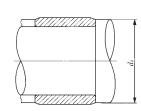
Shaft			Mass (Ref.)	Boun		dimen m	sions	Standard n	nounting mm	Assembled bearings
dia.	Identification	on number				I	(¹)	d_{i}		
mm			g	d	F	В	$r_{\rm s min}$	Min.		
12	LRT 121622	_	14.5	12	16	22	0.3	14	15	RNA 6901
12	_	LRTZ 121623	15.5	12	16	23	0.3	14	15	RNA 6901 UU
14	LRT 141717	_	9.5	14	17	17	0.3	16	16.5	NAX 1725 NBX 1725
	LRT 151916	_	12.5	15	19	16	0.3	17	18	TAF 192716
	LRT 151920	_	16	15	19	20	0.3	17	18	TAF 192720
	LRT 152012	_	12	15	20	12	0.3	17	19	RNAF 203212
	LRT 152013	_	13.5	15	20	13	0.3	17	19	RNA 4902 RNAF 202813
15	_	LRTZ 152014	14.5	15	20	14	0.3	17	19	RNA 4902 UU
13	LRT 152020	_	21.5	15	20	20.5	0.3	17	19	TR 203320
	_	LRTZ 152020	21.5	15	20	20.5	0.3	17	19	GTR 203320
	LRT 152023	_	24	15	20	23	0.3	17	19	RNA 6902
	_	LRTZ 152024	25	15	20	24	0.3	17	19	RNA 6902 UU
	LRT 152026	_	28	15	20	26	0.3	17	19	RNAFW 202826
	LRT 172020	_	13.5	17	20	20.5	0.3	19	19.5	NAX 2030 NBX 2030
	LRT 172116	_	14.5	17	21	16	0.3	19	20	TAF 212916
	LRT 172120	_	18	17	21	20	0.3	19	20	TAF 212920
	LRT 172213	_	15.5	17	22	13	0.3	19	21	RNA 4903 RNAF 223013
	_	LRTZ 172214	16.5	17	22	14	0.3	19	21	RNA 4903 UU
17	LRT 172216	_	19	17	22	16	0.3	19	21	RNAF 223516
''	LRT 172223	_	26.5	17	22	23	0.3	19	21	RNA 6903
	_	LRTZ 172224	28	17	22	24	0.3	19	21	RNA 6903 UU
	LRT 172225	_	30	17	22	25.5	0.3	19	21	TR 223425
	_	LRTZ 172225	30	17	22	25.5	0.3	19	21	GTR 223425
	LRT 172226	_	31	17	22	26	0.3	19	21	RNAFW 223026
	LRT 172232	_	38	17	22	32	0.3	19	21	RNAFW 223532
	LRT 202416	_	16.5	20	24	16	0.3	22	23	TAF 243216
20	LRT 202420	_	20.5	20	24	20	0.3	22	23	TAF 243220

INNER RINGS

Inner Rings for General Usage






Shaft dia. 20 – 32mm

			Mass	Boun	dary	dimen	sions	Standard n	nounting	Assembled bearings
Shaft			(Ref.)			ım		dimension	mm	
dia.	Identificati	on number					(1)	d_{i}	,	
				d	F	В	$r_{\rm s\;min}$			
mm			g				J 11111			
	LRT 202516	_	22	20	25	16	0.3	22	24	RNAF 253716
	LRT 202517	_	23	20	25	17	0.3	22	24	RNA 4904 RNAF 253517
	_	LRTZ 202518	24	20	25	18	0.3	22	24	RNA 4904 UU
	LRT 202520		28	20	25	20.5	0.3	22	24	TR 253820 NAX 2530
	LITT ZOZOZO		20		23	20.5	0.5	~~	27	NBX 2530
	_	LRTZ 202520	28	20	25	20.5	0.3	22	24	GTR 253820
20	L DT 202525	LN 12 202520	1	20	25	25.5	0.3	22	24	TR 253825
	LRT 202525		35							
		LRTZ 202525	35	20	25	25.5	0.3	22	24	GTR 253825
	LRT 202526	_	36	20	25	26	0.3	22	24	RNAFW 253526
	LRT 202530	_	40.5	20	25	30	0.3	22	24	RNA 6904
	_	LRTZ 202531	41.5	20	25	31	0.3	22	24	RNA 6904 UU
	LRT 202532	_	44	20	25	32	0.3	22	24	RNAFW 253732
	LRT 222616	_	17.5	22	26	16	0.3	24	25	TAF 263416
	LRT 222620	_	24	22	26	20	0.3	24	25	TAF 263420
	LRT 222817		30.5	22	28	17	0.3	24	27	RNA 49/22
22	LITT ZZZOTI	LRTZ 222818	32	22	28	18	0.3	24	27	RNA 49/22 UU
		LR12 222010								
	LRT 222830		55	22	28	30	0.3	24	27	RNA 69/22
		LRTZ 222831	55	22	28	31	0.3	24	27	RNA 69/22 UU
	LRT 252920	_	25	25	29	20	0.3	27	28	TAF 293820
	LRT 252930	_	38	25	29	30	0.3	27	28	TAF 293830
	LRT 253016	_	28	25	30	16	0.3	27	29	RNAF 304216
	LRT 253017	_	28.5	25	30	17	0.3	27	29	RNA 4905 RNAF 304017
		LRTZ 253018	29.5	25	30	18	0.3	27	29	RNA 4905 UU
25	LRT 253020		34	25	30	20.5	0.3	27	29	NAX 3030 NBX 3030
	LRT 253025		42	25	30	25.5	0.3	27	29	TR 304425
		I DT7 052005	42	25	30	25.5	0.3	27	29	GTR 304425
	LRT 253026	LRTZ 253025	44.5	25	30			27	-	
		_	1			26	0.3		29	RNAFW 304026
	LRT 253030	_	49	25	30	30	0.3	27	29	RNA 6905

Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

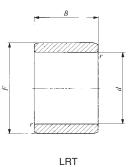
Shaft	Identification	on number	Mass (Ref.)	Boun		dimen m	sions	dimensio	n mm	Assembled bearings
dia. mm	identificatio	on number	g	d	F	В	(1) <i>r</i> _{s min}	Min.	a Max.	
25	 LRT 253032	LRTZ 253031	51 54	25 25	30 30	31 32	0.3	27 27	29 29	RNA 6905 UU RNAFW 304232
28	LRT 283217 LRT 283220 LRT 283230	LRTZ 283218 LRTZ 283230 LRTZ 283231	24.5 25.5 28.5 43 43 44	28 28 28 28 28	32 32 32 32 32 32	17 18 20 30 30.5 31	0.3 0.3 0.3 0.3 0.3	30 30 30 30 30	31 31 31 31 31	RNA 49/28 RNA 49/28 UU TAF 324220 RNA 69/28 TAF 324230 GTR 324530
	LRT 303516 LRT 303517 LRT 303520	LRTZ 303518	31.5 33.5 35 38.5	30 30 30 30 30	35 35 35 35 35	16 17 18 20	0.3 0.3 0.3 0.3	30 32 32 32 32 32	31 34 34 34 34	RNA 69/28 UU RNAF 354716 RNA 4906 RNAF 354517 RNA 4906 UU TAF 354520 NBX 3530 RNAF 354517
30	LRT 303526 LRT 303530 LRT 303530-1	LRTZ 303530 LRTZ 303531	52 59 59 59 61 64	30 30 30 30 30 30	35 35 35 35 35 35	26 30 30.5 30.5 31 32		32 32 32 32 32 32 32	34 34 34 34 34 34	RNAFW 354526 RNA 6906 TAF 354530 TR 354830 GTR 354830 RNA 6906 UU RNAFW 354732
32	LRT 323720 LRT 323730 LRT 323830 LRT 324020 LRT 324036	LRTZ 323830 LRTZ 324021 LRTZ 324037	43.5 63 77 77 69 72.5 123 130	32 32 32 32 32 32 32 32 32	37 37 38 38 40 40 40	20 30 30.5 30.5 20 21 36 37		34 34 36 36 36 36 36 36	36 36 37 37 39 39 39	TAF 374720 TAF 374730 TR 385230 GTR 385230 RNA 49/32 RNA 69/32 UU RNA 69/32 UU

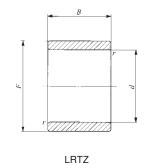
Note(1) Minimum allowable value of chamfer dimension r

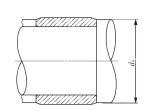
Remark No oil hole is provided.

INNER RINGS

Inner Rings for General Usage




Shaft dia. 35 – 50mm


Shaft dia.	Identificati	on number	Mass (Ref.)	Boun		dimen ım	sions	Standard n	mm	Assembled bearings
mm	identinicati	on number	g	d	F	В	$r_{\rm s \ min}^{(1)}$			
	LRT 354017	_	39	35	40	17	0.3	37	39	RNAF 405017
	LRT 354020	_	46	35	40	20	0.3	37	39	TAF 405020 RNAF 405520
										NAX 4032 NBX 4032
		LRTZ 354020	46	35	40	20.5	0.6	39	39.5	
	LRT 354030	_	67	35	40	30	0.3	37	39	TAF 405030
35	LRT 354034 LRT 354040	_	78 95	35 35	40 40	34 40	0.3	37 37	39 39	RNAFW 405034 RNAFW 405540
33	LRT 354040 LRT 354220	_	65	აი 35	40	20	0.3	37	39 41	RNA 4907
		LRTZ 354221	67	35	42	21	0.6	39	41	RNA 4907 UU
	LRT 354230	RT 354230 —				30.5	0.6	39	41	TR 425630
	_	LRTZ 354230	97 100	35 35	42 42	30.5	0.6	39	41	GTR 425630
	LRT 354236	_	120	35	42	36	0.6	39	41	RNA 6907
	_	LRTZ 354237	120	35	42	37	0.6	39	41	RNA 6907 UU
	LRT 384320	Т 384320 —				20	0.3	40	42	TAF 435320
38	LRT 384330	_	72	38	43	30	0.3	40	42	TAF 435330
	LRT 404517	_	44.5	40	45	17	0.3	42	44	RNAF 455517
	LRT 404520	_	51	40	45	20	0.3	42	44	TAF 455520 RNAF 456220
										NAX 4532 NBX 4532
	LRT 404530	_	77	40	45	30	0.3	42	44	TAF 455530
	LRT 404530-1	_	77 77	40 40	45	30.5	0.6	44	44.5	
40	_	- LRTZ 404530			45	30.5	0.6	44	44.5	GTR 455930
	LRT 404534				45	34	0.3	42	44	RNAFW 455534
	LRT 404540			40	45	40	0.3	42	44	RNAFW 456240
	LRT 404822			40	48	22	0.6	44	47	RNA 4908
	LRTZ 404823		95	40	48	23	0.6	44	47	RNA 4908 UU
	LRT 404840		165 170	40 40	48 48	40	0.6	44	47	RNA 6908
	_	LRTZ 404841	1/0	40	40	41	0.6	44	47	RNA 6908 UU

 ${
m Note}(^{
m 1})$ Minimum allowable value of chamfer dimension r

Remark No oil hole is provided.

Shaft			Mass (Ref.)	Boun		dimen m	sions	Standard m dimension	nounting mm	Assembled bearings
dia. mm	Identificati	424730 — 424830 — 424830 — LRTZ 424830 455020 — 455025 — 455030 — LRTZ 455030 — 455040 — 455222 — LRTZ 455223 — LRTZ 455241 — LRTZ 455241 — 505520 — 505525 — 505535 —			F	В	$r_{\rm s \ min}^{(1)}$	d_{z} Min.		
	LRT 424720	_	g 54	42	47	20	0.3	44	46	TAF 475720
	LRT 424720	_	81	42	47	30	0.3	44	46	TAF 475730
42	LRT 424830	_	100	42	48	30.5		46	47	TR 486230
	_	LRTZ 424830	100	42	48	30.5		46	47	GTR 486230
	LRT 455020	_	58	45	50	20	0.3	47	49	RNAF 506220
	LRT 455025	_	71	45	50	25	0.3	47	49	TAF 506225 NAX 5035 NBX 5035
	LRT 455030	_	90	45	50	30.5	0.6	49	49.5	TR 506430
	_	LRTZ 455030	90	45	50	30.5	0.6	49	49.5	GTR 506430
	LRT 455035	_	95	45	50	35	0.3	47	49	TAF 506235
45	LRT 455040	_	115	45	50	40	0.3	47	49	RNAFW 506240
	LRT 455222	_	88	45	52	22	0.6	49	51	RNA 4909
	_	LRTZ 455223	93	45	52	23	0.6	49	51	RNA 4909 UU
	LRT 455240	_	165	45	52	40	0.6	49	51	RNA 6909
	_	LRTZ 455241	170	45	52	41	0.6	49	51	RNA 6909 UU
	LRT 455520	_	120	45	55	20	1	50	54	RNAF 557220
	LRT 455540	_	245	45	55	40	1	50	54	RNAFW 557240
	LRT 505520	_	63	50	55	20	0.3	52	54	RNAF 556820
	LRT 505525	_	77	50	55	25	0.3	52	54	TAF 556825
	LRT 505535	_	110	50	55	35	0.3	52	54	TAF 556835
	LRT 505540	_	130	50	55	40	0.3	52	54	RNAFW 556840
	LRT 505822	_	116	50	58	22	0.6	54	57	RNA 4910
50	_	LRTZ 505823	118	50	58	23	0.6	54	57	RNA 4910 UU
	LRT 505840		210	50	58	40	0.6	54	57	RNA 6910
		LRTZ 505841	215	50	58	41	0.6	54	57	RNA 6910 UU
	LRT 505845	_	235	50	58	45.5		55	57	TR 587745
	L DT FOCOCO	LRTZ 505845	235	50	58	45.5		55	57	GTR 587745
	LRT 506020	_	135	50	60	20	1	55	59	RNAF 607820

Note(1) Minimum allowable value of chamfer dimension r

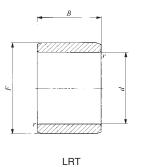
Remark No oil hole is provided.

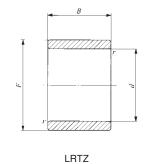
Н

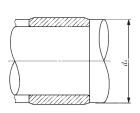
IRB LRT

INNER RINGS

Inner Rings for General Usage






Shaft dia. 50 — 80mm

Shaft	Identificati		Mass (Ref.)	Boun		dimen ım	sions	dimension	mm	Assembled bearings
dia. mm	Identificati	on number	g	d	F	В	(1) r _{s min}	d _a Min.		
50	LRT 506025 LRT 506040	_ _	165 265	50 50	60 60	25.5 40	1 1	55 55	59 59	NAX 6040 NBX 6040 RNAFW 607840
	LRT 556025 LRT 556035 LRT 556238 — LRT 556325	 LRTZ 556238	88 120 190 190 145	55 55 55 55 55	60 60 62 62 63	25 35 38.5 38.5 25	0.3 0.3 1 1	57 57 60 60 60	59 59 60.5 60.5	TAF 607225 TAF 607235 TR 628138 GTR 628138 RNA 4911
55	LRT 556345 LRT 556530 LRT 556560	LRTZ 556326 LRTZ 556346	150 255 260 220 435	55 55 55 55 55	63 63 63 65 65	26 45 46 30 60	1 1 1 1.5 1.5	60 60 60 63 63	61 61 61 63.5 63.5	RNA 4911 RNA 4911 UU RNA 6911 RNA 6911 UU RNAF 658530 RNAFW 658560
60	LRT 606825 LRT 606825-1 LRT 606835 LRT 606845 LRT 607025 LRT 607030 LRT 607045 LRT 607060	LRTZ 606826 LRTZ 606846 LRTZ 607045	150 150 160 210 275 280 195 240 355 360 480	60 60 60 60 60 60 60 60 60	68 68 68 68 68 70 70 70 70	25 25 26 35 45 46 25.5 30 45.5 45.5	0.6 1 0.6 1 1 1.5 1 1.5	64 65 65 64 65 65 65 65 65 65	66 66 66 66 68 68.5 68 68.5	TAF 688225 RNA 4912 RNA 4912 UU TAF 688235 RNA 6912 RNA 6912 UU NAX 7040 RNAF 709030 TR 708945 GTR 708945 RNAFW 709060
65	LRT 657225 LRT 657245 LRT 657335	LRTZ 657226 LRTZ 657246	145 150 255 265 235	65 65 65 65 65	72 72 72 72 72 73	25 26 45 46 35	1 1 1 1	70 70 70 70 70	70.5 70.5 70.5 70.5 71	RNA 4913 RNA 4913 UU RNA 6913 RNA 6913 UU TAF 739035

Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

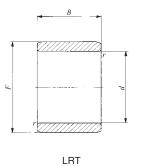
Shaft dia.	Identification	on number	Mass (Ref.)	Boun		dimen m	sions	dimension	mm	Assembled bearings
mm	racritineati	on number	g	d	F	В	$r_{\rm s \ min}^{(1)}$	da Min.		
65	LRT 657530 LRT 657560	_	260 520	65 65	75 75	30 60	1.5 1.5	73 73	73.5 73.5	RNAF 759530 RNAFW 759560
70	LRT 708025 LRT 708030 LRT 708030-1 ————————————————————————————————————	LRTZ 708031 LRTZ 708055	225 275 275 275 310 490 500 560	70 70 70 70 70 70 70 70	80 80 80 80 80 80 80	25 30 30 31 35 54 55 60	1 1.5 1 1 1 1 1.5	75 75 78 75 75 75 75 75	78 78.5 78 78 78 78 78 78.5	TAF 809525 RNA 4914 RNAF 8010030 RNA 4914 UU TAF 809535 RNA 6914 RNA 6914 UU RNAFW 8010060
75	LRT 758345 LRT 758525 LRT 758530 LRT 758530-1 LRT 758535 LRT 758554	LRTZ 758345	350 350 240 290 300 335 520 530	75 75 75 75 75 75 75 75	83 85 85 85 85 85 85 85	45.5 45.5 25 30 30 31 35 54 55		80 80 80 80 83 80 80 80	81 83 83 83.5 83 83 83	TR 8310845 GTR 8310845 TAF 8510525 RNA 4915 RNAF 8510530 RNA 4915 UU TAF 8510535 RNA 6915
80	LRT 809025 LRT 809030 LRT 809030-1 LRT 809035 LRT 809054 LRTZ 809055		255 310 310 315 355 550 560	80 80 80 80 80 80	90 90 90 90 90 90	25 30 30 31 35 54 55	1 1.5 1 1 1	85 85 88 85 85 85 85	88 88.5 88 88 88 88	TAF 9011025 RNA 4916 RNAF 9011030 RNA 4916 UU TAF 9011035 RNA 6916 RNA 6916 UU

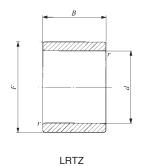
Note(1) Minimum allowable value of chamfer dimension r

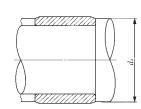
Remark No oil hole is provided.

INNER RINGS

Inner Rings for General Usage






Shaft dia. 85 — 140mm

Shaft			Mass (Ref.)	Boun		dimen ım	sions	Standard dimension	mounting n mm	Assembled bearings
dia.	Identificati	on number			l	I	(1)	d	a	
mm			g	d	F	В	$r_{\rm s min}$		Max.	
	LRT 859350		440	85		50.5		90	91	TR 9311850
		LRTZ 859350	440	85	93	50.5		90	91	GTR 9311850
	LRT 859526	_	280	85	95	26	1	90	93	TAF 9511526
	LRT 859530	_	330	85	95	30	1.5	93	93.5	RNAF 9511530
	LRT 859536	_	390	85	95	36	1	90	93	TAF 9511536
85	LRT 859545	_	490	85	95	45.5		93	93.5	TR 9512045
	_	LRTZ 859545	490	85	95	45.5	1.5	93	93.5	GTR 9512045
	LRT 8510035	_	575	85		35	1.1	91.5	98	RNA 4917
	_	LRTZ 8510036	605		100	36	1.1	91.5	98	RNA 4917 UU
	LRT 8510063	_	1 040	85	100	63	1.1	91.5	98	RNA 6917
	_	LRTZ 8510064	1 060	85	100	64	1.1	91.5	98	RNA 6917 UU
	LRT 9010026	_	295	90	100	26	1	95	98	TAF 10012026
	LRT 9010030	_	355	90	100	30	1.5	98	98.5	RNAF 10012030
	LRT 9010036		415	90	100	36	1	95	98	TAF 10012036
	LRT 9010050	_	580	90	100	50.5	1.5	98	98.5	TR 10012550
90	_	LRTZ 9010050	580	90	100	50.5	1.5	98	98.5	GTR 10012550
	LRT 9010535	_	610	90	105	35	1.1	96.5	103	RNA 4918
	_	LRTZ 9010536	630	90	105	36	1.1	96.5	103	RNA 4918 UU
	LRT 9010563	_	1 100	90	105	63	1.1	96.5	103	RNA 6918
	_	LRTZ 9010564	1 120	90	105	64	1.1	96.5	103	RNA 6918 UU
	LRT 9510526	_	315	95	105	26	1	100	103	TAF 10512526
	LRT 9510536	_	430		105	36	1	100	103	TAF 10512536
	LRT 9511035	_	650		110	35	1.1	101.5		RNA 4919
95	_	LRTZ 9511036	660		110	36	1.1	101.5	108	RNA 4919 UU
	LRT 9511063		1 160		110	63	1.1	101.5	108	RNA 6919
	- LRTZ 951106				110	64	1.1	101.5	108	RNA 6919 UU

Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

Shaft			Mass (Ref.)	Boun		dimen m	sions	Standard dimension	mounting	Assembled bearings
dia.	Identificat	ion number		_			(¹)	d	a	
mm			g	d	F	В	r _{s min}	Min.	Max.	
	LRT 10011030	_	380	100			1	105	108	TAF 11013030
	LRT 10011040	_	500	100		40	1	105	108	TAF 11013040
100	LRT 10011050		640 640	100	110 110	50.5 50.5	1.5	108	108.5 108.5	TR 11013550 GTR 11013550
	LRT 10011540	LRTZ 10011050	770	100	115	40	1.5 1.1	108 106.5		RNA 4920
	—	LRTZ 10011541	780	100	115	41	1.1	106.5	113	RNA 4920 UU
	LRT 10511550		670	105		50.5	1.5	113	113.5	TR 11515350
105	—	LRTZ 10511550	670	105		50.5	1.5	113	113.5	GTR 11515350
	LRT 11012030		410	110		30	1	115	118	RNA 4822
110		_	840	110	125	40	1.1	116.5		RNA 4922
	_	LRTZ 11012541	870	110	125	41	1.1	116.5	123	RNA 4922 UU
	LRT 12013030	_	450	120	130	30	1	125	128	RNA 4824
120	LRT 12013545	_	1 030	120	135	45	1.1	126.5	133	RNA 4924
	_	LRTZ 12013546	1 050	120	135	46	1.1	126.5	133	RNA 4924 UU
125	LRT 12514060	_	1 460	125	140	60.5	1.5	133	138	TR 14017860
123	_	LRTZ 12514060	1 460	125	140	60.5	1.5	133	138	GTR 14017860
	LRT 13014535	_	860	130	145	35	1.1	136.5	143	RNA 4826
130	LRT 13015050	_	1 670	130	150	50	1.5	138	148	RNA 4926
	_	LRTZ 13015051	1 720	130	150	51	1.5	138	148	RNA 4926 UU
135	LRT 13515060	_	1 560	135	150	60.5	1.5	143	148	TR 15018860
100		LRTZ 13515060	1 560	135	150	60.5	1.5	143	148	GTR 15018860
	LRT 14015535	_	930	140	155	35	1.1	146.5	153	RNA 4828
140	LRT 14016050		1 790	140	160	50	1.5	148	158	RNA 4928
	_	LRTZ 14016051	1 830	140	160	51	1.5	148	158	RNA 4928 UU

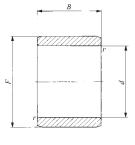
Note(1) Minimum allowable value of chamfer dimension r

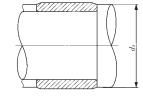
Remark No oil hole is provided.

Н

IRT IRB LRT

INNER RINGS


Inner Rings for General Usage



Shaft dia. 150 — 440mm

Shaft dia.	Identificatio	on number	Mass (Ref.)	Boun		dimen m		Standard dimension	n mm	Assembled bearings
mm			g	d	F	В	$r_{\rm s \ min}^{(1)}$	d Min.	a Max.	
150	LRT 15016540	_	1 130	150	165	40	1.1	156.5	163	RNA 4830
	LRT 15017060	_	2 290	150	170	60	2	159	168	RNA 4930
160	LRT 16017540	_	1 200	160	175	40	1.1	166.5	173	RNA 4832
	LRT 16018060	_	2 440	160	180	60	2	169	178	RNA 4932
170	LRT 17018545	_	1 420	170	185	45	1.1	176.5	183	RNA 4834
	LRT 17019060	_	2 580	170	190	60	2	179	188	RNA 4934
180	LRT 18019545	_	1 500	180	195	45	1.1	186.5	193	RNA 4836
	LRT 18020569	_	3 950	180	205	69	2	189	203	RNA 4936
190	LRT 19021050	_	2 380	190	210	50	1.5	198	208	RNA 4838
	LRT 19021569	_	4 200	190	215	69	2	199	213	RNA 4938
200	LRT 20022050	_	2 520	200	220	50	1.5	208	218	RNA 4840
	LRT 20022580	_	5 000	200	225	80	2.1	211	223	RNA 4940
220	LRT 22024050 LRT 22024580		2 750 5 500	220 220	240 245	50 80	1.5 2.1	228 231	238 243	RNA 4844 RNA 4944
240	LRT 24026560	_	4 530	240	265	60	2	249	262	RNA 4848
	LRT 24026580	_	6 000	240	265	80	2.1	251	262	RNA 4948
260	LRT 26028560	_	4 930	260	285	60	2	269	282	RNA 4852
	LRT 260290100	_	9 900	260	290	100	2.1	271	287	RNA 4952
280	LRT 28030569 LRT 280310100		6 050 10 600	280 280	305 310	69 100	2 2.1	289 291	302 307	RNA 4856 RNA 4956
300	LRT 30033080	_	9 100	300	330	80	2.1	311	327	RNA 4860
	LRT 300340118	_	18 000	300	340	118	3	313	337	RNA 4960
320	LRT 32035080	_	9 600	320	350	80	2.1	331	347	RNA 4864
	LRT 320360118	_	19 200	320	360	118	3	333	357	RNA 4964

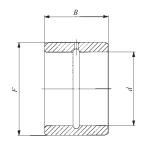
Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

LRT

Shaft			Mass (Ref.)	Boun		dimen m	sions	Standard dimension	mounting n mm	Assembled bearings
dia.	Identificatio	on number		d	F	$\mid B \mid$	(1) r _{s min}	d Min.		
mm			g							
340	LRT 34037080 LRT 340380118	_ _	10 200 20 300	l	370 380	80 118	2.1 3	351 353	367 377	RNA 4868 RNA 4968
360	LRT 36039080 LRT 360400118		10 800 21 500		390 400	80 118	2.1	371 373	387 397	RNA 4872 RNA 4972
380	LRT 380415100 LRT 380430140		16 700 33 900	380	415 430	100	2.1	391 396	412 427	RNA 4876 RNA 4976
400		_	35 600	400	450	140	4	416	447	RNA 4980
420	LRT 420470140	_	37 300	420	470	140	4	436	467	RNA 4984
440	LRT 440490160	_	44 100	440	490	160	4	456	487	RNA 4988

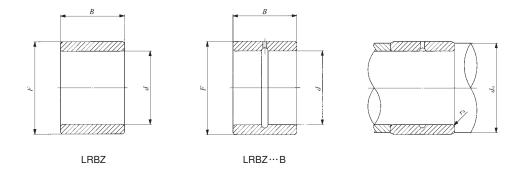
Note(1) Minimum allowable value of chamfer dimension r Remark No oil hole is provided.

Н


IRT IRB LRT

INNER RINGS

Inner Rings for General Usage Inch Series



LRB

Shaft dia. 9.525 — 22.225mm

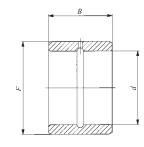
Shaft			Mass (Ref.)		dary dimension mm(inch)	าร		lard mou	unting mm
dia. mm (inch)	Identifica	ation number	g	d	F	В	Min.	a Max.	$r_{\rm as\ max}$ Max.
9.525 (3/8)	LRB 61012 — — — —	LRBZ 61012 LRBZ 61016 LRBZ 61016 B	18.5 18.5 25 25	9.525 ($\frac{3}{8}$) 9.525 ($\frac{3}{8}$) 9.525 ($\frac{3}{8}$) 9.525 ($\frac{3}{8}$)	15.875($\frac{5}{8}$) 15.875($\frac{5}{8}$) 15.875($\frac{5}{8}$) 15.875($\frac{5}{8}$)	19.300 19.300 25.650 25.650	14 14 14 14	14.5 14.5 14.5 14.5	0.6 0.6 0.6 0.6
12.700 (½)	LRB 81212 LRB 81216 — — —	LRBZ 81212 LRBZ 81216 LRBZ 81216 B	23.5 31 23.5 31 31	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)	$\begin{array}{c} 19.050 \left(\begin{array}{c} 3/4 \right) \\ 19.050 \left(\begin{array}{c} 3/4 \right) \\ 19.050 \left(\begin{array}{c} 3/4 \right) \\ 19.050 \left(\begin{array}{c} 3/4 \right) \\ 19.050 \left(\begin{array}{c} 3/4 \right) \\ \end{array} \end{array}$	19.300 25.650 19.300 25.650 25.650	17.5 17.5 17.5 17.5 17.5	18 18 18 18 18	1 1 0.6 0.6 0.6
15.875 (%)	LRB 101412 LRB 101416 — — —	LRBZ 101412 LRBZ 101416 LRBZ 101416 B	28 37.5 28 37.5 37.5	15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$) 15.875 ($\frac{5}{8}$)	22.225(½) 22.225(½) 22.225(½) 22.225(½) 22.225(½)	19.300 25.650 19.300 25.650 25.650	21 21 21 21 21	21.2 21.2 21.2 21.2 21.2	1 1 0.6 0.6 0.6
19.050 (³ / ₄)	LRB 121612 LRB 121616 — — —	LRBZ 121612 LRBZ 121616 LRBZ 121616 B	33 44 33 44 44	19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾) 19.050 (¾)	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	19.300 25.650 19.300 25.650 25.650	24 24 24 24 24	24.4 24.4 24.4 24.4 24.4	1 1 0.6 0.6 0.6
22.225 (½)	LRB 141816 LRB 141820 — — —	LRBZ 141816 LRBZ 141820 LRBZ 141820 B	50 62 50 62 62	22.225 (%) 22.225 (%) 22.225 (%) 22.225 (%) 22.225 (%)	$\begin{array}{c} \textbf{28.575} (1 \ 1/8) \\ \textbf{28.575} (1 \ 1/8) \\ \textbf{28.575} (1 \ 1/8) \\ \textbf{28.575} (1 \ 1/8) \\ \textbf{28.575} (1 \ 1/8) \end{array}$	25.650 32.000 25.650 32.000 32.000	27 27 27 27 27 27	27.5 27.5 27.5 27.5 27.5 27.5	1 1 0.6 0.6 0.6
Nata (1) Ma	.:	A service and the of the off							

Note(¹) Maximum allowable fillet corner radius of shaft
Remark LRBZ has no oil hole. LRB and LRBZ ··· B are provided with an oil groove and an oil hole.

Assembled bearings
BR 101812
GBR 101812 GBR 101816UU
BR 101816UU
BR 122012
BR 122016
GBR 122012
GBR 122016UU BR 122016UU
BR 142212 BR 142216
GBR 142212
GBR 142216 GBR 142216UU
BR 142216UU
BR 162412
BR 162416 GBR 162412
GBR 162416 GBR 162416UU
BR 162416UU
BR 182616
BR 182620
GBR 182616 GBR 182620UU
GDN 10202000

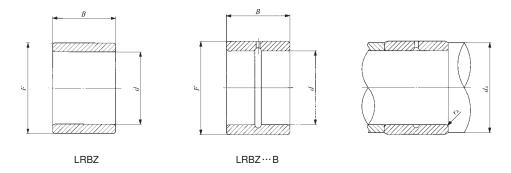
BR 182620UU

Н


LRT

INNER RINGS

Inner Rings for General Usage Inch Series

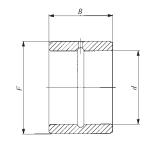

LRB

Shaft dia. 25.400 — 38.100mm

Shaft		Identification number			dary dimension mm(inch)	ns	Standard mounting dimensions mm		
dia. mm (inch)	Identifica				F	В	Min.	Max.	$r_{ m as\ max}$ Max.
25.400 (1)	LRB 162016 LRB 162020 — — —	LRBZ 162016 LRBZ 162020 LRBZ 162020 B	56 72 56 72 72	25.400(1) 25.400(1) 25.400(1) 25.400(1) 25.400(1)	31.750(1 ½) 31.750(1 ½) 31.750(1 ½) 31.750(1 ½) 31.750(1 ½)	25.650 32.000 25.650 32.000 32.000	30.5 30.5 30.5 30.5 30.5	30.7 30.7 30.7 30.7 30.7	1 1 0.6 0.6 0.6
28.575 (1½)	LRB 182216 LRB 182220 — — —	LRBZ 182216 LRBZ 182220 LRBZ 182220 B	63 77 63 77 77	$\begin{array}{c} 28.575 (1 \frac{1}{8}) \\ 28.575 (1 \frac{1}{8}) \\ 28.575 (1 \frac{1}{8}) \\ 28.575 (1 \frac{1}{8}) \\ 28.575 (1 \frac{1}{8}) \end{array}$	34.925 (1 ¾8) 34.925 (1 ¾8) 34.925 (1 ¾8) 34.925 (1 ¾8) 34.925 (1 ¾8)	25.650 32.000 25.650 32.000 32.000	33.5 33.5 33.5 33.5 33.5	33.9 33.9 33.9 33.9 33.9	1 1 0.6 0.6 0.6
31.750 (1 ¹ / ₄)	LRB 202416 LRB 202420 — — —	LRBZ 202416 LRBZ 202420 LRBZ 202420 B	71 86 71 86 86	31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½) 31.750 (1 ½)	38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½) 38.100 (1 ½)	25.650 32.000 25.650 32.000 32.000	37 37 37 37 37	37.1 37.1 37.1 37.1 37.1	1.5 1.5 0.6 0.6 0.6
34.925 (1 ³ / ₈)	LRB 222616 LRB 222620 — — —	LRBZ 222616 LRBZ 222620 LRBZ 222620 B	77 96 77 96 96	$\begin{array}{c} 34.925 (1\frac{3}{8}) \\ 34.925 (1\frac{3}{8}) \\ 34.925 (1\frac{3}{8}) \\ 34.925 (1\frac{3}{8}) \\ 34.925 (1\frac{3}{8}) \end{array}$	$\begin{array}{c} \textbf{41.275} \ (1\ \ \frac{5}{8}) \\ \textbf{41.275} \ (1\ \ \frac{5}{8}) \\ \textbf{41.275} \ (1\ \ \frac{5}{8}) \\ \textbf{41.275} \ (1\ \ \frac{5}{8}) \\ \textbf{41.275} \ (1\ \ \frac{5}{8}) \end{array}$	25.650 32.000 25.650 32.000 32.000	40.2 40.2 40.2 40.2 40.2	40.2 40.2 40.2 40.2 40.2	1.5 1.5 0.6 0.6 0.6
38.100 (1½)	LRB 242816 LRB 242820 LRB 243020 — — — —	LRBZ 242820 LRBZ 242820 B LRBZ 243020 LRBZ 243020 B	80 100 155 100 100 160 160	38.100 (1½) 38.100 (1½) 38.100 (1½) 38.100 (1½) 38.100 (1½) 38.100 (1½) 38.100 (1½)	$\begin{array}{c} \textbf{44.450} \ (1\ \frac{3}{4}) \\ \textbf{44.450} \ (1\ \frac{3}{4}) \\ \textbf{47.625} \ (1\ \frac{7}{8}) \\ \textbf{44.450} \ (1\ \frac{7}{4}) \\ \textbf{44.450} \ (1\ \frac{7}{8}) \\ \textbf{47.625} \ (1\ \frac{7}{8}) \\ \textbf{47.625} \ (1\ \frac{7}{8}) \end{array}$	25.650 32.000 32.000 32.000 32.000 32.000 32.000	43.3 43.3 43.3 43.3 43.3 43.3 43.3	43.4 45 43.4 43.4 45 45	1.5 1.5 1.5 0.6 0.6 1

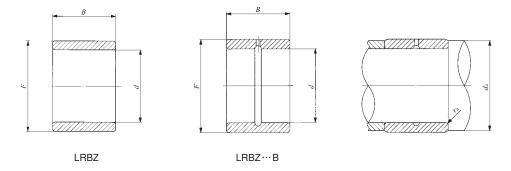
Note(1) Maximum allowable fillet corner radius of shaft

Remark LRBZ has no oil hole. LRB and LRBZ...B are provided with an oil groove and an oil hole.


	Assemble	d bearings	
	202816 202820 R 202816 R 202820UU 202820UU		
	223016 223020 R 223016 R 223020UU 223020UU		
	243316 243320 R 243316 R 243320 243320UU	GBR 243320UU	
	263516 263520 R 263516 R 263520 263520UU	GBR 263520UU	
BR	283716 283720 303920 8 283720 283720UU 8 303920	BR 283820 GBR 283820 GBR 303920UU	GBR 283720UU
BR	303920UU	GDU 20235000	

INNER RINGS

Inner Rings for General Usage Inch Series


LRB

Shaft dia. 41.275 — 63.500mm

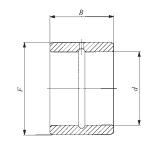
Shaft dia.	Idontifica	tion number	Mass (Ref.)	Bound	ns	Standard mounting dimensions mm			
mm (inch)	Identifica	Identification number			F	В	Min.	Max.	r _{as max}
41.275 (1 ⁵ / ₈)	LRB 263216 LRB 263220 — — —	LRBZ 263216 LRBZ 263220 LRBZ 263220 B	135 170 135 170 170	41.275 (1 ½) 41.275 (1 ½) 41.275 (1 ½) 41.275 (1 ½) 41.275 (1 ½)	50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	25.650 32.000 25.650 32.000 32.000	48 48 48 48 48	49 49 49 49	1.5 1.5 1 1 1
44.450 (1¾)	LRB 283624 LRB 283628 — — —	LRBZ 283624 LRBZ 283628 LRBZ 283628 B	300 345 300 345 345	44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾) 44.450 (1 ¾)	57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	38.350 44.700 38.350 44.700 44.700	52.5 52.5 52.5 52.5 52.5	55 55 55 55 55	1.5 1.5 1.5 1.5 1.5
50.800 (2)	LRB 324024 LRB 324028 — — —	LRBZ 324024 LRBZ 324028 LRBZ 324028 B	335 390 335 390 390	50.800(2) 50.800(2) 50.800(2) 50.800(2) 50.800(2)	63.500 (2 ½) 63.500 (2 ½) 63.500 (2 ½) 63.500 (2 ½) 63.500 (2 ½)	38.350 44.700 38.350 44.700 44.700	58 58 58 58 58	61 61 61 61 61	2 2 1.5 1.5 1.5
57.150 (2½)	LRB 364424 LRB 364428 — —	LRBZ 364424 LRBZ 364428 LRBZ 364428 B	375 440 375 440 440	57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½) 57.150 (2 ½)	69.850 (2 ¾) 69.850 (2 ¾) 69.850 (2 ¾) 69.850 (2 ¾) 69.850 (2 ¾)	38.350 44.700 38.350 44.700 44.700	65 65 65 65 65	67 67 67 67 67	2 2 1.5 1.5 1.5
63.500 (2½)	LRB 404824 LRB 404828 — — — —	LRBZ 404824 LRBZ 404828 LRBZ 404828 B	410 480 410 480 480	63.500 (2 ½) 63.500 (2 ½) 63.500 (2 ½) 63.500 (2 ½) 63.500 (2 ½)	76.200(3) 76.200(3) 76.200(3) 76.200(3) 76.200(3)	38.350 44.700 38.350 44.700 44.700	71 71 71 71 71	73 73 73 73 73	2 2 1.5 1.5 1.5

Note(1) Maximum allowable fillet corner radius of shaft

Remark LRBZ has no oil hole. LRB and LRBZ...B are provided with an oil groove and an oil hole.

Ī	Assemble	d bearings
	BR 324116	
	BR 324120 GBR 324116	
	GBR 324110	GBR 324120UU
	BR 324120UU	GBN 32412000
	BR 364824	
	BR 364828	
	GBR 364824	
	GBR 364828	GBR 364828UU
	BR 364828UU	
-	BR 405224	
	BR 405228	
	GBR 405224	
	GBR 405228	GBR 405228UU
	BR 405228UU	
	BR 445624	
	BR 445628	
	GBR 445624	OPP 4450001111
	GBR 445628 BR 445628UU	GBR 445628UU
	BR 486024	
	BR 486028 GBR 486024	
	GBR 486028	GBR 486028UU
	BR 486028UU	25 13332233

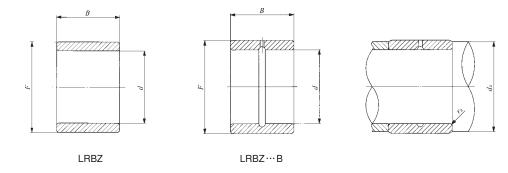
Н


LRT

INNER RINGS

Inner Rings for General Usage Inch Series

LRB


Shaft dia. 69.850 — 95.250mm

							0:		
Shaft			Mass (Ref.)		dary dimension mm(inch)	าร		lard mou ensions	mm
dia.	Identifica	ation number					a	! a	$r_{\text{as max}}^{(1)}$
mm (inch)			g	d	F	В	Min.	Max.	Max.
	LRB 445228	_	530	69.850 (2 ³ / ₄)	82.550 (3 ½)	44.700	77	79	2
69.850	LRB 445232	_	600	69.850 (2 ³ ⁄ ₄)	82.550 (3 ½)	51.050	77	79	2
$(2\frac{3}{4})$	_	LRBZ 445228	530	69.850 (2¾)	82.550 (3 1/4)	44.700	77	79	1.5
	_	LRBZ 445228 B LRBZ 445232	530 600	69.850 (2 ¾) 69.850 (2 ¾)	82.550 (3 ½) 82.550 (3 ½)	44.700 51.050	77 77	79 79	1.5 1.5
	LRB 485632	_	640	76.200(3)	88.900 (3 ½)	51.050	83.5	86	2
76.200	— —	LRBZ 485632	640	76.200(3)	88.900 (3 ½)	51.050	83.5	86	1.5
(3)	_	LRBZ 485632 B	640	76.200 (3)	88.900 (3 1/2)	51.050	83.5	86	1.5
82.550	LRB 526032	_	690	82.550 (3 ½)	95.250 (3 ¾)	51.050	91	93	2.5
$(3\frac{1}{4})$	_	LRBZ 526032	690	82.550 (3 ½)	95.250 (3 ¾)	51.050	91	93	1.5
	_	LRBZ 526032 B	690	82.550 (3 ½)	95.250 (3 ³ ⁄ ₄)	51.050	91	93	1.5
$(3\frac{1}{2})$	LRB 566432		750	88.900 (3 ½)	101.600(4)	51.050	97	99	2.5
	_	LRBZ 566432	750	88.900 (3 ½)	101.600(4)	51.050	97	99	1.5
95.250 $(3\frac{3}{4})$	_	LRBZ 606832	800	95.250 (3 ¾)	107.950 (4 1/4)	51.050	103	105	1.5
(0/4/									
			l	1		1	1	1	

Note(1) Maximum allowable fillet corner radius of shaft

Remark LRBZ has no oil hole. LRB with inner ring bore diameter d of 76.200 mm or less and LRBZ···B are provided with an oil groove and an oil hole.

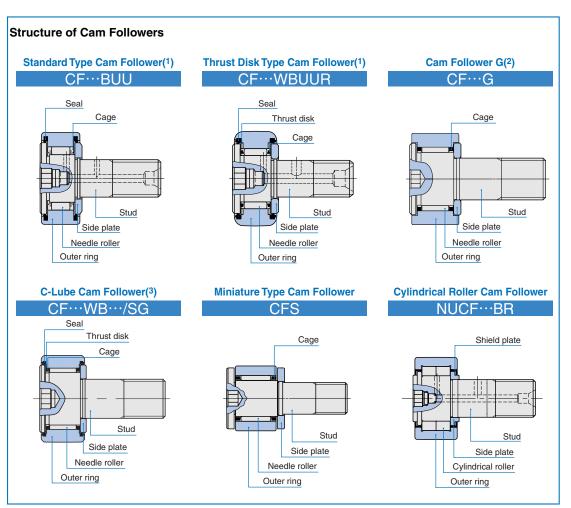
Other models are provided with an oil groove and two oil holes.

Assemble	d bearings
BR 526828 BR 526832 GBR 526828 BR 526828UU GBR 526832	GBR 526828UU
BR 567232 GBR 567232 BR 567232UU	GBR 567232UU
BR 607632 GBR 607632 BR 607632UU	GBR 607632UU
BR 648032 GBR 648032	GBR 648032UU
GBR 688432	GBR 688432UU

CAM FOLLOWERS

- Standard Type Cam Followers
- **■** Stainless Steel Made Cam Followers
- Solid Eccentric Stud Type Cam Followers Miniature Type Cam Followers
- **●**Eccentric Type Cam Followers
- Thrust Disk Type Cam Followers
- Cam Follower G
- C-Lube Cam Followers

- Centralized Lubrication Type Cam Followers
- **●** Easy Mounting Type Cam Followers
- **●** Stainless Steel Made Miniature Cam Followers
- **Cylindrical Roller Cam Followers**


Structure and Features

IKD Cam Followers are bearings with a stud incorporating needle rollers in a thick walled outer ring. These bearings are designed for outer ring rotation, and have superior rotational performance with a small coefficient of friction and high load capacity.

As studs already have threads or steps, they are easy to mount.

Cam Followers are follower bearings for cam mechanisms and linear motions and have high rigidity and high accuracy. They are, therefore, used widely for machine tools, industrial robots, electronic devices, and OA equipment.

Stainless steel made Cam Followers are superior in corrosion resistance and suitable for applications in environments where oil cannot be used or water splashed, and in clean rooms.

Note(1) In case of the stud diameter (d_1) 5 to 10mm, a lubrication fitting is provided in the stud head hex hole. The stud diameter (d_1) 12 to 30mm, a grease nipple is provided in the stud head hex hole.

- (2) If needed, contact IKD.
- (3) Thermosetting solid-type lubricant fills inner space of the bearing.

CFS NUCF

Ι1 I2

<u>13</u>

For Cam Followers, the types shown in Table 1 are available.

Table 1 Type of Cam Followers

Tubic	r Type of Call	1 Ollowe	13		\ <i>\\\\</i>		Full complement		
		Туре				Codindrical autor ring			
					Crowned outer ring	Cylindrical outer ring	Crowned outer ring	Cylinarical outer ring	
	Standard Type	High carbon	With hexagon	Shield type	CF ··· B R	CF ··· B	CF ··· VB R	CF ···VB	
	Cam Followers	steel made	hole	Sealed type	CF ··· BUUR	CF ··· BUU	CF ··· VBUUR	CF ··· VBUU	
	0. 5	Stainless	With	Shield type	CF ···FB R	CF ···FB	_	_	
		steel made	hexagon hole	Sealed type	CF ···FBUUR	CF ···FBUU	_	_	
	Solid Eccentric Stud Type Cam Followers	High carbon steel made	With hexagon	Shield type	CFES··· B R	CFES··· B	_	_	
	CFES···B		hole	Sealed type	CFES BUUR	CFES BUU	_	_	
Metric CF series	Eccentric Type Cam Followers	High carbon	With hexagon	Shield type	CFE ··· B R	CFE ··· B	CFE ··· VB R	CFE ··· VB	
Metric	CFE···B	steel made	hole	Sealed type	CFE ··· BUUR	CFE ··· BUU	CFE ··· VBUUR	CFE ··· VBUU	
	Thrust Disk Type	High carbon	With hexagon	Shield type	CF ··· WB R	_	_	_	
	Cam Followers	steel made	hole	Sealed type	CF ··· WBUUR	_	_	_	
	CF ··· WB	Stainless	With hexagon hole	Shield type	CF ···FWB R	_	_	_	
		steel made		Sealed type	CF ···FWBUUR	_	_	_	
	Centralized Lubrication Type Cam Followers CF-RU1, CF-FU1 Made		With screwdriver slot	Sealed type	CF-RU1	CF-FU1	_	_	
	Easy Mounting Type Cam Followers CF-SFU B	High carbon steel made	With hexagon hole	Sealed type	_	CF-SFU···B	_	_	
Cam F	ollower G G	High carbon steel made	With hexagon hole	Shield type	-	CF ··· G	_	_	
	e Cam vers CF…WB…/SG	High carbon steel made	With hexagon hole	Sealed type	CF···WB···/SG	_	_	_	
series	Miniature Type	High carbon steel made	With	Shield type	_	CFS	_	CFS ··· V	
CFS se	Cam Followers CFS	Stainless steel made	hexagon hole	Shield type	_	CFS ···F	_	CFS ··· FV	
Miniature CFS	Thrust Disk Type Miniature Cam Followers	High carbon steel made	VVILII	Shield type	_	CFS ··· W	_	CFS ··· WV	
 Min	CFS ··· W	Stainless steel made	hexagon hole	Shield type	_	CFS ···FW	_	_	
	lrical Roller Followers NUCF… B	High carbon steel made	With hexagon hole	Shield type	_	_	NUCF…BR	_	
		High	With	Shield type	CR ··· B R	CR ··· B	CR ··· VB R	CR ··· VB	
	Inch series Cam Followers	carbon	hexagon hole	Sealed type	CR ··· BUUR	CR ··· BUU	CR ··· VBUUR	CR ··· VBUU	
S	CR	steel	With	Shield type	CR ··· R	CR ···	CR ··· V R	CR ··· V	
Inch series		made	screwdriver slot	Sealed type	CR ··· UUR	CR ··· UU	CRV UUR	CRV UUR	
Inch	Inch series	High	With hexagon	Shield type	-	_	CRH ··· VB R	CRH ··· VB	
	Heavy Duty	carbon	hole	Sealed type	-	_	CRH ··· VBUUR	CRH ··· VBUU	
	Cam Followers	steel	With screwdriver	Shield type	_	_	CRH ··· V R	CRH ··· V	
	CRH	made	slot	Sealed type	_	_	CRHV UUR	CRH ··· V UU	

Standard Type Cam Followers

These are the basic type bearings in **IKU** Cam Follower series. Models with stud diameters ranging from 3 to 30 mm are prepared, and are suitable for a wide range of applications.

Solid Eccentric Stud Type Cam Followers

The stud of these bearings is eccentric to the center axis of the outer ring. Thus, the position of the outer ring in the radial direction in relation to the mating cam guide surface can easily be adjusted by turning the stud, and the load distribution on a number of cam follower outer rings used on the same cam guide surface can be made uniform.

These are eccentric cam followers with a one-piece stud that can be mounted in the same mounting holes as those for Standard Type Cam Followers.

Eccentricity is 0.25 mm \sim 0.6 mm.

Eccentric Type Cam Followers

In these bearings, an eccentric collar is assembled with the Cam Follower stud, enabling the outer ring to be positioned easily in the radial direction against the mating cam guide surface.

Eccentricity is $0.4 \sim 1.5$ mm.

Thrust Disk Type Cam Followers

These bearings have special resin thrust disk washers superior in wear and heat resistance between the sliding contact area of outer ring shoulders, stud head and side plate. These disk washers reduce friction and wear due to axial loads caused by misalignment, etc.

Centralized Lubrication Type Cam Followers

These bearings have one or two pipe-threaded holes in the stud. Thus, this series is suitable when centralized lubrication is required.

Easy Mounting Type Cam Followers

These bearings have a stepped tapered portion on the stud. When mounting the Cam Follower, it is easy to fix its location by tightening a set screw to the stepped portion. Thus, this type is suitable when a large number of Cam Followers are used in a machine such as a pallet changer.

Cam Follower G

Taking over the basic performance of Standard Type Cam Follower, this cam follower realizes a reasonable price. As grease is pre-packed, the unit may be used right after unpacking.

C-Lube Cam Followers

These bearings are lubricated with a newly developed thermosetting solid-type lubricant which fills the inner space of the bearing. This lubricant provides long-term maintenance free.

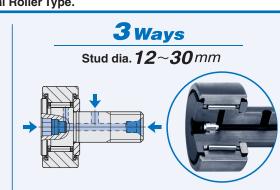
Miniature Type Cam Followers

These are compactly designed bearings, incorporating very thin needle rollers in an outer ring with a small outside diameter. They are used in electronic devices, OA equipment, small index devices, etc.

Cylindrical Roller Cam Followers

These bearings are full complement type bearings incorporating double rows of full complement cylindrical rollers in the outer ring, and can withstand large radial loads and some axial loads.

Inch series Cam Followers


Two types, CR and CRH, are available in the Inch series Cam Followers. Black oxide film treatment is made on CRH models.

Lubrication method of Hex Head Cam Followers

Types Standard Type, Solid Eccentric Stud Type, Eccentric Type, Thrust Disk Type, Easy Mounting Type, Cylindrical Roller Type.

Re-greasing fitting is incorporated in the stud head.

Grease nipple is incorporated in the stud head.

Remark: All of Easy Mounting Type are 1way port.

1N=0.102kgf=0.2248lbs. 1mm=0.03937inch NUCF

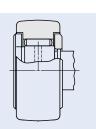
CR

CFS

NUCF

Internal Structures and Shapes

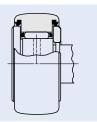
Various types are lined up in Cam Follower series, including the caged type, full complement type, shield type, sealed type, type with crowned outer ring, type with cylindrical outer ring, type with hexagonal hole,


Roller guide method

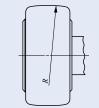
Cam Followers include the caged type and the full complement type . The caged type has a small coefficient of friction and is suitable for high speed rotations, while the full complement type is suitable for heavy loads at low speed rotations.

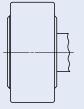
《Full complement》

Seal structure

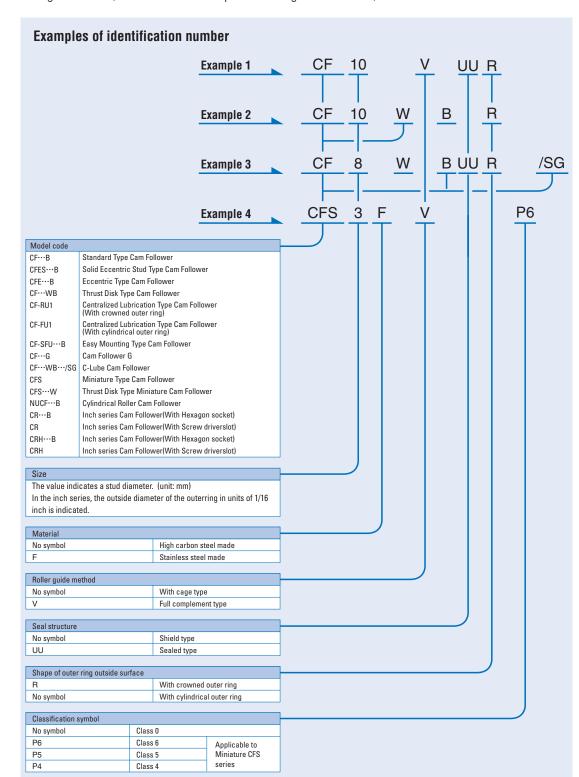

Cam Followers include the shield type and the sealed type. In the shield type, the narrow clearances between the outer ring and the stud flange and between the outer ring and the side plate form labyrinths.

The sealed type incorporates seals in the narrow clearances to prevent the penetration of foreign parti-




Shape of outer ring outside surface

The outside surface of the outer ring of Cam Followers, which makes direct contact with the mating cam guide surface, is either crowned or cylindrical. The crowned outer rings are effective in moderating the edge load due to mounting errors. The cylindrical outer rings have a large contact area with the mating cam guide surface, and are suitable for applications in which the applied load is large or the cam guide surface hardness is low.



■ Identification number

Some examples of the identification number of Cam Followers are shown below. For applicable material symbol, roller guide method, seal structure and shape of outer ring outside surface, refer dimension table of each series.

15 16

The accuracy of Cam Followers is shown in Table 2, Table 3.1, Table 3.2 and Table 3.3. Cam Followers with special accuracy are also available. When they are required, please contact **IKD**.

Table 2 Tolerances

Series	Metric CF	series (1)	Miniature CFS	Inch	series	
Dimensions and symbols	Crowned outer ring Cylindrical outer ring		series	Crowned outer ring	Cylindrical outer ring	
Outside dia. of outer ring ${\cal D}$	0 -50	See Table 3.1	See Table 3.2	0 -50	See Table 3.3	
Stud dia. d_1		h7	h6	+25 0		
Width of outer ring ${\cal C}$	-1	0 20	0 -120	-1	0 30	

Note(1) Also applicable to the Cam Follower G, C-Lube Cam Follower and Cylindrical Roller Cam Follower.

Table 3.1 Tolerances and allowable values of outer rings (Metric CF series cylindrical outer rings(1)) $_{
m unit:}~\mu_{
m m}$

	O dia. of outer ring m		^{emp} utside dia. deviation	V_{Dsp} Outside dia. variation in a single	$V_{D{ m mp}}$ Mean outside dia. variation	K_{ea} Radial runout of assembled bearing
Over	Incl.	High	Low	radial plane (Max.)	(Max.)	outer ring (Max.)
6	18	0	- 8	10	6	15
18	30	0	- 9	12	7	15
30	50	0	-11	14	8	20
50	80	0	-13	16	10	25
80	120	0	-15	19	11	35

Note(1) Also applicable to the Cam Follower G.

Table 3.2 Tolerances and allowable values of outer rings (Miniature CFS series)

								, ,		unit: μ m	
$\Delta_{D{ m mp}}$ Single plane mean outside dia. deviation							Radial rui	nout of assem	tea bled bearing ax.)	outer ring	
Clas	ss 0	Cla	ss 6	Cla	ss 5	Cla	ss 4	Class 0	Class 6	Class 5	Class 4
High	Low	High	Low	High	Low	High	Low				
0	-8	0	-7	0	-5	0	-4	15	8	5	4

Table 3.3 Tolerances and allowable values of outer rings (Inch series cylindrical outer ring)

I Nominal outside m) dia. of outer ring m	Single plane me	o _{mp} ean outside dia. ation	$\begin{array}{c} V_{Dsp} \\ \text{Outside dia.} \\ \text{variation in a single} \end{array}$	$V_{D{ m mp}}$ Mean outside dia. variation	$K_{ m ea}$ Radial runout of assembled bearing				
Over	Incl.	High	Low	radial plane (Max.)	(Max.)	outer ring (Max.)				
6	18		-25	10	6	15				
18	30			12	7	15				
30	50	0		14	8	20				
50	80			16	10	25				
80	120			19	11	35				

The radial internal clearances of Cam Followers are shown in Table 4.

Table 4 Radial internal clearance

un	:4.		-
un	н.	ш	п

	Identification number (1)				Radial internal clearance	
Metric CF series (²)	Miniature CFS series (3)	Cylindrical Roller Cam Followers NUCF	Inch series	Min.	Max.	
CF 3B \sim CF 5 B	CFS1.4 ~ CFS5	_	CR 8.CR 8-1.CRH 8-1.CRH 9	3	17	
CF 6B	CFS6	_	CR10、CR10-1、CRH10-1、CRH11	5	20	
CF 8B~CF12-1B	-	_	CR12~CR22、CRH12~CRH22	5	25	
CF16B~CF20-1B	_	_	CR24~CR36、CRH24~CRH36	10	30	
CF24B~CF30-2B	_	_	CR48、CRH40 ~ CRH56	10	40	
_	_	_	CRH64	15	50	
_	_	NUCF10 BR ~ NUCF24 BR	_	20	45	
_	-	NUCF24-1BR ~ NUCF30-2BR	_	25	50	

Note(1) Also applicable to full complement type, crowned outer ring and sealed type.

- (2) Only representative types are shown in the table, but this table is applicable to the entire Standard Type Cam Follower, Cam Follower G and C-Lube Cam Follower.
- (3) Only representative types are shown in the table, but this table is applicable to the entire Miniature CFS series.

Tables 5 and 6 show recommended tolerances of mounting holes for Cam Follower studs. Since the Cam Follower is supported in a cantilever position, the mounting hole diameter should be prepared without play between the stud and the hole especially when heavy shock loads are applied.

Table 5 Recommended fit

Туре	Tolerance class of mounting hole for stud		
Metric CF series	H7		
Miniature CFS series	H6		
Cylindrical Roller Cam Followers	H7		
Inch series	F7		

Table 6 Dimensional tolerances of mounting hole

ınit: *μ* r

18

	Nominal outside dia. of stud mm		Н	6	H7				
	Over	Incl.	Over	Incl.	Over	Incl.	Over	Incl.	
Ī	-	3	+16	+ 6	+ 6	0	+10	0	
	3	6	+22	+10	+ 8	0	+12	0	
	6	10	+28	+13	+ 9	0	+15	0	
	10	18	+34	+16	+11	0	+18	0	
	18	30	+41	+20	+13	0	+21	0	
	30	50	+50	+25	+16	0	+25	0	

Maximum Allowable Static Load

The applicable load on Cam Followers is, in some cases, limited by the bending strength and shear strength of the stud and the strength of the outer ring instead of the load rating of the needle roller bearing. Therefore, the maximum allowable static load that is limited by these strengths is specified.

Track Capacity

Track capacity is defined as a load which can be continuously applied on a Cam Follower placed on a steel cam guide surface without causing any deformation or indentation on the cam guide surface when the outer ring of the Cam Follower makes contact with the mating cam guide surface (plane). The track capacities shown in Tables 7.1 and 7.2 are applicable when the hardness of the mating cam guide surface is 40HRC (Tensile strength 1250N/mm²). When the hardness of the mating cam guide surface differs from 40HRC, the track capacity is obtained by multiplying the value by the track capacity factor shown in Table 8.

If lubrication between the outer ring and the mating cam guide surface is insufficient, seizure and/or wear may occur depending on the application. Therefore, attention must be paid to lubrication and surface roughness of the mating cam guide especially for high-speed rotations such as cam mechanisms.

For lubrication between the outer ring and the mating cam guide surface, C-Lube Unit for Cam Followers is recommended. (See page I18.)

Table 7.1 Track load capacity

Table 7.1 Track load capacity				unit: N
Type of bearing	Identification number With crowned outer ring	Track capacity	Identification number With cylindrical outer ring	Track capacity
	CF 3 BR	542	CF 3 B	1 360
	CF 4 BR	712	CF 4 B	1 790
	CF 5 BR	794	CF 5 B	2 210
	CF 6 BR	1 040	CF 6 B	3 400
	CF 8 BR	1 330	CF 8 B	4 040
	CF10 BR	1 610	CF10 B	4 680
	CF10-1BR	2 030	CF10-1B	5 530
	CF12 BR	2 470	CF12 B	7 010
Metric	CF12-1BR	2 710	CF12-1B	7 480
CF series (1)	CF16 BR	3 060	CF16 B	11 200
	CF18 BR	3 660	CF18 B	14 500
	CF20 BR	5 190	CF20 B	23 200
	CF20-1BR	4 530	CF20-1B	21 000
	CF24 BR	6 580	CF24 B	34 300
	CF24-1BR	8 020	CF24-1B	39 800
	CF30 BR	9 220	CF30 B	52 700
	CF30-1BR	9 990	CF30-1B	56 000
	CF30-2BR	10 800	CF30-2B	59 300
	_	_	CFS1.4	128
	_	_	CFS2	220
Miniature	_	_	CFS2.5	298
CFS series (2)	_	_	CFS3	485
010 361163 ()	_	_	CFS4	799
	_	_	CFS5	1 210
	-	_	CFS6	1 680

Notes(1) Only representative types are shown in the table, but this table is applicable to the entire Standard Type Cam Follower series. Also applicable to Cam Follower G, C-Lube Cam Follower and Cylindrical Roller Cam Follower.

Table 7.2 Track capacity

Type of bearing	Identification number with crowned outer ring	Track capacity	Identification number with cylindrical outer ring	Track capacity	Identification number with crowned outer ring	Track capacity	Identification number with cylindrical outer ring	Track capacity
	CR 8 R	770	CR 8	2 140	-	_	_	_
	CR 8-1R	770	CR 8-1	2 360	CRH 8-1R	401	CRH 8-1	2 360
	_	_	_	_	CRH 9 R	469	CRH 9	2 650
	CR10 R	1 030	CR10	3 210	-	_	_	_
	CR10-1R	1 030	CR10-1	3 480	CRH10-1R	579	CRH10-1	3 480
	_	I	_	-	CRH11 R	658	CRH11	3 830
	CR12 R	1 340	CR12	4 500	CRH12 R	853	CRH12	4 500
	CR14 R	1 630	CR14	5 250	CRH14 R	1 050	CRH14	5 250
	CR16 R	1 970	CR16	7 280	CRH16 R	1 420	CRH16	7 280
	CR18 R	2 300	CR18	7 710	CRH18 R	1 660	CRH18	7 710
	CR20 R	2 680	CR20	10 700	CRH20 R	2 160	CRH20	10 700
Inch	CR22 R	3 050	CR22	11 800	CRH22 R	2 450	CRH22	11 800
series(1)	CR24 R	3 410	CR24	15 400	CRH24 R	3 410	CRH24	15 400
	CR26 R	3 820	CR26	16 700	CRH26 R	3 820	CRH26	16 700
	CR28 R	4 210	CR28	21 000	CRH28 R	4 210	CRH28	21 000
	CR30 R	4 610	CR30	22 500	CRH30 R	4 610	CRH30	22 500
	CR32 R	5 050	CR32	30 900	CRH32 R	5 690	CRH32	30 900
	CR36 R	5 900	CR36	34 700	CRH36 R	6 640	CRH36	34 700
	_	_	-	_	CRH40 R	8 970	CRH40	45 000
	_	_	_	_	CRH44 R	10 200	CRH44	49 500
	_	_	CR48	64 300	CRH48 R	11 400	CRH48	64 300
	_	_	_	-	CRH52 R	12 700	CRH52	69 600
	_	_	_	_	CRH56 R	14 100	CRH56	87 000
	_	-	_	_	CRH64 R	16 800	CRH64	113 000

Notes(1) Only representative types are shown in the table, but this table is applicable to the entire Inch series.

Table 8 Track capacity factor

	T 3	Track capacity factor			
Hardness HRC	Tensile strength N/mm²	With crowned outer ring	With cylindrical outer ring		
20	760	0.22	0.37		
25	840	0.31	0.46		
30	950	0.45	0.58		
35	1 080	0.65	0.75		
38	1 180	0.85	0.89		
40	1 250	1.00	1.00		
42	1 340	1.23	1.15		
44	1 435	1.52	1.32		
46	1 530	1.85	1.51		
48	1 635	2.27	1.73		
50	1 760	2.80	1.99		
52	1 880	3.46	2.29		
54	2 015	4.21	2.61		
56	2 150	5.13	2.97		
58	2 290	6.26	3.39		

⁽²⁾ Only representative types are shown in the table, but this table is applicable to the entire Miniature CFS series.

Allowable Rotational Speed

The allowable rotational speed of Cam Followers is affected by mounting and operating conditions. For reference, Table 9 shows d_1n values when only pure radial loads are applied. Considering that axial loads also act under actual operating conditions, the recommended d_1n value is 1/10 of the value shown in the

In case of C-Lube Cam Follower, d_1n value is 10000

Table 9 d_1n values of Cam Followers (1)

Lubricant Type	Grease	Oil
Caged type	84 000	140 000
Full complement type	42 000	70 000
Cylindrical Roller Cam Follower	66 000	110 000

Note(1) $d_1 n$ value = $d_1 \times n$ where, d_1 : Stud diameter mm n: Rotational speed rpm

Lubrication

Grease-prepacked Cam Followers are shown in Table 10. The lubricating grease prepacked in these bearings is ALVANIA GREASE S2 (SHOWA SHELL SEKIYU K.K.).

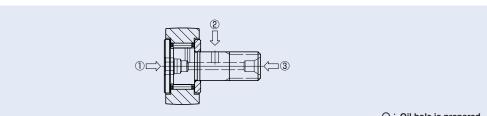
For Cam Followers without prepacked grease, grease should be packed through the oil hole in the stud for use. If they are used without grease, wear of rolling contact surfaces may take place, leading to a short bearing life.

Table 10 Bearings with prepacked grease

O: With prepacked grease ×: Without prepacked grease

	With cage		Full	
Series Size of stud dia. d_1 (1	Shield type	Sealed type	complement type	
CF ··· B	$d_1 \leq 5$			_
Metric CF ··· WB series CFES ··· B	6 ≤ d ₁ ≤ 10	0	0	0
CFE····B	$12 \leq d_1$	×		
Cam Follower G	0	_	_	
C-Lube Cam Followers CF ···	_	×	_	
Miniature series	CFS CFS ··· W	0	_	0
Centralized Lubrication Type Cam Followers	CF-RU1 CF-FU1	_	0	_
Easy Mounting Type Cam Followers	CF-SFU ··· B	_	0	_
Cylindrical Roller Cam Followers	NUCF ··· B	_	_	0
Inch series	CR···B CR	0	0	0
Inch series	CRH···B CRH	_	_	0

Notes(1) For Eccentric Type Cam Followers (CFE), thread diameter G shown in the table of dimensions is applicable.



The position of oil hole is shown in Table 11.

Perform greasing quietly by fitting a lubrication nozzle indicated in Table 12 to a straight type grease gun in JIS B 9808:1991 and pressing the nozzle against the grease nipple or re-greasing fitting.

Due to their structures, lubrication is not possible for CF3/CF4, C-Lube Cam Follower, Cam Follower G and Miniature CFS series.

Table 11 Position of oil hole

				O: Oil hol	e is prepared.
Series Size of stud dia. $d_1(1)$ mm		Position of oil hole	① Stud head	2 Stud outside surface	3 Stud end
Standard Type Cam Follower Solid Eccentric Stud Type	CF···B	<i>d</i> ₁ < 5	-	-	_
Cam Follower Eccentric Type Cam Follower	CFES···B	5 ≤ d ₁ ≤ 10	O(2)	_	_
Thrust Disk Type Cam Follower	CF···WB	10 < d ₁	O(3)	0	0
Centralized Lubrication Type Ca	m Follower(4)	<i>d</i> ₁ ≤ 12	0	_	_
CF-RU1, CF-FU1		12 < d ₁	0	0	0
Easy Mounting Type Cam Follow	ver	$d_1 \leq 10$	O(2)	_	_
CF-SFU···B		10 < d ₁	O(5)	I	_
Cam Follower G		CF…G	-	1	_
C-Lube Cam Follower		CF···WB···/SG	_	-	_
Miniature Type Cam Follower Thrust Disk Type Miniature Cam Follower		CFS ··· W	_	-	_
Cylindrical Roller Cam Follower		<i>d</i> ₁ ≤ 10	O(2)	_	_
NUCF…B		10 < d ₁	O(3)	0	0
Inch series Cam Follower		$d_1 \le 6.35$	_	_	_
CR ··· B (With Hexagon socke	t)	6.35 < d ₁	_	0	0
Inch series Cam Follower		$d_1 \le 6.35$	0	_	_
CR (With Screw driverslot)		6.35 < d ₁	0	0	0
Inch series Cam Follower		$d_1 \le 7.938$	_	_	_
$CRH\cdotsB$ (With Hexagon sock	cet)	7.938 < d ₁	_	0	0
Inch series Cam Follower		$d_1 \le 7.938$	0	_	_
CRH (With Screw driverslot)		$7.938 < d_1$	0	0	0

Notes(1) In case of Eccentric Type Cam Followers (CFE), thread diameter G shown in the table of dimensions is applicable in place of stud dia. and the oil hole on the outer surface of the stud cannot be used for lubrication.

- (2) Re-lubrication can be made from the re-greasing fitting that is inserted into the hexagon hole. See page I4.
- (3) Grease nipple is incorporated in the hexagon hole. Re-greasing can be made from the stud head and the stud end by press fitting a supplied grease nipple into the stud end. See page 14.
- (4) Tapped holes for oil connectors are provided at the stud end and hole of the head.
- (5) Re-greasing can be made from the grease nipple in the hexagon hole.

⁽²⁾ Thermosetting solid-type lubricant fills inner space of the

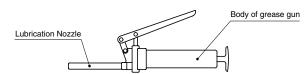

O: Attached

Table 12 Type and Dimension of Lubrication Nozzles

Туре	Dimension	Applicable grease nipple and re-grease fitting
A-5126T	126 29 Width across flats 12 PT1/8	NPF4-1 (1) NPF6-1 (1) Re-grease fitting (1)
A-5120R	120 29 Width across flats 12 PT1/8	NPF4-1 (¹)
B-5120R	120 29 Width across flats 12 PT1/8	NPF6-1 (¹)
A-5120V	120 29 Width across flats 12 PT1/8	
A-5240V	240 Width across flats 12 PT1/8	NPT4-1 NPT6-1 NPB2
B-5120V	120 Width across flats 12 PT1/8	NPB3 NPB3-1 NPB4
B-5240V	240 Width across flats 12 PT1/8	

Note(1) HSP-3(Yamada Corporation)can be used for them.

Remark
The above nozzles can be atached on the standard grease gun shown below.
If required, please consult to **IXO** with type of lubrication nozzle.

Cam Follower accessories are shown in Table 13. Grease nipple dimensions are shown in Table 14 and Table 15. Dimensions of plug for unused oil hole and dimensions of plug inserter are shown in Table 16.

Table 13 Accessories

Series $\binom{1}{2}$ Size of stud dia. d_1 mm		Accessories	Grease nipple	Plug	Nut	Spring washer
Size of stud did. a_1 fillif		<i>d</i> ₁ ≦ 10	_	_	0	_
Standard Type Cam Follower	CF···B	$10 < d_1$	0	_	0	_
Eccentric Type Cam Follower		<i>d</i> ₁ ≦10	_	_	0	0
7	CFE···B	10 < d ₁	0	_	0	0
Solid Eccentric Stud Type Cam Follower	CFES····B	<i>d</i> ₁ ≦ 10	-	_	0	_
Thrust Disk Type Cam Follower	CF…WB	10 < d ₁	0	_	0	_
Centralized Lubrication Type Cam Follower	CF-RU1, CF	-FU1	_	_	0	_
Easy Mounting Type Cam Follower	CF-SFU···B		_	_	_	_
Cam Follower G	CF···G		_	_	0	_
C-Lube Cam Follower	CF···WB···/S	G	_	_	0	_
Miniature Type Cam Follower Thrust Disk Type Miniature Cam Follower	CFS ··· W		_	_	0	_
Cylindrical Roller Cam Follower	NUCF···B	<i>d</i> ₁ ≦10	_	_	0	_
(With Hexagon socket)		10 < d ₁	0	_	0	_
Inch series Cam Follower	CR···B	d ₁ ≤ 6.35	_	_	0	_
(With Hexagon socket)		9.525 ≤ d ₁	0	0	0	_
Inch series Cam Follower	CR (With Screw	CR (With Screw driverslot)		0	0	_
Inch series Cam Follower	CRH···B	d ₁ ≦7.938	_	_	0	_
(With Hexagon socket)		11.112≦ <i>d</i> ₁	0	0	0	_
Inch series Cam Follower	CRH (With Screen	w driverslot)	0	0	0	_

Note(¹) For Eccentric Type Cam Follower CFE, thead diameter G is applied.

Remark: The standard grease nipple (brass) is included in the Stainless Steel Made Cam Follower. We also have the stainless steel grease nipple. Please contact **IKO** and request the product.

Table 14 Dimensions of grease nipple for standerd Cam Follwer(1)

•											
Code number		Dimensio	ons mm	Size of stud dia. d_1 (2)							
	d	D	L	W	mm						
NPF4-1	4	5	5	1.5	12~16						
NPF6-1	6	7	8	2	18~30						

Table 15 Dimensions of Grease nipple for Inch series

Code number		С)imensio	ons mn	า		Applicable Cam Followers		
Code Hulliber	d	D	D_1	L	L_1	W Applicable call Followers			
NPB2	3.18	7.5	6	9	5.5	1.5	CR8~CR10-1,CRH8-1~CRH11		
NPB3	4.76	7.5	6	10	5.5	1.5	CR12~CR22、CRH12~CRH22		
NPB3-1	4.76	7.5	6	12.5	5.5	1.55	CR24~CR36、CRH24~CRH44		
NPB4	6.35	8	6	13	6	2	CR48、CRH48~CRH64		

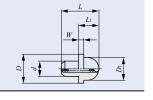
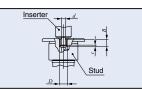
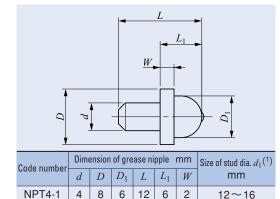



Table 16 Dimensions of plug for Inch series

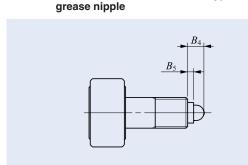
Code number		ons of p	ug mm	Dimension of inserter mm	Applicable Cam Followers			
	D	t	В	$d_{-0.1}^{0}$	Applicable Calli Followers			
USB2F	3.18	0.3	3.3	2.3	CR8 ~ CR10-1			
USB3F	4.76	0.4	4.3	3.7	CR12~CR36、CRH12~CRH44			
USB4F	6.35	0.5	4.8	5.2	CR48、CRH48~CRH64			



Special Specification

The grease nipple supplied with Metric series Cam Follower with hexagon socket as an accessory may be replaced with the NPT type grease nipple indicated in Table 17 upon your request. If required, please order with supplemental code, "/NP" at the end of identification number.

Example of Identification Number. CF 12 BUUR / NP


Table 17 Dimension of NPT type grease nipple

6 | 14 | 8 | Note(1) For Eccentric Type Cam Follower CFE, thread diameter G is applied.

18~30

Table 18 Dimension of assembled NPT type

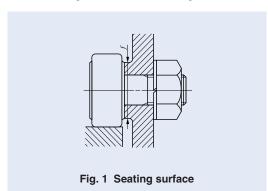
Code number	Dimensio	on mm	Size of stud dia. d_1 ⁽¹⁾		
B_4 B_5		mm			
NPT4-1	6	2	12~16		
NPT6-1	8	4	18~30		

For Eccentric Type Cam Follower CFE, thread diameter G

Operating Temperature Range

The operating temperature range for **IKO** Cam Followers is -20°C ~+120°C. Please pay attention as the types shown in table 19 have different range.

Table 19 Restricted Operating Temperature Range


Ture	Туре	With	cage
Type Size of stud dia. d_1 mm		Shield type	Sealed type
Miniature Type Cam Followers CFS Thrust Disk Type Miniature Cam Followers CFS ··· W	d ₁ =2	-20°C~ 110°C(¹)	_
Standard Type Cam Followers CF…B	d ₁ =3,4	-20°C~ 110°C(¹)	-20°C~ 80°C
Thrust Disk Type Cam Followers CF ··· WB	d ₁ =5	-20°C~ 120°C	-20°C~ 80°C
Stainless Steel Standard Type Cam Followers CF ··· FB Stainless Steel Thrust Disk Type Cam Followers CF ··· FWB	$3 \le d_1 \le 5$	−20°C~ 110°C(¹)	
C-Lube Cam Followers CF ··· WB ···/SG	$5 \le d_1 \le 20$	_	-15°C~ 80°C(²)

Notes(1) 100 degree C in continuous operation.

(2) 60 degree C or lower is recommended in long time.

Mounting

Make the center axis of the mounting hole perpendicular to the moving direction of the Cam Follower and match the side shoulder accurately with the seating surface indicated by dimension fin the table of dimensions. (See Fig. 1.) Then, fix the Cam Follower with the nut. Do not hit the flange head of the Cam Follower directly with a hammer, etc. This may lead to a bearing failure such as irregular rotation or cracking.

②The IK□ mark on the flange head of the stud indicates the position of the oil hole on the raceway. Avoid locating the oil hole within the loading zone. This may lead to a short bearing life. (See Fig. 2.) The hole located in the middle part of the stud perpendicular to the stud center axis is used for greasing or locking.

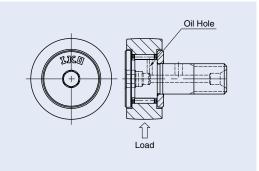


Fig. 2 Oil hole position and loading direction

3When tightening the nut, the tightening torque should not exceed the values shown in the table of dimensions. If the tightening torque is too large, it is possible that the threaded portion of the stud will be broken. When there is a possibility of loosening, a special nut such as a lock nut, spring washer, or self-locking nut should be used.

CFS NUCF

NPT6-1

6 8 ◆Solid Eccentric Stud Type Cam Followers and Eccentric Type Cam Followers, are mounted in reference position where IK□ mark on the head of stud is located as Fig.3. The outer ring position can be adjusted appropriately by turning the stud with a screwdriver or hexagon bar wrench using the screwdriver slot or hexagon hole of the stud head. The stud is fixed with a nut and a spring washer, etc. The tightening torque should not exceed the values of maximum tightening torque shown in the table of dimensions.

When shock loads are applied and the adjusted eccentricity has to be ensured, it is recommended to make holes in the housing, stud and eccentric collar, and fix the stud with a dowel pin as shown in Fig. 4. However, when the stud diameter is less than 8 mm (Eccentric collar diameter 11 mm), it is difficult to make a hole in the stud because the stud is through-hardened.

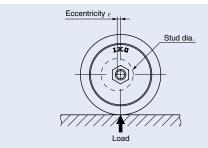


Fig. 3 Reference position for adjusting of Solid Eccentric Stud Type Cam Followers and Eccentric Type Cam Follwers

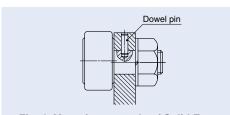
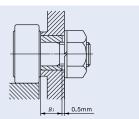
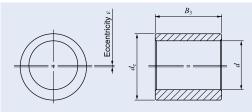


Fig. 4 Mounting example of Solid Eccentric Stud Type Cam Follower

⑤In case of Eccentric Type Cam Followers (CFE), the length of the mounting hole should be more than 0.5 mm longer than the dimension B₃ (Eccentric collar width) shown in the table of dimensions. (See Fig. 5.)




Fig. 5 Length of the mounting hole of Eccentric Type Cam Follower

I17

⑤ Eccentric callor is available for Inch series Cam Followers.

Cam Followers with Eccentric collars, CRE are also available. If required, please consult with **IKU**.

Table 20 Eccentric collars for Inch series Cam Followers

unit: mm

	unit: mm													
Identifical number of collar	Outer diam of colla <i>d</i> e		Lengt of coll B_3		Eccentri city &	Stud dia.		Applicable Cam Followers						
EB 8	6.350 (1/4)	6.350 (1/4)	0.250	4.826		CR 8 CR 8-1	(V)(B)(UU)(R)					
EB10	9.525 (3/8)	9.525 (3/8)	0.380	6.350 (1/4)	CR10 CR10-1	(V)(B)(UU)(R)					
EB12	12.700 (1/2)	12.700 (1/2)	0.380	9.525 (36 \	CD10	(V)(B)(UU)(R)					
EB16	15.875 (5/8)	15.875 (5/8)	0.760	11.112(⁷ /16)	CR16 CR18	(V)(B)(UU)(R)					
EB20	17.450		17.450		0.760			CR20 CR22	(V)(B)(UU)(R)					
EB24	22.225 (7/8)	22.225 (7/8)	0.760		56 \	CR24 CR26	(V)(B)(UU)(R)					
EB28	25.400 (1)	25.400 (1)	0.760	19.050 (3/4)	CR28 CR30	(V)(B)(UU)(R)					
EB32	30.150		30.150		0.760	22.225 (7/8)	CR32 CR36	(V)(B)(UU)(R)					
EB48	44.450 (1	3/4)	44.450 (1	3/4)	1.520	31.750 (1	1/4)	CR48	VUU					

For mounting Easy Mounting Type Cam Followers, it is recommended to fix the fixing screw from the upper side to the stepped portion of the stud. (See Fig. 6.)

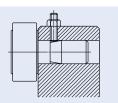


Fig. 6 Mounting example of Easy Mounting
Type Cam Follower

■ Precaution For Use

- ◆Do not wash C-Lube Cam Follower with organic solvent and/or white kerosene, which have the ability of removing fat nor leave them in contact with the above agents.
- **②**To ensure normal rotation of the C-Lube Cam Follower, apply a load of 1% or over of the dynamic load rating at use.

Option Parts

C-Lube Unit for Cam Followers

Structure and features

IKO C-Lube unit for Cam Follower is a lubrication part to be mounted on the Cam Follower and its integral capillary lubricating element has a lot of lubrication oil impregnated in it.

The capillary lubricating element is consecutive porous resin formed by sinter molding of fine resin powder and a lot of lubrication oil is impregnated in it by using the capillary action that occurs within the internal space.

Regular lubrication is not needed as lubrication oil is supplied onto the outside diameter surface of the outer ring and mating guide surface (cam guide surface). The grease is not scattered and contamination of the surrounding environment is prevented.

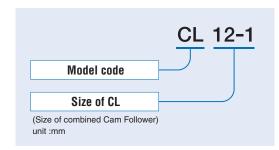
The combination with **IKB** C-Lube cam follower (See Page I43) realizes maintenance-free cam follower inside and cam guide surface.

Structure of C-Lube Unit for Cam Followers

Before impregnating oil

Fusion- bonded

Resin particles are strongly fusion bonded.



ngly fusion bonded. Lubricant is retained in cavities amongst resin particles.

Magnified photos of C-Lube

■ Identification number

The identification number example of **IKO** C-Lube Unit is shown below.

Allowable rotation speed

The rotation speed of **IKB** Cam Follower with C-Lube Unit should not exceeded $d_1n=10,000$ for reference.

 $d_1 n = d_1 \times n$

 d_1 : Stud diameter of Cam Follower, mm

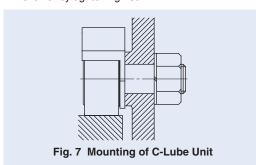
n: Rotational speed, rpm

Minimum rotational angle

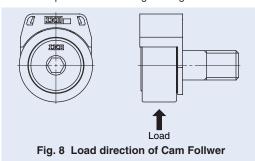
Lubricating oil is supplied to the whole external diameter surface of the outer ring. Accordingly, use the product in a condition in which the outer ring makes one or more turns.

■ Operating temperature

Allowable operating temperature range of **IKI** Cam Follower with C-Lube Unit is -15 to 80°C.


_

CFS NUCF


1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

Mounting

Set the C-Lube Unit perpendicularly to the center axis of Cam Follower and fix together with Cam Follower by tightening nut.

Position of C-Lube Unit is adjustable. C-Lube Unit must be positioned avoiding loading direction.

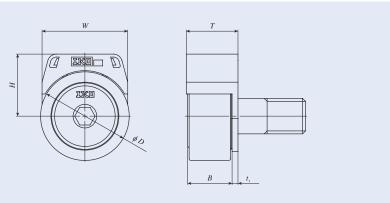
When tightening the nut, the tightening torque should not be exceeded the value maximum tightening torque on dimension table.

In case loosening of the nut is predicted due to

In case loosening of the nut is predicted due to vibration, using lock nut, spring washer and other special washer are recommended.

Precaution for use

- ♠Do not wash with organic solvent and/or white kerosene, which have the ability of removing fat nor leave them in contact with the above agents.
- 2Do not apply a load onto the C-Lube Unit directly.
- **3**To ensure normal rotation of the Cam Follower, apply a load of 1% or over of the dynamic load rating at use.


Also, the outer ring needs to be rotate over a revolution to supply lubricant on entire outer diameter surface.

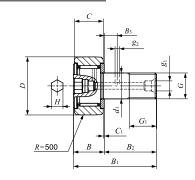
♠The maximum allowable load on IK□ Cam Follower with C-Lube Unit is, 80% of the maximum allowable load of the needle bearing.

C-Lube Unit may be damaged and influenced to the smooth roatation and lubricating performance by excessive load.

- ♠After assemling C-Lube Unit and Cam Followers in the machine, please confirm that C-Lube unit provides oil correctly to the cam guide surface before actual operation.
- On not use in the environment which contamination of liquid and/or harmful foreign matter are expected.
- Replace with new C-Lube Unit when inside oil finishes completely. Re-lubrication is not possible.

Table 21 Dimensions of C-Lube Unit for Cam Followers

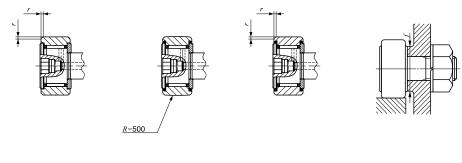
		Boundary Din	nensions mm		Applicable (Cam Followers	
Model number	W	77	T	,		Boundary Dir	nensions mm
	W	Н		t_1	Model number (1)	D	В
CL 5	12.4	10.7	12.1	1.5	CF 5 B	13	10
CL 6	15.4	12.6	14	1.5	CF 6 B	16	12.2 max
CL 8	18.4	14.2	14	1.5	CF 8 B	19	12.2 max
CL 10	21	17	15.5	2	CF 10 B	22	13.2 max
CL 10-1	21	19.2	15.5	2	CF 10-1 B	26	13.2 max
CL 12	29	21	17.5	2	CF 12 B	30	15.2 max
CL 12-1	29	22	17.5	2	CF 12-1 B	32	15.2 max
CL 16	33.8	27.4	23.4	2.5	CF 16 B	35	19.6 max
CL 18	38.8	30.4	25.4	2.5	CF 18 B	40	21.6 max
CL 20	45.8	38.4	29.9	3	CF 20 B	52	25.6 max
CL 20-1	45.8	35.4	29.9	3	CF 20-1 B	47	25.6 max


Note(1) Only representative types shown in the table, but also applicable to the same size of Metric series, Cam Follower G with thrust disk type, centralized lubrication type, C-Lube Cam Followers and Cylindrical Roller Cam Followers. Combine with C-Lube Cam Followers is strongly recommended for full maintenance free.

Remark Load on the Cam Follower with the C-Lube unit equipped must be up to 80% of the maximum allowable static load of the Cam Follower to be combined. For the maximum allowed static load of each Cam Follower, please see the dimension tables of respective models.

CAM FOLLOWERS

Standard Type Cam Followers With Cage/With Hexagon Hole



Stud dia. 3-30 mm

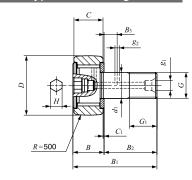
Stud		Identif	ication number	Mass (Ref.)			
dia. mm	Shield With crowned outer ring	type With cylindrical outer ring	Sealed type With crowned With cylindrical outer ring outer ring	g	D	$C \mid d_1$	G
3	CF 3 BR	CF 3 B	CF 3 BUUR CF 3 BUU	4.3	10	7 3	M 3×0.5
4	CF 4 BR	CF 4 B	CF 4 BUUR CF 4 BUU	7.4	12	8 4	M 4×0.7
5	CF 5 BR	CF 5 B	CF 5 BUUR CF 5 BUU	10.3	13	9 5	M 5×0.8
6	CF 6 BR	CF 6 B	CF 6 BUUR CF 6 BUU	18.5	16 1	11 6	M 6×1
8	CF 8 BR CF 8 BRM	CF 8 B CF 8 BM	CF 8 BUUR CF 8 BUU CF 8 BUURM CF 8 BUUM	28.5 28.5	.	11 8 11 8	M 8×1.25 M 8×1
10	CF 10 BR CF 10 BRM CF 10-1 BR CF 10-1 BRM	CF 10 B CF 10 BM CF 10-1 B CF 10-1 BM	CF 10-1 BUUR CF 10-1 BUU	45 45 60 60	22 1 26 1	12 10 12 10 12 10 12 10	M10×1.25 M10×1 M10×1.25 M10×1
12	CF 12 BR CF 12-1 BR	CF 12 B CF 12-1 B	CF 12 BUUR	95 105	.	14 12 14 12	M12×1.5 M12×1.5
16	CF 16 BR	CF 16 B	CF 16 BUUR CF 16 BUU	170	35 1	18 16	M16×1.5
18	CF 18 BR	CF 18 B	CF 18 BUUR CF 18 BUU	250	40 2	20 18	M18×1.5
20	CF 20 BR CF 20-1 BR	CF 20 B CF 20-1 B	CF 20 BUUR	460 385	- -	24 20 24 20	M20×1.5 M20×1.5
24	CF 24 BR CF 24-1 BR	CF 24 B CF 24-1 B	CF 24 BUUR	815 1 140	-	29 24 29 24	M24×1.5 M24×1.5
30	CF 30 BR CF 30-1 BR CF 30-2 BR	CF 30 B CF 30-1 B CF 30-2 B	CF 30 BUUR CF 30-1 BUUR CF 30-2 BUUR CF 30-2 BUU	1 870 2 030 2 220	85 3	35 30 35 30 35 30	M30×1.5 M30×1.5 M30×1.5

Note(1)	Minimum	allowable	value of	ohamfor	dimension	,
Note(')	Minimum	allowable	value of	cnamter	aimension	7

Remarks1. Models with a stud diameter d_1 of 4 mm or less have no oil hole. For models with a stud dia. 5 to 10mm, oil hole (re-greasing fitting) is provided at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole each on the outside surface and end surface of the stud.

CF···B	CF···BUUR	CF···BUU

	Boundary dimensions mm										Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
G_1	В	B_1	B_2	B_3	C_1	g_1	g_2	Н	$r_{\rm smin}^{(1)}$	f Min. mm	N-m	C N	C_0 N	N
5	8	17	9	_	0.5	_	_	2	0.2	6.8	0.34	1 500	1 020	384
6	9	20	11	_	0.5	_	_	2.5	0.3	8.3	0.78	2 070	1 590	834
7.5	10	23	13	_	0.5		_	3	0.3	9.3	1.6	2 520	2 140	1 260
8	12.2max	28.2max	16	_	0.6	_	_	3	0.3	11	2.7	3 660	3 650	1 950
10	12.2max	32.2max		_	0.6	_	_	4	0.3	13	6.5	4 250	4 740	4 620
10	12.2max	32.2max	20	_	0.6	_	_	4	0.3	13	7.1	4 250	4 740	4 620
12 12 12 12	13.2max 13.2max 13.2max 13.2max	36.2max 36.2max 36.2max 36.2max	23 23	_ _ _ _	0.6 0.6 0.6 0.6	_ _ _ _	_ _ _ _	4 4 4 4	0.3 0.3 0.3 0.3	16 16 16 16	13.8 14.7 13.8 14.7	5 430 5 430 5 430 5 430	6 890 6 890 6 890 6 890	6 890 6 890 6 890 6 890
13 13	15.2max 15.2max	40.2max 40.2max		6 6	0.6 0.6	4 4	3	6 6	0.6 0.6	21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
17	19.6max	52.1max	32.5	8	0.8	4	3	6	0.6	26	58.5	12 000	18 300	18 300
19	21.6max	58.1max	36.5	8	0.8	6	3	8	1	29	86.2	14 800	25 200	25 200
21 21	25.6max 25.6max	66.1max 66.1max		9	0.8 0.8	6 6	4	8	1	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600
25 25	30.6max 30.6max	80.1max 80.1max		11 11	0.8 0.8	6 6	4 4	12 12	1 1	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000
32 32 32	37 max 37 max 37 max		63	15 15 15	1 1 1	6 6 6	4 4 4	17 17 17	1 1 1	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100

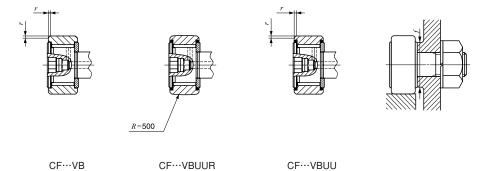

I22

^{2.} Shield type models with a stud diameter d_1 of 10mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

CAM FOLLOWERS

Standard Type Cam Followers Full Complement Type/With Hexagon Hole

Stud dia. 6-30 mm

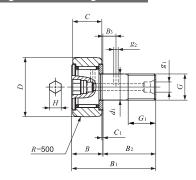

			١		۱	

Stud		Mass (Ref.)						
dia. mm	Shield With crowned outer ring	d type With cylindrical outer ring	Sealed With crowned outer ring	g	D	C	d_1	
6	CF 6 VBR	CF 6 VB	CF 6 VBUUR	CF 6 VBUU	19	16	11	6
8	CF 8 VBR CF 8 VBRM	CF 8 VB CF 8 VBM	CF 8 VBUUR CF 8 VBUURM	CF 8 VBUU CF 8 VBUUM	29 29	19 19	11 11	8
10	CF 10 VBR CF 10 VBRM CF 10-1 VBR CF 10-1 VBRM	CF 10-1 VB	CF 10 VBUUR CF 10 VBUURM CF 10-1 VBUUR CF 10-1 VBUURM	CF 10-1 VBUU	46 46 61 61	22 22 26 26	12 12 12 12	10 10 10 10
12	CF 12 VBR CF 12-1 VBR	CF 12 VB CF 12-1 VB	CF 12 VBUUR CF 12-1 VBUUR	CF 12 VBUU CF 12-1 VBUU	97 107	30 32	14 14	12 12
16	CF 16 VBR	CF 16 VB	CF 16 VBUUR	CF 16 VBUU	173	35	18	16
18	CF 18 VBR	CF 18 VB	CF 18 VBUUR	CF 18 VBUU	255	40	20	18
20	CF 20 VBR CF 20-1 VBR	CF 20 VB CF 20-1 VB	CF 20 VBUUR CF 20-1 VBUUR	CF 20 VBUU CF 20-1 VBUU	465 390	52 47	24 24	20 20
24	CF 24 VBR CF 24-1 VBR	CF 24 VB CF 24-1 VB	CF 24 VBUUR CF 24-1 VBUUR	CF 24 VBUU CF 24-1 VBUU	820 1 140	62 72	29 29	24 24
30	CF 30 VBR CF 30-1 VBR CF 30-2 VBR	CF 30 VB CF 30-1 VB CF 30-2 VB	CF 30 VBUUR CF 30-1 VBUUR CF 30-2 VBUUR	CF 30 VBUU CF 30-1 VBUU CF 30-2 VBUU	1 870 2 030 2 220	80 85 90	35 35 35	30 30 30

Note(1)	Minimum	allowable	value of	chamfer	dimension

Remarks1. Models with a stud diameter d_1 of 10 mm or less have an oil hole (re-greasing fitting) at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole each on the outside surface and end surface of the stud.

2. Provided with prepacked grease.

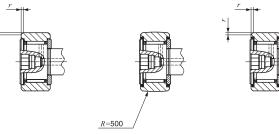

Boundary dimensions mm									Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load		
G	G_1	B max	B_1 max	B_2	B_3	C_1	g_1	g_2	Н	$r_{ m smin}^{(1)}$	NĂin	N-m	N	N N	N
M 6×1	8	12.2	28.2	16	_	0.6	_	_	3	0.3	11	2.7	6 980	8 500	1 950
M 8×1.25 M 8×1	10 10	12.2 12.2	32.2 32.2			0.6 0.6		_	4 4	0.3 0.3	13 13	6.5 7.1	8 170 8 170	11 200 11 200	4 620 4 620
M10×1.25 M10×1 M10×1.25 M10×1	12 12 12 12	13.2 13.2 13.2 13.2	36.2 36.2 36.2 36.2	23 23		0.6 0.6 0.6 0.6			4 4 4 4	0.3 0.3 0.3 0.3	16 16 16 16	13.8 14.7 13.8 14.7	9 570 9 570 9 570 9 570	14 500 14 500 14 500 14 500	8 650 8 650 8 650 8 650
M12×1.5 M12×1.5	13 13	15.2 15.2	40.2 40.2		6 6	0.6 0.6	4	3	6 6	0.6 0.6	21 21	21.9 21.9	13 500 13 500	19 700 19 700	13 200 13 200
M16×1.5	17	19.6	52.1	32.5	8	0.8	4	3	6	0.6	26	58.5	20 700	37 600	23 200
M18×1.5	19	21.6	58.1	36.5	8	0.8	6	3	8	1	29	86.2	25 300	51 300	31 100
M20×1.5 M20×1.5	21 21	25.6 25.6	66.1 66.1	40.5 40.5	9	0.8 0.8	6 6	4	8	1	34 34	119 119	33 200 33 200	64 500 64 500	37 500 37 500
M24×1.5 M24×1.5	25 25	30.6 30.6	80.1 80.1	49.5 49.5	11 11	0.8 0.8	6 6	4	12 12	1	40 40	215 215	46 600 46 600	92 000 92 000	52 000 52 000
M30×1.5 M30×1.5 M30×1.5	32 32 32	37 37 37	100 100 100	63 63 63	15 15 15	1 1 1	6 6 6	4 4 4	17 17 17	1 1 1	49 49 49	438 438 438	67 700 67 700 67 700	144 000 144 000 144 000	85 900 85 900 85 900

I24

CAM FOLLOWERS

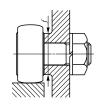
Stainless Steel Made Cam Followers With Cage/With Hexagon Hole

Stud dia. 3-20mm


(;	⊢…	•	-1	≺∣	Н

Stud		Identi	fication number		Mass (Ref.)					
dia.	Shield With crowned	type With cylindrical	Sealed With crowned	. * *		D	C		G	C
mm	outer ring	outer ring	outer ring	With cylindrical outer ring	g	D	C	d_1	G	G_1
3	CF 3 FBR	CF 3 FB	CF 3 FBUUR	CF 3 FBUU	4.3	10	7	3	M 3×0.5	5
4	CF 4 FBR	CF 4 FB	CF 4 FBUUR	CF 4 FBUU	7.4	12	8	4	M 4×0.7	6
5	CF 5 FBR	CF 5 FB	CF 5 FBUUR	CF 5 FBUU	10.3	13	9	5	M 5×0.8	7.5
6	CF 6 FBR	CF 6 FB	CF 6 FBUUR	CF 6 FBUR	18.5	16	11	6	M 6×1	8
8	CF 8 FBR	CF 8 FB	CF 8 FBUUR	CF 8 FBUR	28.5	19	11	8	M 8×1.25	10
10	CF 10 FBR CF 10-1 FBR	CF 10 FB CF 10-1 FB	CF 10 FBUUR CF 10-1 FBUUR			22 26	12	10	M10×1.25	12
12	CF 12 FBR CF 12-1 FBR	CF 12 FB CF 12-1 FB	CF 12 FBUUR CF 12-1 FBUUR			30 32	14	12	M12×1.5	13
16	CF 16 FBR	CF 16 FB	CF 16 FBUUR	CF 16 FBUR	170	35	18	16	M16×1.5	17
18	CF 18 FBR	CF 18 FB	CF 18 FBUUR	CF 18 FBUR	250	40	20	18	M18×1.5	19
20	CF 20 FBR CF 20-1 FBR	CF 20 FB CF 20-1 FB	CF 20 FBUUR CF 20-1 FBUUR		460 385	52 47	24	20	M20×1.5	21

Minimum allowable value of chamfer dimension r


Remarks1. Models with a stud diameter d_1 of 4 mm or less have no oil hole. For models with a stud dia. 5 to 10 mm, oil hole (re-greasing fitting) is provided at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole each on the outside surface and end surface of the stud.

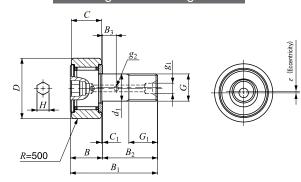
2. Shield type models with a stud diameter d_1 of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

CF···FB

CF···FBUUR CF···FBUU

Во	undary d	imensio	ons r	mm					Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
В	B_1	B_2	B_3	C_1	g_1	g_2	Н	$r_{\rm smin}^{(1)}$	Min. mm	N-m	C N	C_0 N	N
8	17	9	_	0.5	_	_	2	0.2	6.8	0.34	1 200	813	384
9	20	11	_	0.5	_	_	2.5	0.3	8.3	0.78	1 650	1 270	834
10	23	13	_	0.5	_	_	3	0.3	9.3	1.6	1 930	1 730	1 260
12.2 max	28.2 max	16	_	0.6	_	_	3	0.3	11	2.7	2 930	2 920	1 950
12.2 max	32.2 max	20	_	0.6	_	_	4	0.3	13	6.5	3 400	3 790	3 790
13.2 max	36.2 max	23	_	0.6	_	_	5	0.3	16	13.8	4 340	5 510	5 510
15.2 max	40.2 max	25	6	0.6	4	3	6	0.6	21	21.9	6 330	7 830	7 830
19.6 max	52.1 max	32.5	8	0.8	4	3	6	0.6	26	58.5	9 620	14 700	14 700
21.6 max	58.1 max	36.5	8	0.8	6	3	8	1	29	86.2	11 800	20 200	20 200
25.6 max	66.1 max	40.5	9	0.8	8	4	8	1	34	119	16 500	27 700	27 700

Maximum

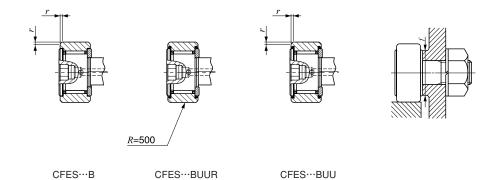

allowable

static load

CAM FOLLOWERS

Solid Eccentric Stud Type Cam Followers With Cage/With Hexagon Hole

Stud dia. 6-18 mm


CFES···BR

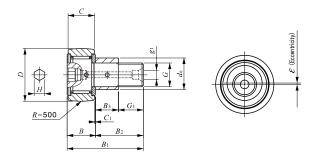
Stud					lde	ntif	ication nu	umbei					Mass (Ref.)			
mm		crowne ter ring		With cy	/lindrica er ring	ıl		th crow		With	cylindı ıter rin		g	D	C	d_1
6	CFES	6	BR	CFES	6	В	CFES	6	BUUR	CFES	6	BUU	18.5	16	11	6
8	CFES	8	BR	CFES	8	В	CFES	8	BUUR	CFES	8	BUU	28.5	19	11	8
10	CFES CFES			CFES CFES		B B			BUUR BUUR			BUU BUU	45 60	22 26	12 12	10 10
12	CFES CFES			CFES CFES		B B			BUUR BUUR			BUU BUU	95 105	30 32	14 14	12 12
16	CFES	16	BR	CFES	16	В	CFES	16	BUUR	CFES	16	BUU	170	35	18	16
18	CFES	18	BR	CFES	18	В	CFES	18	BUUR	CFES	18	BUU	250	40	20	18

Note(1) Minimum allowable value of chamfer dimension *r*

Remarks1. Models with a stud diameter d_1 of 10 mm or less have an oil hole (re-greasing fitting) at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole each on the outside surface and end surface of the stud.

2. Shield type models with a stud diameter d_1 of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

Bound	ary d	imens	ions r	nm							Eccentricity	Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating
G	G_1	В	B_1	B_2	B_3	C_1	g_1	g_2	H	(1) V _{smin}	ε	f Min.	torque	C	C_0
		max	max									mm	N-m	IN IN	IN
M 6×1	8	12.2	28.2	16	_	0.6	_	_	3	0.3	0.25	11	2.7	3 660	3 650

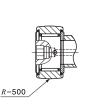

J	0 1	max	max		23	01	81	82	11	г ЅПШТ		mm	N-m	N	N	N
M 6×1	8	12.2	28.2	16	—	0.6	_	_	3	0.3	0.25	11	2.7	3 660	3 650	1 980
M 8×1.25	10	12.2	32.2	20	—	0.6	—	—	4	0.3	0.25	13	6.5	4 250	4 740	4 670
M10×1.25 M10×1.25			36.2 36.2	_		0.6 0.6	_	_		0.3	0.3	16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
M12×1.5 M12×1.5	13 13		40.2 40.2		-	0.6 0.6		3	6 6	0.6 0.6		21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
M16×1.5	17	19.6	52.1	32.5	8	8.0	4	3	6	0.6	0.5	26	58.5	12 000	18 300	18 300
M18×1.5	19	21.6	58.1	36.5	8	0.8	6	3	8	1	0.6	29	86.2	14 800	25 200	25 200

CAM FOLLOWERS

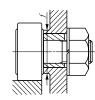
Eccentric Type Cam Followers With Cage/With Hexagon Hole

Outside diameter of eccentric collar 9-41 mm

CFE···BR


Outside diameter of		ldentif	ication number		Mass (Ref.)			
eccentric collar mm	Shield With crowned outer ring	type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	g	D	C	$d_{\rm e}$
9	CFE 6 BR	CFE 6 B	CFE 6 BUUR	CFE 6 BUU	20.5	16	11	9
11	CFE 8 BR	CFE 8 B	CFE 8 BUUR	CFE 8 BUU	32	19	11	11
13	CFE 10 BR CFE 10-1 BR	CFE 10 B CFE 10-1 B	CFE 10 BUUR CFE 10-1 BUUR	CFE 10 BUU CFE 10-1 BUU	49.5 65	22 26	12 12	13 13
16	CFE 12 BR CFE 12-1 BR	CFE 12 B CFE 12-1 B	CFE 12 BUUR CFE 12-1 BUUR	CFE 12 BUU CFE 12-1 BUU	105 115	30 32	14 14	16 16
22	CFE 16 BR	CFE 16 B	CFE 16 BUUR	CFE 16 BUU	190	35	18	22
24	CFE 18 BR	CFE 18 B	CFE 18 BUUR	CFE 18 BUU	280	40	20	24
27	CFE 20 BR CFE 20-1 BR	CFE 20 B CFE 20-1 B	CFE 20 BUUR CFE 20-1 BUUR	CFE 20 BUU CFE 20-1 BUU	500 425	52 47	24 24	27 27
33	CFE 24 BR CFE 24-1 BR	CFE 24 B CFE 24-1 B	CFE 24 BUUR CFE 24-1 BUUR	CFE 24 BUU CFE 24-1 BUU	895 1 220	62 72	29 29	33 33
41	CFE 30 BR CFE 30-1 BR CFE 30-2 BR	CFE 30 B CFE 30-1 B CFE 30-2 B	CFE 30 BUUR CFE 30-1 BUUR CFE 30-2 BUUR	CFE 30 BUU CFE 30-1 BUU CFE 30-2 BUU	2 030 2 190 2 380	80 85 90	35 35 35	41 41 41

Note(1)	Minimum	allowable	value of	chamfer	dimension

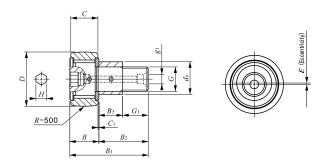

Remarks1. Models with a thread diameter G of 10 mm or less have an oil hole (re-greasing fitting) at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole on the end surface of the stud.

2. Shield type models with a stud thread diameter G of 10 mm or less and the sealed type models are provided with prepacked

CFE···B

CFE···BUUR

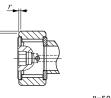
CFE···BUU


Bounda	ary din	nensio	ns mr	n						Eccentricity	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
G	B_3	B max	B_1 max	B_2	C_1	g_1	G_1	Н	(1) V _{smin}	arepsilon Ecc	<i>J</i> Min. mm	N-m	C N	<i>C</i> ₀	N
M 6×1	7.5	12.2	28.2	16	0.6	_	8.5	3	0.3	0.4	11	2.7	3 660	3 650	1 950
M 8×1.25	9.5	12.2	32.2	20	0.6	_	10.5	4	0.3	0.4	13	6.5	4 250	4 740	4 620
M10×1.25 M10×1.25		13.2 13.2	36.2 36.2		0.6 0.6	_	12.5 12.5	4 4	0.3 0.3		16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
M12×1.5 M12×1.5	11.5 11.5	15.2 15.2	40.2 40.2		0.6 0.6	4	13.5 13.5	6 6	0.6 0.6	0.8 0.8	21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
M16×1.5	15.5	19.6	52.1	32.5	0.8	4	17	6	0.6	0.8	26	58.5	12 000	18 300	18 300
M18×1.5	17.5	21.6	58.1	36.5	0.8	6	19	8	1	0.8	29	86.2	14 800	25 200	25 200
M20×1.5 M20×1.5	19.5 19.5	25.6 25.6	66.1 66.1		0.8 0.8	6 6	21 21	8 8	1 1	8.0 8.0	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600
M24×1.5 M24×1.5	25.5 25.5	30.6 30.6		49.5 49.5	0.8 0.8	6	24 24	12 12	1 1	0.8 0.8	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000
M30×1.5 M30×1.5 M30×1.5	32.5 32.5 32.5	37	100 100 100	63 63 63	1 1 1	6 6	30.5 30.5 30.5	17 17 17	1 1 1	1.5 1.5 1.5	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100

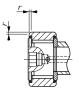
grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

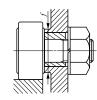
CAM FOLLOWERS

Eccentric Type Cam Followers Full Complement Type/With Hexagon Hole


Outside diameter of eccentric collar 9-41 mm

CFE...VBR


Outside diameter of					I	dentif	ication	numb	er				Mass (Ref.)			
eccentric collar mm	1	th crow		With	cylindr uter ring		\	Nith cro		Wi	th cylir outer r		g	D	C	$d_{\rm e}$
9	CFE	6	VBR	CFE	6	VB	CFE	6	VBUUR	CFE	6	VBUU	21	16	11	9
11	CFE	8	VBR	CFE	8	VB	CFE	8	VBUUR	CFE	8	VBUU	32.5	19	11	11
13	CFE CFE		VBR VBR	CFE CFE		VB VB			VBUUR VBUUR			VBUU VBUU	50.5 66	22 26	12 12	13 13
16	CFE CFE		VBR VBR				_		VBUUR VBUUR			VBUU VBUU	107 117	30 32	14 14	16 16
22	CFE	16	VBR	CFE	16	VB	CFE	16	VBUUR	CFE	16	VBUU	193	35	18	22
24	CFE	18	VBR	CFE	18	VB	CFE	18	VBUUR	CFE	18	VBUU	285	40	20	24
27	CFE CFE		VBR VBR	CFE CFE	_	VB VB	_	_	VBUUR VBUUR	_	_	VBUU VBUU	505 430	52 47	24 24	27 27
33			VBR VBR						VBUUR VBUUR			VBUU VBUU	900 1 220	62 72	29 29	33 33
41	1	30-1	VBR VBR VBR	CFE	30-1		CFE	30-1	VBUUR VBUUR VBUUR	CFE	30-1	VBUU VBUU VBUU	2 030 2 190 2 380	80 85 90	35 35 35	41 41 41

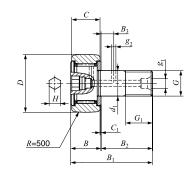

Note(1)	Minimum	allowable	value of	chamfor	dimension
MOIG(,)	IVIIIIIIIIIIIIIII	allowable	value or	Chamier	annension

Remarks1. Models with a thread diameter *G* of 10 mm or less have an oil hole (re-greasing fitting) at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole on the end surface of the stud.

CFE...VB

CFE...VBUUR

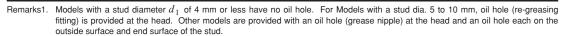
CFE...VBUU


Bounda	ary din	nensio	ns mr	m						Eccentricity	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
G	B_3	B max	B_1 max	B_2	C_1	g_1	G_1	H	(1) <i>r</i> _{s min}	arepsilon Ecce	f Min. mm	N-m	C N	C_0 N	N
M 6×1	7.5	12.2	28.2	16	0.6	_	8.5	3	0.3	0.4	11	2.7	6 980	8 500	1 950
M 8×1.25	9.5	12.2	32.2	20	0.6	_	10.5	4	0.3	0.4	13	6.5	8 170	11 200	4 620
M10×1.25 M10×1.25	10.5 10.5	13.2 13.2			0.6 0.6	_	12.5 12.5	4	0.3 0.3		16 16	13.8 13.8	9 570 9 570	14 500 14 500	8 650 8 650
M12×1.5 M12×1.5	11.5 11.5	15.2 15.2	40.2 40.2		0.6 0.6	4	13.5 13.5	6 6	0.6 0.6		21 21	21.9 21.9	13 500 13 500	19 700 19 700	
M16×1.5	15.5	19.6	52.1	32.5	8.0	4	17	6	0.6	8.0	26	58.5	20 700	37 600	23 200
M18×1.5	17.5	21.6	58.1	36.5	0.8	6	19	8	1	8.0	29	86.2	25 300	51 300	31 100
M20×1.5 M20×1.5	19.5 19.5	25.6 25.6		40.5 40.5	0.8 0.8	6 6	21 21	8 8	1 1	8.0 8.0	34 34	119 119	33 200 33 200	64 500 64 500	37 500 37 500
M24×1.5 M24×1.5	25.5 25.5	30.6 30.6		49.5 49.5	0.8 0.8	6 6	24 24	12 12	1 1	8.0 8.0	40 40	215 215	46 600 46 600	92 000 92 000	52 000 52 000
M30×1.5 M30×1.5 M30×1.5	32.5 32.5 32.5	37 37 37	100 100 100	63 63 63	1 1 1	6 6 6	30.5 30.5 30.5	17 17 17	1 1 1	1.5 1.5 1.5	49 49 49	438 438 438	67 700	144 000 144 000 144 000	85 900 85 900

^{2.} Provided with prepacked grease.

CAM FOLLOWERS

Thrust Disk Type Cam Followers With Cage/With Hexagon Hole



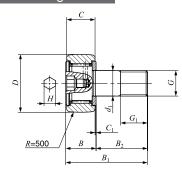
Stud dia. 3 – 20mm

CF...WBR

	Identificati	on number	Mass (Ref.)	Boundary dimensions m				
Stud dia.	Shield type	Sealed type	g	D	C	d_1	G	G_1
3	CF 3 WBR	CF 3 WBUUR	4.3	10	7	3	M 3×0.5	5
4	CF 4 WBR	CF 4 WBUUR	7.4	12	8	4	M 4×0.7	6
5	CF 5 WBR	CF 5 WBUUR	10.3	13	9	5	M 5×0.8	7.5
6	CF 6 WBR	CF 6 WBUUR	18.5	16	11	6	M 6×1	8
8	CF 8 WBR	CF 8 WBUUR	28.5	19	11	8	M 8×1.25	10
	CF 10 WBR	CF 10 WBUUR	45	22	12	10	M10 × 1.25	12
10	CF 10-1 WBR	CF 10-1 WBUUR	60	26	12	10	M10 × 1.25	12
	CF 12 WBR	CF 12 WBUUR	95	30	14	12	M12 × 1.5	13
12	CF 12-1 WBR	CF 12-1 WBUUR	105	32	14	12	M12 × 1.5	13
16	CF 16 WBR	CF 16 WBUUR	170	35	18	16	M16 × 1.5	17
18	CF 18 WBR	CF 18 WBUUR	250	40	20	18	M18 × 1.5	19
	CF 20 WBR	CF 20 WBUUR	460	52	24	20	M20 × 1.5	21
20	CF 20-1 WBR	CF 20-1 WBUUR	385	47	24	20	M20 × 1.5	21

^{2.} Shield type models with a stud diameter d_1 of 10 mm or less and the sealed type models are provided with prepacked grease. Other models are not provided with prepacked grease. Perform proper lubrication for use.

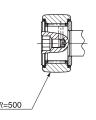
CF...WBUUR

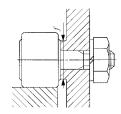

								Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
В	B_1	B_2	B_3	C_1	g_1	g_2	Н	Min. mm	N-m	N	N N	N
8	17	9	_	0.5	_	_	2	6.8	0.34	1 500	1 020	384
9	20	11	_	0.5	_	_	2.5	8.3	0.78	2 070	1 590	834
10	23	13	_	0.5	_	_	3	9.3	1.6	2 520	2 140	1 260
12.2 max	28.2 max	16	_	0.6	_	_	3	11	2.7	3 660	3 650	1 950
12.2 max	32.2 max	20	_	0.6		_	4	13	6.5	4 250	4 740	4 620
13.2 max	36.2 max	23	_	0.6	_	_	4	16	13.8	5 430	6 890	6 890
13.2 max	36.2 max	23	_	0.6	_	_	4	16	13.8	5 430	6 890	6 890
15.2 max	40.2 max	25	6	0.6	4	3	6	21	21.9	7 910	9 790	9 790
15.2 max	40.2 max	25	6	0.6	4	3	6	21	21.9	7 910	9 790	9 790
19.6 max	52.1 max	32.5	8	8.0	4	3	6	26	58.5	12 000	18 300	18 300
21.6 max	58.1 max	36.5	8	8.0	6	3	8	29	86.2	14 800	25 200	25 200
25.6 max	66.1 max	40.5	9	0.8	6	4	8	34	119	20 700	34 600	34 600
25.6 max	66.1 max	40.5	9	8.0	6	4	8	34	119	20 700	34 600	34 600

CFS NUCF

CAM FOLLOWERS

Thrust Disk Type Cam Followers With Cage/With Hexagon Hole



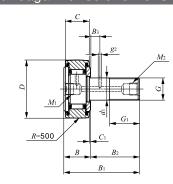

Stud dia. 3 – 5mm

CF...FWBR

	Identificati	on number	Mass (Ref.)	Boundary dimensions				s mm
Stud dia.	Shield type	Sealed type	g	D	C	d_1	G	G_1
3	CF 3 FWBR	CF 3 FWBUUR	4.3	10	7	3	M 3×0.5	5
4	CF 4 FWBR	CF 4 FWBUUR	7.4	12	8	4	M 4×0.7	6
5	CF 5 FWBR	CF 5 FWBUUR	10.3	13	9	5	M 5×0.8	7.5

Remarks 1. Models with a stud diameter d_1 of 4 mm or less have no oil hole. For Models with a stud dia. $\frac{1}{5}$ mm, oil hole (re-greasing fitting) is provided at the head.
2. Provided with prepacked grease.

CF...FWBUUR


	I	I	l	I	I	I	l	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
В	B_1	B_2	B_3	C_1	<i>g</i> ₁	<i>g</i> ₂	Н	Min. mm	N-m	N	N	N
8	17	9	_	0.5	_	_	2	6.8	0.34	1 200	813	384
9	20	11		0.5	_	_	2.5	8.3	0.78	1 650	1 270	834
10	23	13	_	0.5	_	_	3	9.3	1.6	1 930	1 730	1 260

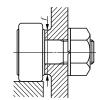
CFS NUCF

CAM FOLLOWERS

Centralized Lubrication Type Cam Followers With Cage/With Screwdriver Slot

Stud dia. 6 – 30mm

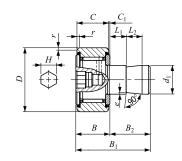
CF···RU1


		CrRu1						
Identificati	on number	Mass (Ref.)			Bour	ndary dimension	s mm	
With crowned outer ring	With cylindrical outer ring	g	D	C	d_1	G	G_1	
CF-RU1- 6	CF-FU1- 6	18.5	16	11	6	M 6×1	8	
CF-RU1- 8	CF-FU1- 8	28.5	19	11	8	M 8×1.25	10	
CF-RU1-10 CF-RU1-10-1	CF-FU1-10 CF-FU1-10-1	45 60	22 26	12 12	10 10	M10 × 1.25 M10 × 1.25	12 12	
CF-RU1-12 CF-RU1-12-1	CF-FU1-12 CF-FU1-12-1	95 105	30 32	14 14	12 12	M12 × 1.5 M12 × 1.5	13 13	
CF-RU1-16	CF-FU1-16	170	35	18	16	M16 × 1.5	17	
CF-RU1-18	CF-FU1-18	250	40	20	18	M18 × 1.5	19	
CF-RU1-20 CF-RU1-20-1	CF-FU1-20 CF-FU1-20-1	460 385	52 47	24 24	20 20	M20 × 1.5 M20 × 1.5	21 21	
CF-RU1-24 CF-RU1-24-1	CF-FU1-24 CF-FU1-24-1	815 1 140	62 72	29 29	24 24	M24 × 1.5 M24 × 1.5	25 25	
CF-RU1-30 CF-RU1-30-1 CF-RU1-30-2	CF-FU1-30 CF-FU1-30-1 CF-FU1-30-2	1 870 2 030 2 220	80 85 90	35 35 35	30 30 30	M30 × 1.5 M30 × 1.5 M30 × 1.5	32 32 32	
	With crowned outer ring CF-RU1- 6 CF-RU1- 8 CF-RU1-10 CF-RU1-10-1 CF-RU1-12-1 CF-RU1-18 CF-RU1-18 CF-RU1-20 CF-RU1-24 CF-RU1-24-1 CF-RU1-30 CF-RU1-30-1	Outer ring Outer	With crowned outer ring g CF-RU1- 6	Mass (Ref.) With crowned outer ring With crylindrical outer ring D	With crowned outer ring With cylindrical outer ring D C	With crowned outer ring With cylindrical outer ring D C d1	With crowned outer ring With cylindrical outer ring P	

Note(1) Minimum allowable value of chamfer dimension r

Remarks1. Models with a stud diameter d_1 of 12 mm or less are provided with a lubrication tapped hole on the stud head only. Other models are provided with one lubrication tapped hole each on the head and end surface of the stud.

2. Provided with prepacked grease.

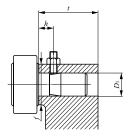

CF···FU1

									Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	Maximum allowable static load
B max	B_1 max	B_2	B_3	C_1	g_2	M_1	M_2	(1) r _{s min}	f Min. mm	N-m	C N	C_0	N
12.2	28.2	16	_	0.6	_			0.3	11	2.7	3 660	3 650	1 950
12.2	32.2	20	_	0.6	_			0.3	13	6.5	4 250	4 740	4 620
13.2 13.2	36.2 36.2	23 23	_	0.6 0.6	_	M6× 0.75	_	0.3 0.3	16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
15.2 15.2	40.2 40.2	25 25	_	0.6 0.6	_			0.6 0.6	21 21	23.9 23.9	7 910 7 910	9 790 9 790	9 790 9 790
19.6	52.1	32.5	8	0.8	3			0.6	26	58.5	12 000	18 300	18 300
21.6	58.1	36.5	8	0.8	3			1	29	86.2	14 800	25 200	25 200
25.6 25.6	66.1 66.1	40.5 40.5	9 9	0.8 0.8	4 4	PT	PT	1	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600
30.6 30.6	80.1 80.1	49.5 49.5	11 11	0.8 0.8	4 4	1/8	1/8	1	40 40	215 215	30 500 30 500	52 600 52 600	52 000 52 000
37 37 37 37	100 100 100	63 63 63	15 15 15	1 1 1	4 4 4			1 1 1	49 49 49	438 438 438	45 400 45 400 45 400	85 100 85 100 85 100	85 100 85 100 85 100

CAM FOLLOWERS

Easy Mounting Type Cam Followers With Cage/With Hexagon Hole

Stud dia. 6 – 20mm

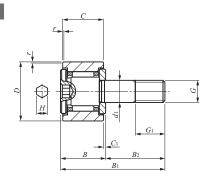

CF-SFU···B

	0, 0, 0									
	Identification	Mass (Ref.)					Boundary	dimensio	ons mm	
Stud dia.	number	g	D	C	d_1	B max	B_1 max	B_2	C_1	L_1
6	CF-SFU- 6 B	19.5	16	11	6	12.2	32	19.8	0.6	5
8	CF-SFU- 8 B	29	19	11	8	12.2	32	19.8	0.6	5
10	CF-SFU-10 B CF-SFU-10-1 B	44 59	22 26	12 12	10 10	13.2 13.2	33 33	19.8 19.8	0.6 0.6	5 5
12	CF-SFU-12 B CF-SFU-12-1 B	94 104	30 32	14 14	12 12	15.2 15.2	35 35	19.8 19.8	0.6 0.6	5 5
16	CF-SFU-16 B	164	35	18	16	19.6	44.5	24.9	0.8	10
18	CF-SFU-18 B	235	40	20	18	21.6	46.5	24.9	0.8	10
20	CF-SFU-20 B CF-SFU-20-1 B	435 360	52 47	24 24	20 20	25.6 25.6	50.5 50.5	24.9 24.9	0.8	10 10

Note(1)	Minimum	allowable	value of	ohomfor	dimension	,
Note(')	Minimum	allowable	value of	cnamter	aimension	7

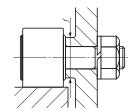
Remarks1. Models with a stud diameter d_1 of 10 mm or less have an oil hole (re-greasing fitting) at the head. Other models are provided with an oil hole (grease nipple) at the head.

2. Provided with prepacked grease.


					Mounting o	limension	is mm		Basic dynamic load rating	Basic static load rating	Maximum allowable
I			(1)	D		t	f	h	C	C_0	static load
L_2	Н	е	r _{s min}	D_1	Tolerance	Min.	Min.	(Ref.)	N	N	N
10	3	0.3	0.3	6	+ 0.012 0	20	11	10	3 660	3 650	1 950
10	4	0.5	0.3	8	1 0 015	20	13	10	4 250	4 740	4 620
10 10	4 4	0.5 0.5	0.3 0.3	10 10	+ 0.015 0	20 20	16 16	10 10	5 430 5 430	6 890 6 890	6 890 6 890
10 10	6 6	1 1	0.6 0.6	12 12	+ 0.018	20 20	21 21	10 10	7 910 7 910	9 790 9 790	9 790 9 790
10	6	1	0.6	16	0	25	26	15	12 000	18 300	18 300
10	8	1	1	18		25	29	15	14 800	25 200	25 200
10 10	8 8	1 1	1 1	20 20	+0.021	25 25	34 34	15 15	20 700 20 700	34 600 34 600	34 600 34 600

CAM FOLLOWERS

Cam Follower G With Cage/With Hexagon Hole


Stud dia. 6 – 20mm

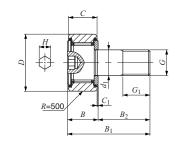
CF...G

Stud dia.	Identification	Mass (Ref.)				Boundary	dimensio	ons mm	
mm	number	g	D	С	d_1	G	G_1	B max	B ₁
6	CF 6 G	19.5	16	11	6	M 6×1	8	12.2	28.2
8	CF 8 G	29.5	19	11	8	M 8×1.25	10	12.2	32.2
10	CF 10 G	47.5	22	12	10	M10 × 1.25	12	13.2	36.2
10	CF 10-1 G	61.5	26	12	10	M10 × 1.25	12	13.2	36.2
12	CF 12 G	95.0	30	14	12	M12 × 1.5	13	15.2	40.2
12	CF 12-1 G	105	32	14	12	M12 × 1.5	13	15.2	40.2
16	CF 16 G	175	35	18	16	M16 × 1.5	17	19.6	52.1
18	CF 18 G	255	40	20	18	M18 × 1.5	19	21.6	58.1
20	CF 20 G	470	52	24	20	M20 × 1.5	21	25.6	66.1
20	CF 20-1 G	400	47	24	20	M20 × 1.5	21	25.6	66.1

Note(1) Minimum allowable value of chamfer dimension	n r
--	-----

Remarks1. This bearing cannot be re-lubricated due to its structure. If re-lubrication is necessary, please use **IKD** Standard Type Cam Followers.

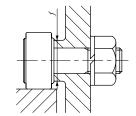
	I	I	(¹)	Mounting dimension	clear	internal ance m	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load
B_2	C_1	Н	$r_{\rm s \ min}$	Min. mm	Min.	Max.	N-m	N	N	N
16	0.6	3	0.3	11	5	20	2.7	3 660	3 650	1 950
20	0.6	4	0.3	13	5	25	6.5	4 250	4 740	4 620
23	0.6	4	0.3	16	5	25	13.8	5 430	6 890	6 890
23	0.6	4	0.3	16	5	25	13.8	5 430	6 890	6 890
25	0.6	6	0.6	21	5	25	23.9	7 910	9 790	9 790
25	0.6	6	0.6	21	5	25	23.9	7 910	9 790	9 790
32.5	0.8	6	0.6	26	10	30	61.1	12 000	18 300	18 300
36.5	0.8	8	1	29	10	30	89.2	14 800	25 200	25 200
40.5	0.8	8	1	34	10	30	125	20 700	34 600	34 600
40.5	0.8	8	1	34	10	30	125	20 700	34 600	34 600



^{2.} Provided with prepacked grease.

CAM FOLLOWERS

C-Lube Cam Followers With Cage / With Hexagon Hole

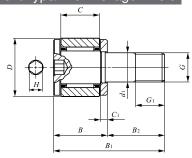


Stud dia. 5-20mm

Stud dia.	Identification number	Mass (Ref.)					Boun	dary dimen	sions mm
mm		g	D	С	d_1	G	G_1	В	B_1
5	CF 5 WBUUR/SG	10.3	13	9	5	M 5×0.8	7.5	10	23
6	CF 6 WBUUR/SG	18.5	16	11	6	M 6×1	8	12.2 max	28.2 max
8	CF 8 WBUUR/SG	28.5	19	11	8	M 8×1.25	10	12.2 max	32.2 max
10	CF 10 WBUUR/SG CF 10-1 WBUUR/SG	45 60	22 26	12 12	10 10	M10×1.25 M10×1.25	12 12		36.2 max 36.2 max
12	CF 12 WBUUR/SG CF 12-1 WBUUR/SG	95 105	30 32	14 14	12 12	M12×1.5 M12×1.5	13 13		40.2 max 40.2 max
16	CF 16 WBUUR/SG	170	35	18	16	M16×1.5	17	19.6 max	52.1 max
18	CF 18 WBUUR/SG	250	40	20	18	M18×1.5	19	21.6 max	58.1 max
20	CF 20 WBUUR/SG CF 20-1 WBUUR/SG	460 385	52 47	24 24	20 20	M20×1.5 M20×1.5	21 21		66.1 max 66.1 max

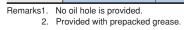
Remark Regreasing is not possible as the bearing internal space is filled with thermosetting solid-type lubricant C-Lube.

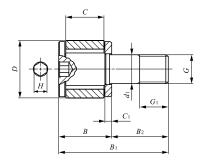
B_2			Mounting dimension f Min. mm	Maximum tightening torque N-m	Basic dynamic load rating C	Basic static load rating C_0	Maximum allowable static load N
13	0.5	3	9.3	1.6	2 520	2 140	1 260
16	0.6	3	11	2.7	3 660	3 650	1 950
20	0.6	4	13	6.5	4 250	4 740	4 620
23 23	0.6 0.6	4 4	16 16	13.8 13.8	5 430 5 430	6 890 6 890	6 890 6 890
25 25	0.6 0.6	6 6	21 21	21.9 21.9	7 910 7 910	9 790 9 790	9 790 9 790
32.5	0.8	6	26	58.5	12 000	18 300	18 300
36.5	0.8	8	29	86.2	14 800	25 200	25 200
40.5 40.5	0.8 0.8	8 8	34 34	119 119	20 700 20 700	34 600 34 600	34 600 34 600



CAM FOLLOWERS

Miniature Type Cam Followers With Cage/With Hexagon Hole


Full Complement Type/With Hexagon Hole

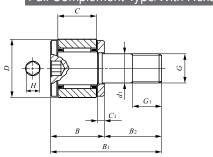


Stud dia. 2 – 6mm

			0.0							
	Identificati	on number	Mass (Ref.)				Boundary di	mension	s mm	
Stud dia.	With cage	Full complement		D	C	d_1	G	G_1	В	
mm			g							
2	CFS 2	CFS 2 V	0.6 0.6	4.5 4.5	2.5 2.5	2	M2 × 0.4 M2 × 0.4	2 2	4 4	
2.5	CFS 2.5	 CFS 2.5 V	1 1	5 5	3	2.5 2.5	M2.5 × 0.45 M2.5 × 0.45		4.5 4.5	
3	CFS 3	CFS 3 V	2 2	6 6	4 4	3	M3 × 0.5 M3 × 0.5	3	5.5 5.5	
4	CFS 4	CFS 4 V	4 4	8 8	5 5	4 4	M4 × 0.7 M4 × 0.7	4 4	7 7	
5	CFS 5	CFS 5 V	7 7	10 10	6 6	5 5	M5 × 0.8 M5 × 0.8	5 5	8	
6	CFS 6	CFS 6 V	13 13	12 12	7 7	6 6	M6 × 1 M6 × 1	6 6	9.5 9.5	

CFS...V

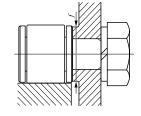
				Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_1	B_2	C_1	Н	Min. mm	N-m	N	N	N	
8	4 4	0.7 0.7	0.9 0.9	4.3 4.3	9.1 9.1	288 768	202 734	202 229	
9.5 9.5	5 5	0.7 0.7	0.9 0.9	4.8 4.8	18.7 18.7	428 1 000	351 1 080	351 360	
11.5 11.5	6 6	0.7 0.7	1.3 1.3	5.8 5.8	33.5 33.5	629 1 420	611 1 790	484 484	
15 15	8	1.0 1.0	1.5 1.5	7.7 7.7	77.7 77.7	1 120 2 370	1 120 3 000	919 919	
18 18	10 10	1.0 1.0	2 2	9.6 9.6	158 158	1 570 3 180	1 850 4 700	1 570 1 570	
21.5 21.5	12 12	1.2	2.5 2.5	11.6 11.6	268 268	2 090 4 610	2 200 6 250	2 150 2 150	


CFS NUCF

CAM FOLLOWERS

Miniature Type Cam Followers Stainless Steel Made With Cage/With Hexagon Hole

Full Complement Type/With Hexagon Hole

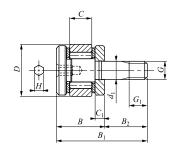

Stud dia. 2 – 6mm

CFS…F

Identificati	on number	Mass (Ref.)				Boundary dir	nensions	s mm
With cage	Full complement	g	D	C	d_1	G	G_1	В
CFS 2 F	CFS 2 FV	0.6 0.6	4.5 4.5	2.5 2.5	2 2	M2 × 0.4 M2 × 0.4	2 2	4 4
CFS 2.5 F	CFS 2.5 FV	1 1	5 5	3	2.5 2.5	M2.5 × 0.45 M2.5 × 0.45	2.5 2.5	4.5 4.5
CFS 3 F	CFS 3 FV	2 2	6 6	4 4	3 3	M3 × 0.5 M3 × 0.5	3 3	5.5 5.5
CFS 4 F	CFS 4 FV	4 4	8 8	5 5	4 4	M4 × 0.7 M4 × 0.7	4 4	7 7
CFS 5 F	CFS 5 FV	7 7	10 10	6 6	5 5	M5 × 0.8 M5 × 0.8	5 5	8 8
CFS 6 F	CFS 6 FV	13 13	12 12	7 7	6 6	M6 ×1 M6 ×1	6 6	9.5 9.5
	CFS 2 F CFS 2.5 F CFS 3 F CFS 4 F CFS 5 F	CFS 2 F — CFS 2 FV CFS 2.5 F — CFS 2.5 FV CFS 3 F — CFS 3 FV CFS 4 F — CFS 4 FV CFS 5 F — CFS 5 FV CFS 6 F — CFS 5 FV	With cage Full complement (Ref.) CFS 2 F — 0.6 CFS 2 FV 0.6 CFS 2.5 F — 1 CFS 2.5 FV 1 CFS 3 F — 2 CFS 3 FV 2 CFS 4 F — 4 CFS 5 F — 7 CFS 5 FV 7 CFS 6 F — 13	With cage Full complement (Ref.) CFS 2 F — 0.6 4.5 — CFS 2 FV 0.6 4.5 CFS 2.5 F — 1 5 — CFS 2.5 FV 1 5 CFS 3 F — 2 6 CFS 4 F — 4 8 CFS 5 F — 7 10 — CFS 5 FV 7 10 CFS 6 F — 13 12	With cage Full complement g D C CFS 2 F — 0.6 4.5 2.5 — CFS 2 FV 0.6 4.5 2.5 CFS 2.5 F — 1 5 3 CFS 3 F — 2 6 4 CFS 4 F — 4 8 5 CFS 5 F — 7 10 6 CFS 5 FV 7 10 6 CFS 6 F — 13 12 7	With cage Full complement g D C d₁ CFS 2 F — 0.6 4.5 2.5 2 — CFS 2 FV 0.6 4.5 2.5 2 CFS 2.5 F — 1 5 3 2.5 — CFS 2.5 FV 1 5 3 2.5 CFS 3 F — 2 6 4 3 CFS 4 F — 4 8 5 4 CFS 5 F — 7 10 6 5 CFS 5 FV 7 10 6 5 CFS 6 F — 13 12 7 6	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Remarks1. No oil hole is provided.
2. Provided with prepacked grease.

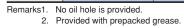
CFS ··· FV

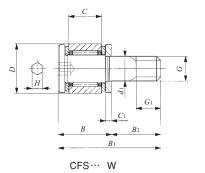

		l		Mounting dimension f	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_1	B_2	C_1	Н	Min. mm	N-cm	N	N	N	
8	4 4	0.7 0.7	0.9 0.9	4.3 4.3	9.1 9.1	230 614	161 587	161 229	
9.5 9.5	5 5	0.7 0.7	0.9 0.9	4.8 4.8	18.7 18.7	342 800	281 862	281 360	
11.5 11.5	6 6	0.7 0.7	1.3 1.3	5.8 5.8	33.5 33.5	504 1 140	488 1 430	484 484	
15 15	8	1.0 1.0	1.5 1.5	7.7 7.7	77.7 77.7	897 1 900	894 2 400	894 919	
18 18	10 10	1.0 1.0	2 2	9.6 9.6	158 158	1 250 2 540	1 480 3 760	1 480 1 570	
21.5 21.5	12 12	1.2	2.5 2.5	11.6	268 268	1 670 3 690	1 760 5 000	1 760 2 150	

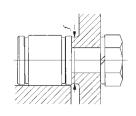
CFS NUCF

CAM FOLLOWERS

Thrust Disk Type Miniature Cam Followers With Hexagon Hole

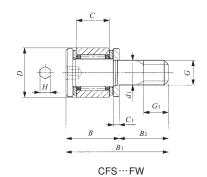





Stud dia. 1.4 – 6 mm

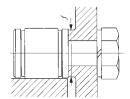
CFS1.4 WV

Stud dia.	Identificat	ion number	Mass (Ref.)			Во	undary dimensio	ns mm	
mm	With cage	Full complement	g	D	C	d_1	G	G_1	В
1.4	_	CFS 1.4 WV	0.35	4	1.7	1.4	M1.4 × 0.3	1.4	3.7
2	CFS 2 W	_	0.6	4.5	2.5	2	M2 × 0.4	2	4.5
2.5	CFS 2.5 W	_	1	5	3	2.5	M2.5 × 0.45	2.5	5
3	CFS 3 W	_	2	6	4	3	M3 × 0.5	3	6.5
4	CFS 4 W	_	4	8	5	4	M4 × 0.7	4	8
5	CFS 5 W	_	7	10	6	5	M5 × 0.8	5	9
6	CFS 6 W	_	13	12	7	6	M6 ×1	6	10.5


					Mounting	Maximum	Basic dynamic	Basic static	Maximum	
					dimension	tightening	load rating	load rating	allowable	
					f	torque	C	C_0	static load	
j	B_1	B_2	C_1	H	Min.					
	1	2	•		mm	N-cm	N	N	N	
	7	3.3	0.7	0.9	3.8	3.0	481	385	105	
- :	8.5	4	0.7	0.9	4.3	9.1	288	202	194	
1	0	5	0.7	0.9	4.8	18.7	428	351	313	
1:	2.5	6	0.7	1.3	5.8	33.5	629	611	399	
1	6	8	1	1.5	7.7	77.7	1120	1120	785	
1:	9	10	1	2	9.6	158	1570	1850	1370	
2	2.5	12	1.2	2.5	11.6	268	2090	2200	1920	
		1	I	I	1	I	1 1			

CAM FOLLOWERS

Thrust Disk Type Miniature Cam Followers · Stainless Steel Made With Cage/With Hexagon Hole

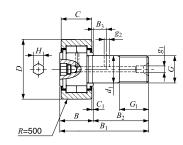


Stud dia. 2 – 6 mm

Stud dia.		Mass (Ref.)			Во	undary dimensio	ns mm	ı
mm	Identification number	g	D	C	d_1	G	G_1	В
2	CFS 2 FW	0.6	4.5	2.5	2	M2 × 0.4	2	4.5
2.5	CFS 2.5 FW	1	5	3	2.5	M2.5 × 0.45	2.5	5
3	CFS 3 FW	2	6	4	3	M3 × 0.5	3	6.5
4	CFS 4 FW	4	8	5	4	M4 × 0.7	4	8
5	CFS 5 FW	7	10	6	5	M5 × 0.8	5	9
6	CFS 6 FW	13	12	7	6	M6 ×1	6	10.5

Remarks1. No oil hole is provided.

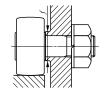
2. Provided with prepacked grease.


	1		1	Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0	Maximum allowable static load	
B_1	B_2	C_1	Н	Min. mm	N-cm	N	N	N	
8.5	4	0.7	0.9	4.3	9.1	230	161	161	
10	5	0.7	0.9	4.8	18.7	342	281	281	
12.5	6	0.7	1.3	5.8	33.5	504	488	399	
16	8	1.0	1.5	7.7	77.7	897	894	785	
19	10	1.0	2	9.6	158	1 250	1 480	1 370	
22.5	12	1.2	2.5	11.6	268	1 670	1 760	1 760	

CFS NUCF

CAM FOLLOWERS

Cylindrical Roller Cam Followers Full Compliment Type/With Hexagon Hole

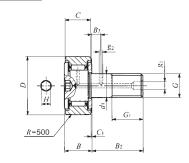

Stud dia. 10 - 30 mm

NUCF ··· BR

	Identification	Mass (Ref.)				Bou	ndary di	imensior	ns mm	
Stud dia.	number		_				~	_	_	_
mm		g	D	C	d_1	G	G_1	B max	B ₁ max	B_2
10	NUCF 10 BR	44	22	12	10	M10 × 1.25	12	13.2	36.2	23
10	NUCF 10-1 BR	58	26	12	10	M10 × 1.25	12	13.2	36.2	23
12	NUCF 12 BR	86	30	14	12	M12 × 1.5	13	15.2	40.2	25
12	NUCF 12-1 BR	97	32	14	12	M12 × 1.5	13	15.2	40.2	25
16	NUCF 16 BR	167	35	18	16	M16 × 1.5	17	19.6	52.1	32.5
18	NUCF 18 BR	244	40	20	18	M18 × 1.5	19	21.6	58.1	36.5
20	NUCF 20 BR	457	52	24	20	M20 × 1.5	21	25.6	66.1	40.5
	NUCF 20-1 BR	384	47	24	20	M20 × 1.5	21	25.6	66.1	40.5
24	NUCF 24 BR	789	62	29	24	M24 × 1.5	25	30.6	80.1	49.5
	NUCF 24-1 BR	1 020	72	29	24	M24 × 1.5	25	30.6	80.1	49.5
30	NUCF 30 BR	1 600	80	35	30	M30 × 1.5	32	37	100	63
	NUCF 30-2 BR	1 970	90	35	30	M30 × 1.5	32	37	100	63
			1							

Remarks1. For models with a stud diameter d_1 of 10mm, oil hole (re-greasing fitting) is provided at the head. Other models are provided with an oil hole (grease nipple) at the head and an oil hole each on the outside surface and end surface of the stud.

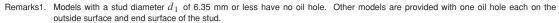
2. Provided with prepacked grease.

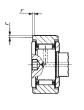

					Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static	Maximum allowable
					f	torque	_	load rating ${\it C}_{ m 0}$	static load
D		_	_		Min.	10.400	C	C ₀	
B_3	C_1	g_1	g_2	Н	mm	N-m	N	N	N
_	0.6	_	_	4	12	13.8	10 400	11 500	5 300
	0.6	_	_	4	12	13.8	10 400	11 500	9 210
6	0.6	4	3	6	17	21.9	14 000	13 400	5 650
6	0.6	4	3	6	17	21.9	14 000	13 400	9 040
8	8.0	4	3	6	20	58.5	23 400	27 300	11 800
8	0.8	6	3	8	22	86.2	25 200	30 900	20 300
9	0.8	6	4	8	31	119	43 100	58 100	30 000
9	8.0	6	4	8	27	119	38 900	49 000	27 200
11	0.8	6	4	12	38	215	58 200	75 300	35 200
11	0.8	6	4	12	44	215	63 900	88 800	57 000
15	1	6	4	17	45	438	90 300	121 000	98 300
15	1	6	4	17	45	438	90 300	121 000	98 300

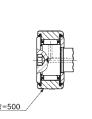
CFS NUCF

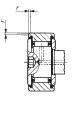
CAM FOLLOWERS

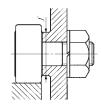
Inch Series Cam Followers With Cage/With Hexagon Hole




Stud dia. 4.826 — 22.225 mm


CR···BR


				ı	dent	ific	ation nu	mber				Mass					
Stud												(Ref.)					
dia. mm	VACUL		nield					Sealed							7		
(inch)		crow ter rir			cylindr ıter rin		With cr outer			h cylin outer r	idrical ing	g	D	C	d_1	G UNF	G_1
	CR					<u></u> В	CR 8					9	12.700 (½)	8.731 (11/32)	4.826	No.10-32	6.350 (1/4)
4.826	_	-					CR 8-1					10	12.700 (½)	"-	4.826	No.10-32	6.350 (1/4)
0.050				_									_				
6.350	CR 1		BR				CR 10					19	15.875 (5/8)		6.350 (1/4)	1/ ₄ - 28	7.938 (5/16)
(1/4)	CR 1	10-1	BR	CR	10-1	В	CR 10-1	BUUR	CR	10-1	BUU	21	15.875 (3/8)	11.112 (1/16)	6.350 (½)	½ - 28	7.938 (1/16)
9.525	CR 1	12	BR	CR	12	В	CR 12	BUUR	CR	12	BUU	35	19.050 (3/4)	12.700 (½)	9.525 (3/8)	³ ∕ ₈ - 24	9.525 (3/8)
$(\frac{3}{8})$	CR 1	14	BR	CR	14	В	CR 14	BUUR	CR	14	BUU	46	22.225 (7/8)	12.700 (½)	9.525 (3/8)	3/8 - 24	9.525 (3/8)
11.112	CR ·	16	BR	CR	16	R	CR 16	BUUR	CR	16	BUU	73	25.400 (1)	15.875 (½)	11.112 (7/6)	7/16 - 20	12.700 (½)
$(\frac{7}{16})$	CR		BR				CR 18	BUUR			BUU	99	28.575 (1 1/8)		11.112 (7/6)	7 ₁₆ - 20	12.700 (½)
12.700				-		_							-	_			
$(\frac{1}{2})$			BR	_			CR 20	BUUR			BUU	132		19.050 (3/4)	12.700 (½)	1/2 - 20	15.875 (½)
	CR 2		BR			В		BUUR			BUU	157	34.925 (1 ³ / ₈)	19.050 (3/4)	12.700 (½)	⅓ ₂ - 20	15.875 (½)
15.875	_		BR	_		В	CR 24	BUUR			BUU	225	38.100 (1 ½)	22.225 (½)	15.875 (½)	½ - 18 √ ₈	19.050 (¾ ₄)
(%)	CR 2	26	BR	CR	26	В	CR 26	BUUR	CR	26	BUU	260	41.275 (1 ½)	22.225 (7/8)	15.875 (½)	½ - 18	19.050 (³ / ₄)
19.050	CR 2	28	BR	CR	28	В	CR 28	BUUR	CR	28	BUU	365	44.450 (1 3/4)	25,400 (1)	19.050 (3/4)	¾ - 16	22.225 (½ ₈)
$(\frac{3}{4})$	CR 3	30	BR					BUUR			BUU	410	47.625 (1 7/8)		19.050 (3/4)	¾ - 16	22.225 (7/ ₈)
22.225	CRS	22	BR	CR	22	_	CR 32	BUUR	_		BUU	615	50.800 (2)	31.750 (1 1/4)	22.225 (7/8)		25.400 (1
(%)	CR		BR				CR 36	BUUR			BUU	750		31.750 (1 1/4)	22.225 (78)		25.400 (1) 25.400 (1)
(/8/	On	50	ווט	OII	30	ט	O11 30	DOUN	OII	30	БОО	/30	37.130 (2 / 4)	31.730 (1 / 4)	22.223 (78)	/8-14	25.400 (1)
				1													

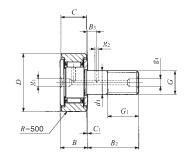


- 2. Provided with prepacked grease.
 3. For the maximum allowable static load, please contact **IKU**.

CR...B

CR...BUUR

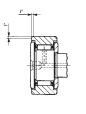
CR…BUU

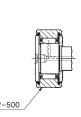

Во	undary dim	ensions r	mm(inch)					Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating
B max	B_2	B ₃	C_1	g_1	g_2	H	r	f Min. mm(inch)	torque N-m	C N	C_0
10.2(0.40)	12.700 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175 (½)	0.397 (½ ₄)	8.334 (²¹ / ₆₄)	1.4	2 520	2 140
10.9(0.43)	15.875 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175 (½)	0.397 (½ ₄)	8.334 (²¹ / ₆₄)	1.4	2 520	2 140
11.8(0.46)	15.875 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175 (½)	0.397 (1/64)	11.509 (29/ ₆₄)	3.4	3 650	3 670
12.5(0.49)	19.050 (¾)	- (-)	0.794(½)	- (-)	- (-)	3.175 (½)	0.397 (1/64)	11.509 (29/ ₆₄)	3.4	3 650	3 670
14.2(0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½)	2.381(3/ ₂)	4.762 (½6)	0.794(½)	13.494 (½)	10.8	4 420	5 110
14.2(0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½)	2.381(3/ ₂)	4.762 (½6)	0.794(½)	15.081 (½)	10.8	4 790	5 810
17.3(0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350 (½)	1.191(3/4)	17.859 (45/ ₆₄)	17.4	8 810	10 800
17.3(0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350 (½)	1.588(1/16)	19.050 (3/ ₄)	17.4	9 180	11 600
20.4(0.80)	31.750(1½)	7.938 (½6)	0.794(½)	4.762 (½)	3.175(½)	6.350 (½)	1.588(½)	21.828(5% ₄)	27.7	14 200	16 000
20.4(0.80)	31.750(1½)	7.938 (½6)	0.794(½)	4.762 (½)	3.175(½)	6.350 (½)	1.588(½)	21.828(5% ₄)	27.7	14 200	16 000
23.6(0.93)	38.100(1½)	9.525 (³ / ₈)	0.794(½)	4.762 (³ / ₁₆)	3.969(½)	7.938 (½6)	1.588(½)	26.196(1 ¾)	55.7	18 600	24 300
23.6(0.93)	38.100(1½)	9.525 (³ / ₈)	0.794(½)	4.762 (³ / ₁₆)	3.969(½)	7.938 (½6)	1.588(½)	26.196(1 ¾)	55.7	18 600	24 300
26.8(1.06)	44.450(1 ¾ ₄)	11.112 (½)	0.794(½)	4.762 (½)	3.969(½ ₂)	7.938 (½6)	1.588(½)	32.543(1 ½)	100	25 100	38 200
26.8(1.06)	44.450(1 ¾ ₄)	11.112 (½)	0.794(½)	4.762 (½)	3.969(½ ₂)	7.938 (½6)	1.588(½)	32.543(1 ½)	100	25 100	38 200
33.5 (1.32)	50.800(2)	12.700 (½)	0.794(½)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112 (½ ₁₆)	1.588 (½6)	37.306(1½)	162	32 500	63 900
33.5 (1.32)	50.800(2)	12.700 (½)	0.794(½)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112 (½ ₁₆)	1.588 (½6)	37.306(1½)	162	32 500	63 900

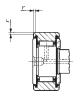
CFS

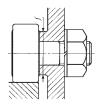
CAM FOLLOWERS

Inch Series Cam Followers With Cage/With Screwdriver Slot


Stud dia. 4.826 — 22.225 mm


CR…R

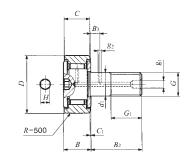

Stud		Identific	ation number		Mass (Ref.)					
dia. mm (inch)	Shield With crowned outer ring	type With cylindrical outer ring	Sealed With crowned outer ring	type With cylindrical outer ring	g	D	C	d_1	G UNF	G_1
4.826	CR 8 R CR 8-1 R	CR 8 CR 8-1	CR 8 UUR CR 8-1 UUR	CR 8 UU CR 8-1 UU	9 10	12.700 (½) 12.700 (½)	8.731 (½) 9.525 (½)	4.826 4.826	No.10-32 No.10-32	6.350 (½) 6.350 (½)
6.350 (½)	CR 10 R CR 10-1 R	CR 10 CR 10-1	CR 10 UUR CR 10-1 UUR	CR 10 UU CR 10-1 UU	19 21	15.875 (½) 15.875 (½)	10.319 (½) 11.112 (½)	6.350 (½) 6.350 (½)	½ - 28 ½ - 28	7.938 (½6) 7.938 (½6)
9.525 (³ / ₈)	CR 12 R CR 14 R	CR 12 CR 14	CR 12 UUR CR 14 UUR	CR 12 UU CR 14 UU	35 46		12.700 (½) 12.700 (½)	9.525 (³ / ₈) 9.525 (³ / ₈)	3/8 - 24 3/8 - 24	9.525 (³ / ₈) 9.525 (³ / ₈)
11.112 (½6)	CR 16 R CR 18 R	CR 16 CR 18	CR 16 UUR CR 18 UUR	CR 16 UU CR 18 UU	73 99	25.400 (1) 28.575 (1 ½)	15.875 (½) 15.875 (½)	11.112 (½6) 11.112 (½6)	⅓ ₁₆ - 20 ⅓ ₁₆ - 20	12.700 (½) 12.700 (½)
12.700 (½)	CR 20 R CR 22 R	CR 20 CR 22	CR 20 UUR CR 22 UUR	CR 20 UU CR 22 UU	132 157		19.050 (¾ ₄) 19.050 (¾ ₄)	12.700 (½) 12.700 (½)	½ - 20 ½ - 20	15.875 (½) 15.875 (½)
15.875 (⁵ / ₈)	CR 24 R CR 26 R	CR 24 CR 26	CR 24 UUR CR 26 UUR	CR 24 UU CR 26 UU	225 260		22.225 (½) 22.225 (½)	15.875 (⁵ / ₈) 15.875 (⁵ / ₈)	½ ₈ - 18 ½ ₈ - 18	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)
19.050 (¾)	CR 28 R CR 30 R	CR 28 CR 30	CR 28 UUR CR 30 UUR	CR 28 UU CR 30 UU	365 410	44.450 (1 ¾ ₄) 47.625 (1 ½ ₈)		19.050 (¾) 19.050 (¾)	¾ - 16 ¾ - 16	22.225 (½ ₈) 22.225 (½ ₈)
22.225 (7/8)	CR 32 R CR 36 R	CR 32 CR 36	CR 32 UUR CR 36 UUR	CR 32 UU CR 36 UU	615 750		31.750 (1 ½) 31.750 (1 ½)	22.225 (½) 22.225 (½)		25.400 (1) 25.400 (1)


Remarks1. Models with a stud diameter d_1 of 6.35 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

- Provided with prepacked grease.
 For the maximum allowable static load, please contact IKU.

CR

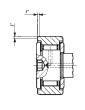
CR...UUR

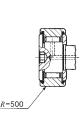

CR...UU

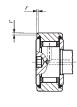
	Boundary di	mensions	mm(inch	1)			Mounting dimension	Maximum tightening torque	Basic dynamic load rating	load rating
B max	B_2	<i>B</i> ₃	C_1	<i>g</i> ₁	g_2	r	f Min. mm(inch)	N-m	C N	C_0
10.2 (0.40)	12.700 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (½)	8.334 (²¹ / ₆₄)	1.4	2 520	2 140
10.9 (0.43)	15.875 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (½)	8.334 (²¹ / ₆₄)	1.4	2 520	2 140
11.8(0.46)	15.875 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (½)	11.509 (2% ₄)	3.4	3 650	3 670
12.5(0.49)	19.050 (¾)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (½)	11.509 (2% ₄)	3.4	3 650	3 670
14.2 (0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½6)	2.381(3/ ₃₂)	0.794(½)	13.494 (½)	10.8	4 420	5 110
14.2 (0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½6)	2.381(3/ ₃₂)	0.794(½)	15.081 (½)	10.8	4 790	5 810
17.3(0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)6)	3.175(½)	1.191 (3/64)	17.859 (⁴ % ₄)	17.4	8 810	10 800
17.3(0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)6)	3.175(½)	1.588 (1/16)	19.050 (³ / ₄)	17.4	9 180	11 600
20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (³ / ₁₆)	3.175(½)	1.588 (½)	21.828(⁵ % ₄)	27.7	14 200	16 000
20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (³ / ₁₆)	3.175(½)	1.588 (½)	21.828(⁵ % ₄)	27.7	14 200	16 000
23.6(0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794(½)	4.762 (3/16)	3.969(½)	1.588 (½)	26.196(1 ¾)	55.7	18 600	24 300
23.6(0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794(½)	4.762 (3/16)	3.969(½)	1.588 (½)	26.196(1 ¾)	55.7	18 600	24 300
26.8(1.06)	44.450(1 ³ ⁄ ₄)	11.112 (½)	0.794(½)	4.762 (³ / ₁₆)	3.969(½)	1.588 (½)	32.543(1 ½)	100	25 100	38 200
26.8(1.06)	44.450(1 ³ ⁄ ₄)	11.112 (½)	0.794(½)	4.762 (³ / ₁₆)	3.969(½)	1.588 (½)	32.543(1 ½)	100	25 100	38 200
33.5(1.32)	50.800(2) 50.800(2)	12.700 (½)	0.794(½)	4.762 (¾6)	4.762(3/6)	1.588 (½6)	37.306(1½)	162	32 500	63 900
33.5(1.32)		12.700 (½)	0.794(½)	4.762 (¾6)	4.762(3/6)	1.588 (½6)	37.306(1½)	162	32 500	63 900

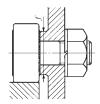
CAM FOLLOWERS

Inch Series Cam Followers Full Complement Type/With Hexagon Hole


Stud dia. 4.826 — 22.225 mm

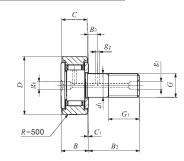

CR...VBR


				ldentif	icatio	n n	umber			Mass					
Stud										(Ref.)					
dia.		Shield					Sealed	l type							
mm (in als)	With cro			cylindrica	l V		rowned	With cy		g	D	C	d_1	G	G_1
(inch)	outer i			ıter ring			er ring		r ring	_				UNF	
4.826	CR 8	VBR	CR	8 VE	CR	8	VBUUR	CR 8	VBUU	9	12.700 (½)	8.731 (11/32)	4.826	No.10-32	6.350 (½)
4.020	CR 8-1	I VBR	CR	8-1VI	CR	8-1	VBUUR	CR 8-	1 VBUU	10	12.700 (½)	9.525 (3/8)	4.826	No.10-32	6.350 (½)
6.350	CR 10	VRR	CB	10 VI	CB	10	VBUUR	CR 10	VRIIII	19	15.875 (5/8)	10.319 (13/2)	6.350 (1/4)	1/4 - 28	7.938 (½)
$(\frac{1}{4})$			1				VBUUR				15.875 (\(\frac{5}{8} \)		6.350 (1/4)	1/4 - 28	7.938 (½)
			-		+					21	-		-	-	
9.525		VBR	CR	12 VI	CR	12	VBUUR	CR 12	VBUU	36	19.050 (³ ⁄ ₄)	12.700 (½)	9.525 (³ / ₈)	3/8 - 24	9.525 (³ / ₈)
$(\frac{3}{8})$	CR 14	VBR	CR	14 VI	CR	14	VBUUR	CR 14	VBUU	47	22.225 (½)	12.700 (½)	9.525 (3/8)	3/ ₈ - 24	9.525 (3/8)
11 112	CR 16	VRD	CD	16 VI	CD	16	VBUUR	CD 16	VBUU	74	25.400(1)	15.875 (½)	11.112 (7/6)	7/6 - 20	12.700 (½)
$(\frac{7}{16})$	CR 18			18 VI			VBUUR		VBUU						_
		VDN	UN	10 01	Un	10	VDUUN	CR 10			28.575 (1 ½)	15.875 (3/8)	11.112 (½)	⅓ ₆ - 20	12.700 (½)
	CR 20	VBR	CR	20 VI	CR	20	VBUUR		VBUU	137	31.750 (1 ½)	19.050 (³ ⁄ ₄)	12.700 (½)	1/2 - 20	15.875 (½)
$(\frac{1}{2})$	CR 22	VBR	CR	22 VI	CR	22	VBUUR	CR 22	VBUU	160	34.925 (1 ³ / ₈)	19.050 (3/4)	12.700 (½)	½ - 20	15.875 (½)
15 875	CR 24	VRR	CB	24 VI	CB	2/1	VBUUR	CB 24	VBUU	230	38.100 (1 ½)	22.225 (½)	15.875 (5/8)	½ - 18	19.050 (3/4)
(5/8)	CR 26		1	26 VI			VBUUR		VBUU		41.275 (1 \(\frac{5}{8} \)		15.875 (15.8	$\frac{78}{8}$ - 18	19.050 (3/4)
			-		+					200	41.273(1 / 8)	22.223(/8)	13.073 (/ 8)		13.030 (74)
19.050			1 -	28 VI	_		VBUUR		VBUU	372	44.450 (1 ³ ⁄ ₄)	25.400 (1)	19.050 (3/4)	¾ - 16	22.225 (½)
$(\frac{3}{4})$	CR 30	VBR	CR	30 VI	CR	30	VBUUR	CR 30	VBUU	418	47.625 (1 ½)	25.400 (1)	19.050 (3/4)	¾ - 16	22.225 (½)
22.225	CR 32	VRR	CR	32 VI	CR	32	VBUUR	CB 32	VBUU	627	50.800(2)	31.750 (1 1/4)	22.225 (7/8)	7/ ₈ - 14	25.400(1)
(%)	CR 36		1	36 VI			VBUUR		VBUU		57.150(2 1/4)		22.225 (7/8)	7 ₈ - 14	25.400(1)
(/0/	011 00	VDII	OII	00 VI	011	00	VDOON	011 00	V D O O	755	37.130 (2 / 4)	31.730 (1 / 4)	22.223 (/ 8/	/8-14	25.400(1)


Remarks1. Models with a stud diameter d_1 of 6.35 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

- Provided with prepacked grease.
 For the maximum allowable static load, please contact IKU.

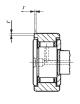
CR...VBUUR

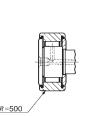

CR...VBUU

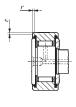
	Boundary di	mensions	mm(inch	1)				Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating
B max	B_2	<i>B</i> ₃	C_1	<i>g</i> ₁	g_2	Н	r	f Min. mm(inch)	N-m	C N	C_0 N
10.2(0.40) 10.9(0.43)	12.700 (½) 15.875 (½)	- (-) - (-)	0.794(½) 0.794(½)	- (-) - (-)	- (-) - (-)	3.175(½) 3.175(½)	0.397 (1/64) 0.397 (1/64)	8.334(²¹ / ₆₄) 8.334(²¹ / ₆₄)	1.4 1.4	4 260 4 710	4 750 5 410
11.8(0.46)	15.875 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	11.509(² % ₄)	3.4	5 830	7 660
12.5(0.49)	19.050 (½)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397 (½4)	11.509(² % ₄)	3.4	6 340	8 530
14.2(0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½)	2.381(¾ ₂)	4.762 (½)6)	0.794(½)	13.494(½)	10.8	8 710	12 300
14.2(0.56)	22.225(½)	6.350 (½)	0.794(½)	4.762 (½)	2.381(¾ ₂)	4.762 (½)6)	0.794(½)	15.081(½)	10.8	8 710	12 300
17.3(0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350(¼)	1.191(¾ ₄)	17.859(⁴ % ₄)	17.4	13 100	22 700
17.3(0.68)	25.400(1)	6.350 (½)	0.794(½)	4.762 (½)	3.175(½)	6.350(¼)	1.588(½ ₆)	19.050(³ / ₄)	17.4	13 100	22 700
20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (½)	3.175(½)	6.350(½)	1.588(½6)	21.828(% ₄)	27.7	23 600	31 700
20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (½)	3.175(½)	6.350(½)	1.588(½6)	21.828(% ₄)	27.7	23 600	31 700
23.6(0.93)	38.100(1½)	9.525 (³ / ₈)	0.794(½)	4.762 (½)	3.969(½)	7.938 (½6)	1.588(½6)	26.196(1 ¾)	55.7	28 200	40 100
23.6(0.93)	38.100(1½)	9.525 (³ / ₈)	0.794(½)	4.762 (½)	3.969(½)	7.938 (½6)	1.588(½6)	26.196(1 ¾)	55.7	28 200	40 100
26.8(1.06)	44.450(1 ¾ ₄)	11.112 (½)	0.794(½)	4.762 (½)	3.969(½)	7.938 (½6)	1.588(½6)	32.543(1 ½)	100	35 300	55 600
26.8(1.06)	44.450(1 ¾ ₄)	11.112 (½)	0.794(½)	4.762 (½)	3.969(½)	7.938 (½6)	1.588(½6)	32.543(1 ½)	100	35 300	55 600
33.5 (1.32)	50.800(2)	12.700 (½2)	0.794(½)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112 (½)	1.588 (½ ₆)	37.306(1 ¹ / ₃₂)	162	45 700	80 600
33.5 (1.32)	50.800(2)	12.700 (½2)	0.794(½)	4.762 (¾ ₆)	4.762(¾ ₆)	11.112 (½)	1.588 (½ ₆)	37.306(1 ¹ / ₃₂)	162	45 700	80 600

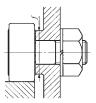
CAM FOLLOWERS

Inch Series Cam Followers Full Complement Type/With Screwdriver Slot


Stud dia. 4.826 — 31.750mm


CR...VR

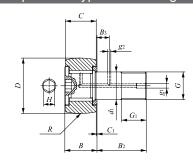

		11			In a					
Stud		identifi	cation number		Mass (Ref.)					
dia. mm	Shield With crowned	type With cylindrical	Sealed With crowned	l type With cylindrical	g	D	C	d_1	G	G_1
(inch)	outer ring	outer ring	outer ring	outer ring	9				UNF	
4.826	CR 8 VR CR 8-1 VR	CR 8 V CR 8-1 V	CR 8 VUUR CR 8-1 VUUR	CR 8 VUU CR 8-1 VUU	9 10	12.700 ($\frac{1}{2}$) 12.700 ($\frac{1}{2}$)	8.731(½) 9.525(½)	4.826 4.826	No.10-32 No.10-32	6.350 (½) 6.350 (½)
6.350 (½)	CR 10 VR CR 10-1 VR	CR 10 V CR 10-1 V	CR 10 VUUR CR 10-1 VUUR	CR 10 VUU CR 10-1 VUU	19 21	15.875 (½) 15.875 (½)		6.350 (½) 6.350 (½)	7 1	7.938 (½6) 7.938 (½6)
9.525 (3/8)	CR 12 VR CR 14 VR	CR 12 V CR 14 V	CR 12 VUUR CR 14 VUUR	CR 12 VUU CR 14 VUU	36 47	19.050 (³ ⁄ ₄) 22.225 (⁷ ⁄ ₈)			1 -	9.525 (³ / ₈) 9.525 (³ / ₈)
11.112 (½)	CR 16 VR CR 18 VR	CR 16 V CR 18 V	CR 16 VUUR CR 18 VUUR	CR 16 VUU CR 18 VUU	74 101	25.400(1) 28.575(1 ½)	15.875(1/8)	11.112 (½ ₆) 11.112 (½ ₆)	7/ ₁₆ - 20	12.700 (½) 12.700 (½)
12.700 (½)		CR 20 V CR 22 V	CR 20 VUUR CR 22 VUUR	CR 20 VUU CR 22 VUU	137 160	31.750 (1 ½) 34.925 (1 ¾)	19.050(3/4)		1/2 - 20	15.875 (½) 15.875 (½)
15.875 (5/8)		CR 24 V CR 26 V	CR 24 VUUR CR 26 VUUR	CR 24 VUU CR 26 VUU	230 265	38.100 (1 ½) 41.275 (1 ½)	22.225(1/8)	15.875 (½)	½ ₈ - 18	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)
19.050 (³ ⁄ ₄)	CR 28 VR CR 30 VR	CR 28 V CR 30 V	CR 28 VUUR CR 30 VUUR	CR 28 VUU CR 30 VUU	372 418	44.450 (1 ¾ ₄) 47.625 (1 ¾ ₈)	25.400(1)	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)	¾ - 16	22.225 (½ ₈) 22.225 (½ ₈)
22.225 (½)	CR 32 VR CR 36 VR	CR 32 V CR 36 V	CR 32 VUUR CR 36 VUUR	CR 32 VUU CR 36 VUU	627 759	50.800(2) 57.150(2 ½)	31.750(1 ½) 31.750(1 ½)	. , , ,	7∕ ₈ - 14	25.400(1) 25.400(1)
31.750 (1½)	_	_	_	CR 48 VUU			44.450 (1 ³ ⁄ ₄)		-	


Remarks1. Models with a stud diameter d_1 of 6.35 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

- Provided with prepacked grease.
 For the maximum allowable static load, please contact IKU.

CR…V

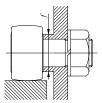
CR...VUUR


CR...VUU

Во	undary dim	ensions r	nm(inch)				Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating	
B max	B ₂	<i>B</i> ₃	C_1	<i>g</i> ₁	g ₂	r	Min. mm(inch)	N-m	C N	C_0 N	
10.2(0.40)	12.700 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (1/64)	8.334(² ½ ₄)	1.4	4 260	4 750	
10.9(0.43)	15.875 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (1/64)	8.334(² ½ ₄)	1.4	4 710	5 410	
11.8(0.46)	15.875 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (1/64)	11.509(² % ₄)	3.4	5 830	7 660	
12.5(0.49)	19.050 (½)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397 (1/64)	11.509(² % ₄)	3.4	6 340	8 530	
14.2(0.56)	22.225(½)	6.350(½)	0.794(½)	4.762 (½)6)	2.381(¾ ₂)	0.794 (½)	13.494(½)	10.8	8 710	12 300	
14.2(0.56)	22.225(½)	6.350(½)	0.794(½)	4.762 (½)6)	2.381(¾ ₂)	0.794 (½)	15.081(½)	10.8	8 710	12 300	
17.3 (0.68)	25.400(1)	6.350(½)	0.794(½)	4.762 (½)6)	3.175(½)	1.191 (¾ ₄)	17.859 (⁴ % ₄)	17.4	13 100	22 700	
17.3 (0.68)	25.400(1)	6.350(½)	0.794(½)	4.762 (½)6)	3.175(½)	1.588 (½ ₆)	19.050 (³ / ₄)	17.4	13 100	22 700	
20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (½)6)	3.175(½)	1.588 (½)	21.828(5%)	27.7	23 600	31 700	
20.4(0.80)	31.750(1 ½)	7.938 (½6)	0.794(½)	4.762 (½)6)	3.175(½)	1.588 (½)	21.828(5%)	27.7	23 600	31 700	
23.6(0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794(½)	4.762 (3/16)	3.969(½2)	1.588 (½6)	26.196(1 ¾ ₄)	55.7	28 200	40 100	
23.6(0.93)	38.100(1 ½)	9.525 (³ / ₈)	0.794(½)	4.762 (3/16)	3.969(½2)	1.588 (½6)	26.196(1 ¾ ₄)	55.7	28 200	40 100	
26.8(1.06)	44.450(1 ¾ ₄)	11.112 (½)	0.794(½)	4.762 (3/16)	3.969(½2)	1.588 (½6)	32.543(1 ½)	100	35 300	55 600	
26.8(1.06)	44.450(1 ¾ ₄)	11.112 (½)	0.794(½)	4.762 (3/16)	3.969(½2)	1.588 (½6)	32.543(1 ½)	100	35 300	55 600	
33.5 (1.32)	50.800(2)	12.700 (½)	0.794(½)	4.762 (½)	4.762(³ / ₁₆)	1.588 (½6)	37.306(1½2)	162	45 700	80 600	
33.5 (1.32)	50.800(2)	12.700 (½)	0.794(½)	4.762 (½)	4.762(³ / ₁₆)	1.588 (½6)	37.306(1½2)	162	45 700	80 600	
46.4(1.83)	63.500 (2 ½)	15.875 (5/8)	1.588 (½)	6.350 (1/4)	4.762(3/16)	2.381 (3/32)	51.991 (2 ¾)	500	77 600	172 000	

CAM FOLLOWERS

Inch Series Heavy Duty Cam Followers Full Complement Type/With Hexagon Hole

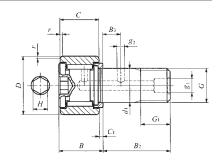

Stud dia. 6.350 — 50.800mm

CRH...VBR

	Identifica	ation number	Mass						
Stud dia.			(Ref.)						
mm (inch)	Shield type With crowned outer ring	Sealed type With crowned outer ring	g	D	C	d_1	<i>G</i> UNF	G_1	B max
6.350 (½)	CRH 8-1 VBR CRH 9 VBR	CRH 8-1 VBUUR CRH 9 VBUUR	12 15	12.700 (½) 14.288 (½)	9.525 (³ / ₈) 9.525 (³ / ₈)	6.350 (½) 6.350 (½)	½ ₄ - 28 ½ ₄ - 28	6.350 (½) 6.350 (½)	11.1(0.44) 11.1(0.44)
7.938 (5/16)	CRH 10-1 VBR CRH 11 VBR	CRH 10-1 VBUUR CRH 11 VBUUR	23 27	15.875 (½) 17.462 (½)	11.112 (½6) 11.112 (½6)	7.938 (½6) 7.938 (½6)	5⁄ ₁₆ - 24 5∕ ₁₆ - 24	7.938 (½) 7.938 (½)	12.8(0.50) 12.8(0.50)
11.112 (½)	CRH 12 VBR CRH 14 VBR	CRH 12 VBUUR CRH 14 VBUUR	39 49	19.050 (³ ⁄ ₄) 22.225 (⁷ ⁄ ₈)	12.700 (½) 12.700 (½)	11.112 (½) 11.112 (½)	$\frac{7}{16}$ - 20 $\frac{7}{16}$ - 20	9.525 (³ / ₈) 9.525 (³ / ₈)	14.6(0.57) 14.6(0.57)
15.875 (5/8)		CRH 16 VBUUR CRH 18 VBUUR	93 109	25.400 (1) 28.575 (1 ½)	15.875 (½) 15.875 (½)	15.875 (½) 15.875 (½)	½ - 18 ⅓ - 18	12.700 (½) 12.700 (½)	17.9(0.70) 17.9(0.70)
19.050 (¾)		CRH 20 VBUUR CRH 22 VBUUR	176 200	31.750 (1 ½) 34.925 (1 ¾)	19.050 (3/4) 19.050 (3/4)	19.050 (3/4) 19.050 (3/4)	3/ ₄ - 16 3/ ₄ - 16	15.875 (½) 15.875 (½)	21.0(0.83) 21.0(0.83)
22.225 (%)		CRH 24 VBUUR CRH 26 VBUUR	296 329	38.100 (1 ½) 41.275 (1 ½)	22.225 (½) 22.225 (½)	22.225 (½) 22.225 (½)	½ ₈ - 14 ½ ₈ - 14	19.050 (³ / ₄) 19.050 (³ / ₄)	24.3(0.96) 24.3(0.96)
25.400 (1)		CRH 28 VBUUR CRH 30 VBUUR	463 508	44.450 (1 ³ ⁄ ₄) 47.625 (1 ⁷ ⁄ ₈)	25.400 (1) 25.400 (1)	25.400 (1) 25.400 (1)	1 - 14 UNS 1 - 14 UNS	22.225 (½) 22.225 (½)	27.4(1.08) 27.4(1.08)
28.575 (1½)		CRH 32 VBUUR CRH 36 VBUUR	722 858	50.800 (2) 57.150 (2 ½)	31.750 (1 ½) 31.750 (1 ½)	28.575 (1 ½) 28.575 (1 ½)	1 ½ ₈ - 12 1 ½ ₈ - 12	25.400 (1) 25.400 (1)	34.2(1.35) 34.2(1.35)
31.750 (1½)		CRH 40 VBUUR CRH 44 VBUUR	1 260 1 460	63.500 (2 ½) 69.850 (2 ¾)	38.100 (1 ½) 38.100 (1 ½)	31.750 (1 ½) 31.750 (1 ½)		28.575 (1 ½) 28.575 (1 ½)	40.0(1.57) 40.0(1.57)
38.100 (1½)		CRH 48 VBUUR CRH 52 VBUUR	2 100 2 380	76.200 (3) 82.550 (3 ½)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	38.100 (1 ½) 38.100 (1 ½)	$1 \frac{1}{2}$ - 12 $1 \frac{1}{2}$ - 12	31.750 (1 ½) 31.750 (1 ½)	46.4(1.83) 46.4(1.83)
44.450 (1 ³ / ₄)	CRH 56 VBR	CRH 56 VBUUR	3 240	88.900 (3 ½)	50.800 (2)	44.450 (1 ³ ⁄ ₄)	1 ¾ ₄ - 12UN	34.925 (1 ³ / ₈)	52.8(2.08)
50.800 (2)	CRH 64 VBR	CRH 64 VBUUR	4 960	101.600 (4	57.150 (2 ½)	50.800(2)	2- 12 UN	38.100 (1 ½)	59.4(2.34)

Remarks1. Models with a stud diameter d_1 of 7.938 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

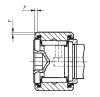
CRH...VBUUR

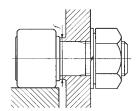

Boundary	dimension:	s mm(inc	ch)				Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0
B_2	B_3	C_1	g_1	g_2	Н	R	Min. mm(inch)	N-m	N	N
15.875(⁵ / ₈)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	180(7)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
15.875(⁵ / ₈)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	180(7)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
19.050(³ / ₄)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	200(8)	11.112(½)	6.8	6 340	8 530
19.050(³ / ₄)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	200(8)	11.112(½)	6.8	6 340	8 530
22.225(½)	6.350(½)	0.794(½)	4.762(3/16)	2.381(³ / ₃₂)	4.762(³ / ₁₆)	250(10)	13.494(½)	17.6	8 710	12 300
22.225(½)	6.350(½)	0.794(½)	4.762(3/16)	2.381(³ / ₃₂)	4.762(³ / ₁₆)	250(10)	13.494(½)	17.6	8 710	12 300
25.400 (1) 25.400 (1)	6.350(½)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	6.350(½)	300 (12)	18.256(²³ / ₃₂)	57.8	13 100	22 700
	6.350(½)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	6.350(½)	300 (12)	18.256(²³ / ₃₂)	57.8	13 100	22 700
31.750(1½)	7.938(5/6)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	6.350(½)	360 (14) 360 (14)	24.209(⁶ ½)	103	23 600	31 700
31.750(1½)	7.938(5/6)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	6.350(½)		24.209(⁶ ½)	103	23 600	31 700
38.100(1½)	9.525(³ / ₈)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	7.938(½)	500 (20) 500 (20)	26.988 (1 ½)	162	28 200	40 100
38.100(1½)	9.525(³ / ₈)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	7.938(½)		26.988 (1 ½)	162	28 200	40 100
44.450(1 ³ / ₄)	11.112(½)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	7.938(½)	500 (20) 500 (20)	32.941(1½)	258	35 300	55 600
44.450(1 ³ / ₄)	11.112(½)	1.588(½)	4.762(3/16)	2.381(³ / ₃₂)	7.938(½)		32.941(1½)	258	35 300	55 600
50.800 (2) 50.800 (2)	12.700(½)	1.588(½)	4.762 (³ / ₁₆)	3.175(½ ₈)	11.112(½)	600(24)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
	12.700(½)	1.588(½)	4.762 (³ / ₁₆)	3.175(½ ₈)	11.112(½)	600(24)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
57.150(2½)	14.288(% ₁₆)	1.588(½)	4.762 (3/16)	3.175(½ ₈)	12.700(½)	760(30)	40.878(1 ³ % ₄)	500	61 400	116 000
57.150(2½)	14.288(% ₁₆)	1.588(½)	4.762 (3/16)	3.175(½ ₈)	12.700(½)	760(30)	40.878(1 ³ % ₄)	500	61 400	116 000
63.500(2½)	15.875 (⁵ / ₈)	1.588(½)	6.350(½)	3.175(½ ₈)	19.050(³ / ₄)	760 (30) 760 (30)	51.991 (2 ¾)	892	77 600	172 000
63.500(2½)	15.875 (⁵ / ₈)	1.588(½)	6.350(½)	3.175(½ ₈)	19.050(³ / ₄)		51.991 (2 ¾)	892	77 600	172 000
69.850 (2 ³ ⁄ ₄)	17.462(1½)	1.588(1/16)	6.350(1/4)	3.175(1/8)	19.050(3/4)	760(30)	59.928 (2 ²³ ⁄ ₆₄)	1 450	111 000	239 000
88.900(3½)	19.050(¾)	1.588(1/16)	6.350(1/4)	3.175(1/8)	19.050(3/4)	760 (30)	64.691(235/4)	2 190	142 000	317 000

^{2.} Provided with prepacked grease.
3. For the maximum allowable static load, please contact **IKU**.

CAM FOLLOWERS

Inch Series Heavy Duty Cam Followers Full Complement Type/With Hexagon Hole

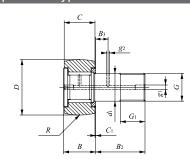

Stud dia. 6.350 — 50.800mm


CRH...VB

	Identifica	ation number	Mass (Ref.)						
Stud			(nei.)						
dia.	Shield type	Sealed type				_			
mm (inch)	With cylindrical	With cylindrical	g	D	C	d_1	G	G_1	В
	outer ring	outer ring	_				UNF		max
6.350	CRH 8-1 VB	CRH 8-1 VBUU	12	12.700 (½)	9.525 (3/8)	6.350 (1/4)	½ - 28	6.350 (1/4)	11.1(0.44)
$(\frac{1}{4})$	CRH 9 VB	CRH 9 VBUU	15	14.288 (%)	9.525 (3/8)	6.350 (1/4)	½ - 28	6.350 (1/4)	11.1(0.44)
7.938	ODU 40 4 VD	ODU 40 4 VOUII		45.075 (50)	44 440 (7()	7.000 (5/)		7.000 (5()	40.0(0.50)
	CRH 10-1 VB	CRH 10-1 VBUU	23	15.875 (½)	11.112 ($\frac{7}{16}$)	7.938 (5/16)	½ - 24	7.938 (1/6)	12.8(0.50)
$(\frac{5}{16})$	CRH 11 VB	CRH 11 VBUU	27	17.462 (½)	11.112 (½)	7.938 (½)	½6 - 24	7.938 (1/26)	12.8(0.50)
11.112	CRH 12 VB	CRH 12 VBUU	39	19.050 (3/4)	12.700 (1/2)	11.112 (1/16)	7/16 - 20	9.525 (3/3)	14.6(0.57)
(7/16)	CRH 14 VB	CRH 14 VBUU	49	22.225 (7/8)	12.700 (½)	11.112 (½)	½ - 20	9.525 (3/8)	14.6(0.57)
				-	_				- (/
15.875	CRH 16 VB	CRH 16 VBUU	93	25.400 (1)	15.875 (½)	15.875 (½)	½- 18 √ ₈ - 18	12.700 (½)	17.9(0.70)
(%)	CRH 18 VB	CRH 18 VBUU	109	28.575 (1 ½)	15.875 (½)	15.875 (½)	½- 18	12.700 (½)	17.9(0.70)
19.050	CRH 20 VB	CRH 20 VBUU	176	31.750 (1 1/4)	19.050 (3/4)	19.050 (¾)	³ ⁄ ₄ - 16	15.875 (5/8)	21.0(0.83)
						() 4/		. , 0	- (,
(3/4)	CRH 22 VB	CRH 22 VBUU	200	34.925 (1 ³ / ₈)	19.050 (3/4)	19.050 (3/4)	¾ ₄ - 16	15.875 (1/8)	21.0(0.83)
22.225	CRH 24 VB	CRH 24 VBUU	296	38.100 (1 ½)	22.225 (½)	22.225 (½)	7∕ ₈ - 14	19.050 (3/4)	24.3(0.96)
(%)	CRH 26 VB	CRH 26 VBUU	329	41.275 (1 1/8)	22.225 (1/8)	22.225 (7/8)	√ ₈ - 14	19.050 (3/4)	24.3(0.96)
25.400	CRH 28 VB	CRH 28 VBUU	463	44.450 (1 ³ ⁄ ₄)	25.400 (1)	25.400 (1)	1 - 14 UNS	22.225 (7/8)	27.4(1.08)
(1)	CRH 30 VB	CRH 30 VBUU	508	47.625 (1 7/8)	25.400 (1)	25.400 (1)	1 - 14 UNS	22.225 (7/8)	27.4(1.08)
28.575	CRH 32 VB	CRH 32 VBUU	722	50.800(2)	31.750 (1 1/4)	28.575 (1 ½)	1½ - 12	25.400 (1)	34.2(1.35)
(11/8)	CRH 36 VB	CRH 36 VBUU	858	57.150 (2 1/4)	31.750 (1 1/4)	28.575 (1 ½)	11/8 - 12	25.400 (1)	34.2(1.35)
				37.130 (2 / 4)	31.730 (1 / 4)	20.373 (1 / 8/		23.400(1)	34.2(1.33)
31.750	CRH 40 VB	CRH 40 VBUU	1 260	63.500 (2 ½)	38.100 (1 ½)	31.750 (1 1/4)	1½ - 12	28.575 (1 ½)	40.0(1.57)
$(1\frac{1}{4})$	CRH 44 VB	CRH 44 VBUU	1 460	69.850 (2 ³ ⁄ ₄)	38.100 (1 ½)	31.750 (1 ½)	$1\frac{1}{4}$ - 12	28.575 (1 ½)	40.0(1.57)
38.100	CRH 48 VB	CRH 48 VBUU	2 100	76.200 (3	44.450 (1 3/4)	38.100 (1 ½)	1]/ 10	31.750 (1 1/4)	46.4(1.83)
	-			, , ,		. , 2,	1½ - 12	1 7 47	
$(1\frac{1}{2})$	CRH 52 VB	CRH 52 VBUU	2 380	82.550 (3 ½)	44.450 (1 ³ ⁄ ₄)	38.100 (1 ½)	1½ - 12	31.750 (1 ½)	46.4(1.83)
44.450	001150 1/0	ODILEO VELIL		00 000 (0 10)	= 0.000 (0.1)		40/ 40//		
$(1\frac{3}{4})$	CRH 56 VB	CRH 56 VBUU	3 240	88.900 (3 ½)	50.800 (2)	44.450 (1 ³ ⁄ ₄)	1¾ - 12 UN	34.925 (1 ³ / ₈)	52.8(2.08)
-									
50.800	CRH 64 VB	CRH 64 VBUU	4 960	101.600 (4	57.150 (2 ½)	50.800 (2)	2- 12 UN	38.100 (1 ½)	59.4(2.34)
(2)	J VD		1 000	1011000 (1)	371100 (2 / 4)	33,000 (£)	2 12 011	33.100 (1 / 2)	0017(2107)

Remarks1. Models with a stud diameter d_1 of 7.938 mm or less have no oil hole. Other models are provided with one oil hole each on the outside surface and end surface of the stud.

- Provided with prepacked grease.
 For the maximum allowable static load, please contact IKU.

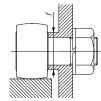

CRH...VBUU

Boundary	dimensions	mm(incl	h)				Mounting dimension	Maximum tightening torque	Basic dynamic load rating	Basic static load rating C_0
B_2	B_3	C_1	<i>g</i> ₁	g_2	Н	r	Min. mm(inch)	N-m	N	N N
15.875(⁵ / ₈)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	8.334(² 1/ ₆₄)	3.4	4 710	5 410
15.875(⁵ / ₈)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	8.334(² 1/ ₆₄)	3.4	4 710	5 410
19.050(³ / ₄)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	11.112 (½)	6.8	6 340	8 530
19.050(³ / ₄)	- (-)	0.794(½)	- (-)	- (-)	3.175(½)	0.397(½)	11.112 (½)	6.8	6 340	8 530
22.225(½)	6.350(½)	0.794(½)	4.762(3/6)	2.381(¾)	4.762(³ / ₁₆)	0.794(½)	13.494(½)	17.6	8 710	12 300
22.225(½)	6.350(½)	0.794(½)	4.762(3/6)	2.381(¾)	4.762(³ / ₁₆)	0.794(½)	13.494(½)	17.6	8 710	12 300
25.400(1)	6.350(½)	1.588(½)	4.762(3/6)	2.381(¾)	6.350(½)	1.191(3/ ₆₄)	18.256(²³ / ₃₂)	57.8	13 100	22 700
25.400(1)	6.350(½)	1.588(½)	4.762(3/6)	2.381(¾)	6.350(½)	1.588(1/ ₁₆)	18.256(²³ / ₃₂)	57.8	13 100	22 700
31.750(1 ½)	7.938(½6)	1.588(½)	4.762(3/6)	2.381(¾)	6.350(½)	1.588(½)	24.209(61/64)	103	23 600	31 700
31.750(1 ½)	7.938(½6)	1.588(½)	4.762(3/6)	2.381(¾)	6.350(½)	1.588(½)	24.209(61/64)	103	23 600	31 700
38.100(1 ½)	9.525(³ / ₈)	1.588(½)	4.762(3/6)	2.381(¾)	7.938(½)	1.588(½)	26.988(1 ½)	162	28 200	40 100
38.100(1 ½)	9.525(³ / ₈)	1.588(½)	4.762(3/6)	2.381(¾)	7.938(½)	1.588(½)	26.988(1 ½)	162	28 200	40 100
44.450(1 ³ ⁄ ₄)	11.112(½)	1.588(½)	4.762(3/6)	2.381(¾)	7.938(½)	1.588(½)	32.941(1½)	258	35 300	55 600
44.450(1 ³ ⁄ ₄)	11.112(½)	1.588(½)	4.762(3/6)	2.381(¾)	7.938(½)	1.588(½)	32.941(1½)	258	35 300	55 600
50.800(2)	12.700(½)	1.588(½)	4.762(3/6)	3.175(½)	11.112(½)	1.588(½)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
50.800(2)	12.700(½)	1.588(½)	4.762(3/6)	3.175(½)	11.112(½)	1.588(½)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
57.150(2 ½)	14.288(% ₆)	1.588(½)	4.762(3/6)	3.175(½)	12.700(½)	2.381(¾)	40.878(1 ³⁹ / ₆₄)	500	61 400	116 000
57.150(2 ½)	14.288(% ₆)	1.588(½)	4.762(3/6)	3.175(½)	12.700(½)	2.381(¾)	40.878(1 ³⁹ / ₆₄)	500	61 400	116 000
63.500(2 ½)	15.875(⁵ / ₈)	1.588(½)	6.350(½)	3.175(½)	19.050(³ / ₄)	2.381(¾)	51.991(2¾)	892	77 600	172 000
63.500(2 ½)	15.875(⁵ / ₈)	1.588(½)	6.350(½)	3.175(½)	19.050(³ / ₄)	2.381(¾)	51.991(2¾)	892	77 600	172 000
69.850 (2 ³ ⁄ ₄)	17.462(11/ ₁₆)	1.588(1/16)	6.350(1/4)	3.175(1/8)	19.050(¾)	2.381(3/32)	59.928 (2 ²³ ⁄ ₆₄)	1 450	111 000	239 000
88.900 (3 ½)	19.050(¾)	1.588(½)	6.350(1/4)	3.175(1/8)	19.050(3/4)	2.381(3/2)	64.691(235/4)	2 190	142 000	317 000

CAM FOLLOWERS

Inch Series Heavy Duty Cam Followers Full Complement Type/With Screwdriver Slot

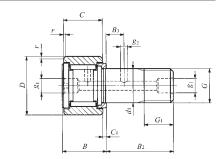
Stud dia. 6.350 — 50.800mm


CRH...VR

	Identifica	ntion number	Mass						
Stud dia.			(Ref.)						
mm (inch)	Shield type With crowned outer ring	Sealed type With crowned outer ring	g	D	C	d_1	<i>G</i> UNF	G_1	B max
6.350 (½)	CRH 8-1 VR CRH 9 VR	CRH 8-1 VUUR CRH 9 VUUR	12 15	12.700 (½) 14.288 (½)	9.525 (³ / ₈) 9.525 (³ / ₈)	6.350 (1/4) 6.350 (1/4)	½ - 28 ½ - 28	6.350 (½) 6.350 (½)	11.1(0.44) 11.1(0.44)
7.938 (5/ ₁₆)	CRH 10-1 VR CRH 11 VR	CRH 10-1 VUUR CRH 11 VUUR	23 27	15.875 (½) 17.462 (½)	11.112 (½6) 11.112 (½6)	7.938 (½6) 7.938 (½6)	½6 - 24 ⅓6 - 24	7.938 (½) 7.938 (½)	12.8(0.50) 12.8(0.50)
11.112 (½)	CRH 12 VR CRH 14 VR	CRH 12 VUUR CRH 14 VUUR	39 49	19.050 (3/4) 22.225 (7/8)	12.700 (½) 12.700 (½)	11.112 (½) 11.112 (½)	$\frac{7}{16}$ - 20 $\frac{7}{16}$ - 20	9.525 (³ / ₈) 9.525 (³ / ₈)	14.6(0.57) 14.6(0.57)
15.875 (5/8)	CRH 16 VR CRH 18 VR	CRH 16 VUUR CRH 18 VUUR	93 109	25.400 (1) 28.575 (1 ½)	15.875 (½) 15.875 (½)	15.875 (½) 15.875 (½)	½ - 18 ⅓ - 18	12.700 (½) 12.700 (½)	17.9(0.70) 17.9(0.70)
19.050 (³ ⁄ ₄)	CRH 20 VR CRH 22 VR	CRH 20 VUUR CRH 22 VUUR	176 200	31.750 (1 ½) 34.925 (1 ¾)	19.050 (3/4) 19.050 (3/4)	19.050 (3/4) 19.050 (3/4)	¾ - 16 ¾ - 16	15.875 (½) 15.875 (½)	21.0(0.83) 21.0(0.83)
22.225 (%)	CRH 24 VR CRH 26 VR	CRH 24 VUUR CRH 26 VUUR	296 329	38.100 (1 ½) 41.275 (1 ½)	22.225 (½) 22.225 (½)	22.225 (½) 22.225 (½)	$rac{7}{8}$ - 14 $rac{7}{8}$ - 14	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)	24.3(0.96) 24.3(0.96)
25.400 (1)	CRH 28 VR CRH 30 VR	CRH 28 VUUR CRH 30 VUUR	463 508	44.450 (1 ³ ⁄ ₄) 47.625 (1 ⁷ ⁄ ₈)	25.400 (1) 25.400 (1)	25.400 (1) 25.400 (1)	1 - 14 UNS 1 - 14 UNS	22.225 (½) 22.225 (½)	27.4(1.08) 27.4(1.08)
28.575 (1½)	CRH 32 VR CRH 36 VR	CRH 32 VUUR CRH 36 VUUR	722 858	50.800 (2) 57.150 (2 ½)	31.750 (1 ½) 31.750 (1 ½)	28.575 (1 ½) 28.575 (1 ½)	$1\frac{1}{8}$ - 12 $1\frac{1}{8}$ - 12	25.400 (1) 25.400 (1)	34.2(1.35) 34.2(1.35)
31.750 (1½)	CRH 40 VR CRH 44 VR	CRH 40 VUUR CRH 44 VUUR	1 260 1 460	63.500 (2 ½) 69.850 (2 ¾)	38.100 (1 ½) 38.100 (1 ½)	31.750 (1 ½) 31.750 (1 ½)	1½-12 1½-12	28.575 (1 ½) 28.575 (1 ½)	40.0(1.57) 40.0(1.57)
38.100 (1½)	CRH 48 VR CRH 52 VR	CRH 48 VUUR CRH 52 VUUR	2 100 2 380	76.200 (3) 82.550 (3 ½)	44.450 (1 ³ ⁄ ₄) 44.450 (1 ³ ⁄ ₄)	38.100 (1 ½) 38.100 (1 ½)	$1\frac{1}{2}$ - 12 $1\frac{1}{2}$ - 12	31.750 (1 ½) 31.750 (1 ½)	46.4(1.83) 46.4(1.83)
44.450 (1 ³ / ₄)	CRH 56 VR	CRH 56 VUUR	3 240	88.900 (3 ½)	50.800 (2)	44.450 (1 ³ ⁄ ₄)	1¾- 12 UN	34.925 (1 ³ / ₈)	52.8(2.08)
50.800 (2)	CRH 64 VR	CRH 64 VUUR	4 960	101.600 (4	57.150 (2 ½)	50.800(2)	2- 12 UN	38.100 (1 ½)	59.4(2.34)

Remarks 1. Models with a stud diameter d_1 of 7.938 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

- 2. Provided with prepacked grease.
 3. For the maximum allowable static load, please contact IXII.

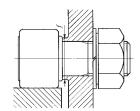

CRH...VUUR

Boundary	dimension:	s mm(ind	ch)			Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating
B_2	B_3	C_1	g_1	g_2	R	f Min. mm(inch)	torque N-m	C N	C_0 N
15.875(⁵ / ₈)	- (-)	0.794(½)	*3.175(½)	- (-)	180(7)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
15.875(⁵ / ₈)	- (-)	0.794(½)	*3.175(½)	- (-)	180(7)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
19.050(³ / ₄)	- (-)	0.794(½)	*3.175(½)	- (-)	200(8)	11.112(½)	6.8	6 340	8 530
19.050(³ / ₄)	- (-)	0.794(½)	*3.175(½)	- (-)	200(8)	11.112(½)	6.8	6 340	8 530
22.225(½)	6.350(½)	0.794(½)	4.762(3/16)	2.381(³ / ₃₂)	250(10)	13.494(½)	17.6	8 710	12 300
22.225(½)	6.350(½)	0.794(½)	4.762(3/16)	2.381(³ / ₃₂)	250(10)	13.494(½)	17.6	8 710	12 300
25.400 (1) 25.400 (1)	6.350(½)	1.588(½)	4.762(³ / ₁₆)	2.381(3/ ₃₂)	300 (12)	18.256(²³ / ₃₂)	57.8	13 100	22 700
	6.350(½)	1.588(½)	4.762(³ / ₁₆)	2.381(3/ ₃₂)	300 (12)	18.256(²³ / ₃₂)	57.8	13 100	22 700
31.750(1½)	7.938 (½6)	1.588(½)	4.762(³ / ₁₆)	2.381(3/ ₃₂)	360 (14)	24.209(⁶ 1/ ₆₄)	103	23 600	31 700
31.750(1½)	7.938 (½6)	1.588(½)	4.762(³ / ₁₆)	2.381(3/ ₃₂)	360 (14)	24.209(⁶ 1/ ₆₄)	103	23 600	31 700
38.100(1½)	9.525(³ / ₈)	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)	500 (20) 500 (20)	26.988 (1 ½)	162	28 200	40 100
38.100(1½)	9.525(³ / ₈)	1.588(½)	4.762(³ / ₁₆)	2.381(³ / ₃₂)		26.988 (1 ½)	162	28 200	40 100
44.450(1 ³ / ₄)	11.112(½)	1.588(½)	4.762(³ / ₁₆)	2.381(3/ ₃₂)	500 (20) 500 (20)	32.941(1½)	258	35 300	55 600
44.450(1 ³ / ₄)	11.112(½)	1.588(½)	4.762(³ / ₁₆)	2.381(3/ ₃₂)		32.941(1½)	258	35 300	55 600
50.800 (2) 50.800 (2)	12.700(½)	1.588 (½)	4.762(³ / ₁₆)	3.175(½)	600(24)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
	12.700(½)	1.588 (½)	4.762(³ / ₁₆)	3.175(½)	600(24)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
57.150(2½)	14.288 (% ₁₆)	1.588 (½)	4.762(³ / ₁₆)	3.175(½)	760 (30)	40.878(1 ³ % ₄)	500	61 400	116 000
57.150(2½)	14.288 (% ₁₆)	1.588 (½)	4.762(³ / ₁₆)	3.175(½)	760 (30)	40.878(1 ³ % ₄)	500	61 400	116 000
63.500(2½)	15.875 (⁵ / ₈)	1.588(½)	6.350(½ ₄)	3.175(½)	760 (30) 760 (30)	51.991(2 ³ / ₆₄)	892	77 600	172 000
63.500(2½)	15.875 (⁵ / ₈)	1.588(½)	6.350(½ ₄)	3.175(½)		51.991(2 ³ / ₆₄)	892	77 600	172 000
69.850(23/4)	17.462(1½)	1.588 (1/16)	6.350(1/4)	3.175(1/8)	760(30)	59.928(223/64)	1 450	111 000	239 000
88.900(3½)	19.050(¾)	1.588(1/16)	6.350(1/4)	3.175(½)	760(30)	64.691(23%)	2 190	142 000	317 000

CAM FOLLOWERS

Inch Series Heavy Duty Cam Followers Full Complement Type/With Screwdriver Slot

Stud dia. 6.350 — 50.800mm


CRH...V

Stud	Identifica	ition number	Mass (Ref.)						
dia. mm (inch)	Shield type With cylindrical outer ring	Sealed type With cylindrical outer ring	g	D	C	d_1	<i>G</i> UNF	G_1	B max
6.350	CRH 8-1 V	CRH 8-1 VUU	12	12.700 (½)	9.525 (³ / ₈)	6.350 (½)		6.350 (½)	11.1(0.44)
(½)	CRH 9 V	CRH 9 VUU	15	14.228 (½)	9.525 (³ / ₈)	6.350 (½)		6.350 (½)	11.1(0.44)
7.938 (5/16)	CRH 10-1 V	CRH 10-1 VUU	23	15.875 (½)	11.112 (½6)	7.938 (½)	5⁄ ₁₆ - 24	7.938 (½)	12.8(0.50)
	CRH 11 V	CRH 11 VUU	27	17.462 (½)	11.112 (½6)	7.938 (½)	5∕ ₁₆ - 24	7.938 (½)	12.8(0.50)
11.112	CRH 12 V	CRH 12 VUU	39	19.050 (³ ⁄ ₄)	12.700 (½)	11.112 (½)	$\frac{7}{16}$ - 20 $\frac{7}{16}$ - 20	9.525 (³ / ₈)	14.6(0.57)
(½16)	CRH 14 V	CRH 14 VUU	49	22.225 (⁷ ⁄ ₈)	12.700 (½)	11.112 (½)		9.525 (³ / ₈)	14.6(0.57)
15.875	CRH 16 V	CRH 16 VUU	93	25.400 (1)	15.875 (½)	15.875 (½)	½ - 18	12.700 (½)	17.9(0.70)
(5/8)	CRH 18 V	CRH 18 VUU	109	28.575 (1 ½)	15.875 (½)	15.875 (½)	⅓ - 18	12.700 (½)	17.9(0.70)
19.050	CRH 20 V	CRH 20 VUU	176	31.750 (1 ½)	19.050 (3/4)	19.050 (3/4)	¾ ₄ - 16	15.875 (½)	21.0(0.83)
(¾)	CRH 22 V	CRH 22 VUU	200	34.925 (1 ¾)	19.050 (3/4)	19.050 (3/4)	¾ ₄ - 16	15.875 (½)	21.0(0.83)
22.225 (½)	CRH 24 V CRH 26 V	CRH 24 VUU CRH 26 VUU	296 329	38.100 (1 ½) 41.275 (1 ½)	22.225 (½) 22.225 (½)	22.225 (½) 22.225 (½)	$rac{7}{8}$ - 14 $rac{7}{8}$ - 14	19.050 (³ ⁄ ₄) 19.050 (³ ⁄ ₄)	24.3(0.96) 24.3(0.96)
25.400 (1)	CRH 28 V	CRH 28 VUU	463	44.450 (1 ³ ⁄ ₄)	25.400 (1)	25.400 (1)	1 - 14 UNS	22.225 (½)	27.4(1.08)
	CRH 30 V	CRH 30 VUU	508	47.625 (1 ⁷ ⁄ ₈)	25.400 (1)	25.400 (1)	1 - 14 UNS	22.225 (½)	27.4(1.08)
28.575	CRH 32 V	CRH 32 VUU	722	50.800 (2)	31.750 (1 ½)	28.575 (1 ½)	1½ - 12	25.400 (1)	34.2(1.35)
(1½)	CRH 36 V	CRH 36 VUU	858	57.150 (2 ½)	31.750 (1 ½)	28.575 (1 ½)	1½ - 12	25.400 (1)	34.2(1.35)
31.750	CRH 40 V	CRH 40 VUU	1 260	63.500 (2 ½)	38.100 (1 ½)	31.750 (1 ½)	1½ - 12	28.575 (1 ½)	40.0(1.57)
(1½)	CRH 44 V	CRH 44 VUU	1 460	69.850 (2 ¾)	38.100 (1 ½)	31.750 (1 ½)	1½ - 12	28.575 (1 ½)	40.0(1.57)
38.100	CRH 48 V	CRH 48 VUU	2 100	76.200 (3)	44.450 (1 ¾)	38.100 (1 ½)	$1\frac{1}{2}$ - 12 $1\frac{1}{2}$ - 12	31.750 (1 ½)	46.4(1.83)
(1½)	CRH 52 V	CRH 52 VUU	2 380	82.550 (3 ½)	44.450 (1 ¾)	38.100 (1 ½)		31.750 (1 ½)	46.4(1.83)
44.450 (1 ³ / ₄)	CRH 56 V	CRH 56 VUU	3 240	88.900 (3 ½)	50.800 (2)	44.450 (1 ¾)	1¾ - 12 UN	34.925 (1 ³ / ₈)	52.8(2.08)
50.800 (2)	CRH 64 V	CRH 64 VUU	4 960	101.600 (4	57.150 (2 ½)	50.800(2)	2- 12 UN	38.100 (1 ½)	59.4(2.34)

Remarks1. Models with a stud diameter d_1 of 7.938 mm or less (marked *) are provided with an oil hole on the stud head only. Other models are provided with one oil hole each on the head, outside surface and end surface of the stud.

- Provided with prepacked grease.
 For the maximum allowable static load, please contact IKU.

CRH...VUU

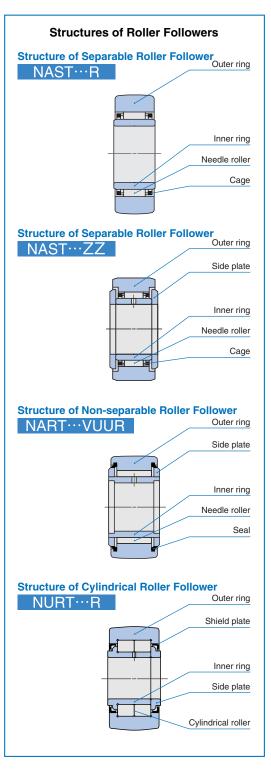
Boundary	dimensions	mm(inc	h)			Mounting dimension	Maximum tightening	Basic dynamic load rating	Basic static load rating
B_2	B ₃	C_1	g ₁	g_2	r	f Min. mm(inch)	torque N-m	C N	<i>C</i> ₀
15.875(⁵ / ₈)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397(1/64)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
15.875(⁵ / ₈)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397(1/64)	8.334(²¹ / ₆₄)	3.4	4 710	5 410
19.050(³ / ₄)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397(1/64)	11.112 (½)	6.8	6 340	8 530
19.050(³ / ₄)	- (-)	0.794(½)	*3.175(½)	- (-)	0.397(1/64)	11.112 (½)	6.8	6 340	8 530
22.225(½)	6.350(½)	0.794(½)	4.762(³ / ₁₆)	2.381(¾)	0.794(½)	13.494(½)	17.6	8 710	12 300
22.225(½)	6.350(½)	0.794(½)	4.762(³ / ₁₆)	2.381(¾)	0.794(½)	13.494(½)	17.6	8 710	12 300
25.400 (1) 25.400 (1)	6.350(½)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.191(3/ ₆₄)	18.256(²³ / ₃₂)	57.8	13 100	22 700
	6.350(½)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(1/ ₁₆)	18.256(²³ / ₃₂)	57.8	13 100	22 700
31.750(1 ½)	7.938(½)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(½)	24.209(⁶ ½)	103	23 600	31 700
31.750(1 ½)	7.938(½)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(½)	24.209(⁶ ½)	103	23 600	31 700
38.100(1 ½)	9.525(³ / ₈)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(½)	26.988(1 ½)	162	28 200	40 100
38.100(1 ½)	9.525(³ / ₈)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(½)	26.988(1 ½)	162	28 200	40 100
44.450(1 ³ ⁄ ₄)	11.112(½)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(½)	32.941(1½)	258	35 300	55 600
44.450(1 ³ ⁄ ₄)	11.112(½)	1.588(½)	4.762(³ / ₁₆)	2.381(¾)	1.588(½)	32.941(1½)	258	35 300	55 600
50.800 (2) 50.800 (2)	12.700(½)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	1.588(½)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
	12.700(½)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	1.588(½)	37.306(1 ¹⁵ / ₃₂)	356	45 700	80 600
57.150(2½)	14.288(% ₁₆)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	2.381(¾)	40.878(1 ³ % ₄)	500	61 400	116 000
57.150(2½)	14.288(% ₁₆)	1.588(½)	4.762(³ / ₁₆)	3.175(½)	2.381(¾)	40.878(1 ³ % ₄)	500	61 400	116 000
63.500(2½)	15.875(⁵ / ₈)	1.588(½)	6.350(½)	3.175(½)	2.381(¾)	51.991(2 ³ / ₆₄)	892	77 600	172 000
63.500(2½)	15.875(⁵ / ₈)	1.588(½)	6.350(½)	3.175(½)	2.381(¾)	51.991(2 ³ / ₆₄)	892	77 600	172 000
69.850(23/4)	17.462(11/16)	1.588(1/16)	6.350(1/4)	3.175(1/8)	2.381(3/2)	59.928(2 ²³ / ₆₄)	1 450	111 000	239 000
88.900(3½)	19.050(¾)	1.588(1/16)	6.350(1/4)	3.175(1/8)	2.381(3/32)	64.691(235/4)	2 190	142 000	317 000

CFS NUCF

NAST NART NURT CRY

ROLLER FOLLOWERS

- **●**Separable Roller Followers
- Non-separable Roller Followers
- **OCylindrical Roller Followers**


Structure and Features

IKO Roller Followers are bearings designed for outer ring rotation, in which needle rollers are incorporated in a thick walled outer ring. Both crowned and cylindrical outer rings are available. The outer rings run directly on mating cam guide surfaces, and the crowned outer ring is effective in relieving the edge load caused by mounting errors. The cylindrical outer ring, on the other hand, has a large contact area with the mating cam guide surface and is suitable for applications involving large loads or low cam guide surface hardness.

In Roller Followers, there are two types of bearings available, the caged type and the full complement type. The caged type is useful for applications at high-speed rotation. The full complement type, on the other hand, is suitable for heavy-load applications at low-speed rotation or oscillating motions.

Roller Followers include separable and non-separable types. Also, in addition to the open type, shield type and sealed type are available. The clearances between the side plates and outer ring of the shield type are narrow, and form labyrinths. In the sealed type, special synthetic rubber seals are assembled in these clearances, and they are effective in preventing penetration of dust and dirt.

These bearings are available in a variety of types to suit almost any kind of application. They are widely used for cam mechanisms and for linear motions of conveying equipment.

In Roller Followers, types shown in Table 1 are available

Table 1 Type of Roller Followers

	Type			With	cage	Full complement type		
	туре			Crowned outer ring	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	
		Without inner ring	Open type	RNAST··· R	RNAST	_	_	
Separable Roller Followers RNAST, NAST Metric series	With inner ring	Open type	NAST··· R	NAST	_	_		
		Shield type	NAST…ZZ R	NAST…ZZ	_	_		
		Sealed type	NAST…ZZUUR	NAST…ZZUU	_	_		
Metric series	Non-separable Roller Follo	wers	Shield type	NART… R	_	NART…V R	_	
	NART		Sealed type	NART… UUR	_	NART…VUUR	_	
	Cylindrical Roller Followers NURT	3	Shield type	_	_	NURT… R	NURT	
Inch series Non-separable Roller Follo		wers	Shield type	_	_	CRY V R	CRY ··· V	
mon series	CRY		Sealed type	_	_	CRY VUUR	CRYVUU	

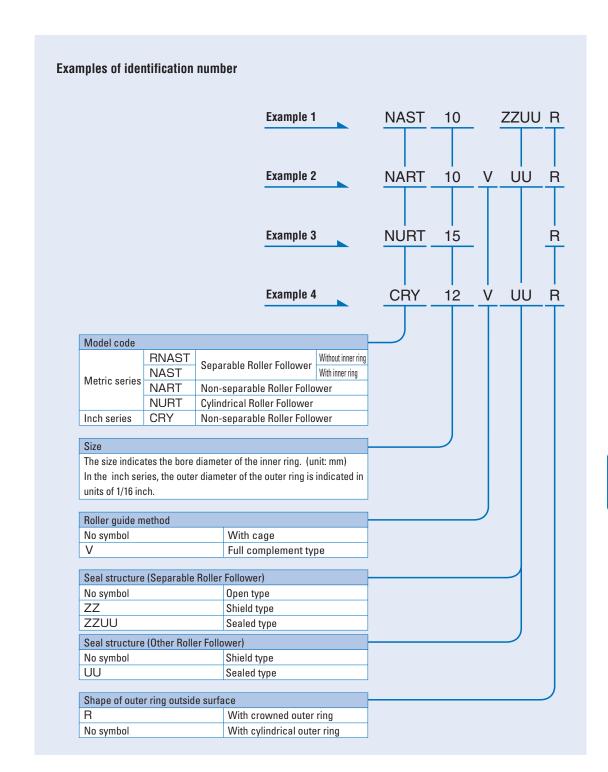
Separable Roller Followers

These bearings are assembled by combining an outer ring, inner ring and Needle Roller Cage, which can be separated from one another. Thus, handling is easy. Oil lubrication is also easy, making them suitable for high-speed rotations.

There are two types: type without inner ring RNAST and type with inner ring NAST. The type with inner ring includes open type, shield type, and sealed type.

Non-separable Roller Followers

These non-separable type bearings have side plates fixed on both sides of the inner ring, and include the caged type and the full complement type. Both shield type and sealed type are available.


Inch series Non-separable Roller Followers are full complement type bearings and their surface is treated with black oxide surface treatment.

Cylindrical Roller Followers

These full complement type bearings incorporate cylindrical rollers in the outer ring in two rows and can withstand large radial loads and some axial loads. These bearings are shield type with non-separable structure.

■ Identification Number

Some examples of the identification number of Roller Followers are shown below.

NAST

NART

NURT

CRY

Accuracy

Dimensional accuracy and rotational accuracy of Roller Followers are based on Tables 2, 3 and 4. Tolerances for the smallest single roller set bore diameter of Separable Roller Followers are shown in Table 5. Roller Followers with special accuracy can also be manufactured. Please contact **IKI**.

Table 2 Tolerances

unit: μm										
		Series	Metric	series	Inch s	eries				
Dimensions and symbols			Crowned outer ring	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring				
Bore dia. of inner ring d		<i>d</i> ≦ 19.05	≤ 19.05 See Table 3.		+ 5 - 10	+ 5				
bore dia. Of fillier fillig a	dia. of inner ring d 19.05 $\leq d$		366 1	able 3.	+ 2 - 12	— 10				
Outside dia. of outer ring D	0 - 50	See Table 4.	0 - 50	0 - 25						
Width of outer ring C			_ ·	0 120	- 1	0				
Width of inner ring B	Separable	Roller Follower	0 120		_					
Width of bearing B	Non-separable Roller Follower		- L10		+ 130					
vviutii oi bearing D	Cylindrical Roller Follower		h12 h12		- 250					
Roller set bore dia. $F_{ m w}$	Separable Roller Follower		See Table 5.		_					

Table 3 Tolerances and allowable values of inner rings (Metric series)

unit: μ m

	d bore dia. im	deviation		$V_{d{ m p}}$ Bore dia. variation in a single radial plane	$V_{d{ m mp}}$ Mean bore dia. variation	$K_{ m ia}$ Radial runout of assembled bearing inner ring	$V_{B{ m s}}$ Width variation
Over	Incl.	High Low		(Max.)	(Max.)	(Max.)	(Max.)
2.5	10	0	- 8	10	6	10	15
10	18	0	- 8	10	6	10	20
18	30	0	- 10	13	8	13	20
30	50	0	- 12	15	9	15	20

Table 4 Tolerances and allowable values of outer rings (Metric series)

unit: μ m

	O dia. of outer ring m	$\Delta_{D{ m mp}}$ Single plane mean outside dia. deviation		$V_{D\mathrm{p}}$ (1) Outside dia. variation in a single radial plane	$V_{D{ m mp}}({ m 1})$ Mean outside dia. variation	K _{ea} (1) Radial runout of assembled bearing outer ring	$V_{C{ m s}}$ Width variation
Over	Incl.	High	Low	(Max.)	(Max.)	(Max.)	(Max.)
6	18	0	- 8	10	6	15	Same as the
18	30	0	- 9	12	7	15	tolerance values
30	50	0	- 11	14	8	20	of V_{Bs} for d of
50	80	0	- 13	16	10	25	the inner of the same bearing
80	120	0	- 15	19	11	35	Same bearing

Note(1) Also applicable to the inch series.

 $F_{\rm w}$ $\Delta_{F
m ws\,min}$ Nominal roller set bore diameter Deviation of smallest single roller set bore diameter mm 0ver Incl. High Low 6 10 +22+13 10 18 +27+16 18 30 +20 +3330 50 +41+2550 80 +49+30

Clearance

Radial internal clearances of Roller Followers are based on Table 6.

Table 5 Tolerances of smallest single roller set bore diameter $F_{
m ws\,min}$

Table 6 Radial internal clearance

unit: μ m

	Identification	n number (1)		Radial intern	al clearance
	Metric series		Inch series		
Separable Roller Followers	Non-separable Roller Followers	Cylindrical Roller Followers	Non-separable Roller Followers	Min.	Max.
NAST 6R	AST 6R NART 5R -		_	5	20
NAST 8R~NAST12R	NART 6R~NART12R	_	_	5	25
NAST15R~NAST25R	NAST15R~NAST25R NART15R~NART20R		_	10	30
NAST30R~NAST40R	NART25R~NART40R	_	_	10	40
NAST45R, NAST50R	NART45R, NART50R	_	_	15	50
-	_	NURT15R~NURT30-1R	_	20	45
-	-	NURT35R~NURT40-1R	_	25	50
-	-	NURT45R~NURT50-1R	_	30	60
_	_	_	CRY12R~CRY56R	35	60
-	_	_	CRY64R	45	70

Note(1) Also applicable to the full complement type, cylindrical outer ring type, shield type and sealed type.

Roller Followers are generally used under the loading conditions in which the load direction is fixed in relation to the inner ring and rotates in relation to the outer ring. The recommended fits for shafts are shown in Table 7. Those for the inch series are shown in the dimension table.

Table 7 Recommended fit (Metric series)

Table 7 Recommended in (Metric Series)									
Туре	Tolerance cl	ass of shaft							
Separable Roller Followers	without inner ring	k5,	k6						
Separable notier rottowers	with inner ring								
Non-separable Roller Follo	g6,	h6							
Cylindrical Roller Followers									

Maximum allowable static load

The load that is applicable to Roller Followers is, in some cases, determined by the strength of the outer ring rather than by the load rating of the needle roller bearing. Therefore, the maximum allowable load that is limited by the strength of outer ring is specified.

Track Capacity

Track capacity is defined as the load that can be continuously applied on a Roller Follower placed on a steel cam guide surface without causing deformation and indentation on the cam guide surface when the outer ring of the Roller Follower makes contact with the mating cam guide surface (plane). The track capacities shown in Tables 8.1 and 8.2 are applicable when the hardness of the mating cam guide surface is 40HRC

(Tensile strength 1250N/mm²). When the hardness of the mating cam guide surface differs from 40HRC, the track capacity is obtained by multiplying the value by the track capacity factor shown in Table 9.

If lubrication between the outer ring and the mating cam guide surface is insufficient, seizure and/or wear may occur depending on the application. Therefore, pay attention to lubrication and surface roughness of the mating cam guide especially in the case of high-speed rotation such as for cam mechanisms.

Table 8.1 Track capacity (Metric series)

unit: N

Roller	Followers with cr	owned outer ring			Roller F	ollowers with cyl	indrical ou	iter ring	
	ntification number		Track	Identification	Track	Identification	Track	Identification	Track
Separable Roller Followers		Cylindrical Roller Followers	capacity	number	capacity	number (2)	capacity	number	capacity
RNAST 5R	NART 5R	_	1 040	RNAST 5	2 310	_	_	_	_
(R)NAST 6R	NART 6R	_	1 330	(R)NAST 6	3 550	NAST 6ZZ	3 550	_	_
(R)NAST 8R	NART 8R	_	1 850	(R)NAST 8	3 980	NAST 8ZZ	4 490	_	_
(R)NAST10R	NART10R	_	2 470	(R)NAST10	5 610	NAST10ZZ	6 890	_	_
(R)NAST12R	NART12R	_	2 710	(R)NAST12	5 990	NAST12ZZ	7 350	_	_
(R)NAST15R	NART15R	NURT15 R	3 060	(R)NAST15	6 550	NAST15ZZ	8 030	NURT15	11 500
_	_	NURT15-1R	3 910		_	_	_	NURT15-1	13 700
(R)NAST17R	NART17R	NURT17 R	3 660	(R)NAST17	10 900	NAST17ZZ	11 700	NURT17	13 600
_	_	NURT17-1R	4 530	_	_	_	_	NURT17-1	16 000
(R)NAST20R	NART20R	NURT20 R	4 530	(R)NAST20	12 800	NAST20ZZ	13 800	NURT20	20 000
_	_	NURT20-1R	5 190	_	_	_	_	NURT20-1	22 100
(R)NAST25R	NART25R	NURT25 R	5 190	(R)NAST25	14 100	NAST25ZZ	15 300	NURT25	22 100
_	_	NURT25-1R	6 580	_	_	_	_	NURT25-1	26 400
(R)NAST30R	NART30R	NURT30 R	6 580	(R)NAST30	22 100	NAST30ZZ	22 100	NURT30	31 600
_	_	NURT30-1R	8 020	-	_	_	_	NURT30-1	36 700
(R)NAST35R	NART35R	NURT35 R	8 020	(R)NAST35	25 700	NAST35ZZ	25 700	NURT35	36 700
_	_	NURT35-1R	9 220	_	_	_	_	NURT35-1	40 800
(R)NAST40R	NART40R	NURT40 R	9 220	(R)NAST40	26 900	NAST40ZZ	30 300	NURT40	44 200
_	_	NURT40-1R	10 800	_	_	_	_	NURT40-1	49 700
(R)NAST45R	NART45R	NURT45 R	9 990	(R)NAST45	28 500	NAST45ZZ	32 200	NURT45	47 000
_	_	NURT45-1R	12 400	_	_	_	_	NURT45-1	55 300
(R)NAST50R	NART50R	NURT50 R	10 800	(R)NAST50	30 200	NAST50ZZ	34 000	NURT50	49 700
_	_	NURT50-1R	14 000	_	_	_	_	NURT50-1	60 800

Notes(1) Also applicable to the full complement type, shield type, and sealed type.

(2) Also applicable to the sealed type.

Table 8.2 Track capacity (Inch series)

Table 8.2 Track capacity (Inch series) unit: N										
Crowned	outer ring	Cylindrical	outer ring							
Identification	Track	Identification	Track							
number (1)	capacity	number (1)	capacity							
CRY12R	853	CRY12	4 490							
CRY14R	1 050	CRY14	5 240							
CRY16R	1 420	CRY16	7 270							
CRY18R	1 660	CRY18	7 700							
CRY20R	2 160	CRY20	10 700							
CRY22R	2 450	CRY22	11 800							
CRY24R	3 410	CRY24	15 400							
CRY26R	3 820	CRY26	16 700							
CRY28R	4 210	CRY28	21 000							
CRY30R	4 610	CRY30	22 500							
CRY32R	5 690	CRY32	30 800							
CRY36R	6 640	CRY36	34 700							
CRY40R	8 970	CRY40	44 900							
CRY44R	10 200	CRY44	49 400							
CRY48R	11 400	CRY48	64 300							
CRY52R	12 700	CRY52	69 600							
CRY56R	14 100	CRY56	87 000							
CRY64R	16 800	CRY64	113 000							

Table 9 Track capacity factor

Hardness	Tensile strength	Track capacity factor			
HRC	N/mm²	Crowned outer ring	Cylindrical outer ring		
20	760	0.22	0.37		
25	840	0.31	0.46		
30	950	0.45	0.58		
35	1 080	0.65	0.75		
38	1 180	0.85	0.89		
40	1 250	1.00	1.00		
42	1 340	1.23	1.15		
44	1 435	1.52	1.32		
46	1 530	1.85	1.51		
48	1 635	2.27	1.73		
50	1 760	2.80	1.99		
52	1 880	3.46	2.29		
54	2 015	4.21	2.61		
56	2 150	5.13	2.97		
58	2 290	6.26	3.39		

Note(1) Also applicable to the sealed type.

■ Allowable Rotational Speed

The allowable rotational speed of Roller Followers is affected by mounting and operating conditions. For reference, Table 10 shows dn values when only pure radial loads are applied. Under actual operating conditions, the recommended dn value is 1/10 of the value shown in the table in consideration of the axial loads that may act on the bearing.

Table 10 dn values of Roller Followers(1)

Lubricant	Grease	Oil
Caged type	84 000	140 000
Full complement type	42 000	70 000
Cylindrical Roller Follower	72 000	120 000

Note(1) dn value = $d \times n$

where, $\,d\,$: Bore diameter of bearing $\,\mathrm{mm}$

n: Rotational speed rpm

Lubrication

In Sealed Type Roller Followers, Heavy Duty Type Roller Followers and Inch series Roller Followers, ALVANIA GREASE S2 (SHOWA SHELL SEKIYU K.K.) is prepacked as the lubricating grease.

For Roller Followers without prepacked grease, grease or oil should be supplied through the oil hole of the inner ring for use. If they are used without lubrication, wear of rolling contact surfaces may take place, leading to a short bearing life.

Oil Hole

Open Type Separable Roller Followers have no oil hole. Inner rings of other types of Metric series Roller Followers have an oil hole. Inch series inner rings have an oil groove and an oil hole.

Mounting

- In case of shield and sealed types, match the side surface correctly to the mating seating surface indicated by the dimension *a* shown in the dimension table, and fix them. (See Fig. 1.)
- When mounting Roller Followers, pay special attention to avoid locating the oil hole of the inner ring within the loading zone. This may lead to a short bearing life. (See Fig. 2.)
- When mounting Sealed Type Separable Roller Followers, do not cause the side plates to come off. If they come off, set them again in place taking care to avoid damaging the seal lips.

ness of the shaft is $0.2 \,\mu mR_a$ or less.

Also, the outer ring and cage are guided by side surfaces of the mounting parts. Therefore, it is recommended that the side surfaces of the mounting parts be finished by grinding or at least by machining. (See Fig. 3.)

6 In Non-separable Roller Followers, the side plates are press-fitted. Therefore, when mounting the Roller Followers, do not push the side plates.

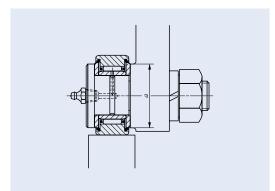


Fig. 1 Mating seating dimension "a"

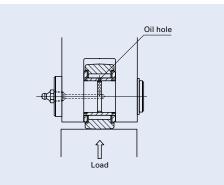
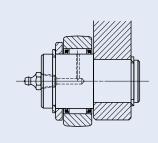
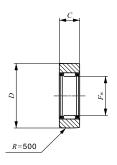
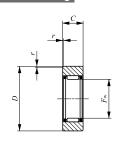


Fig. 2 Position of oil hole and load direction




Fig. 3 Mounting example of Roller Follower without inner ring


1N=0.102kgf=0.2248lbs. 1mm=0.03937inch

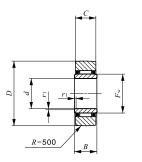
ROLLER FOLLOWERS

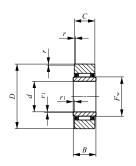
Separable Roller Followers, Open Type With Cage/Without Inner Ring

Shaft dia. 7 – 60mm

RNAST…R

RNAST


	Identificati	Mass	Bo	undary	dimensi	ons	Basic dynamic	Basic static	
Shaft			(Ref.)				3113	load rating	load rating
dia.	Oper	type			D		(1)	C	C_0
mm	Crowned outer ring	Cylindrical outer ring	g	$F_{\rm w}$	D	C	$r_{\rm s min}$	N	N
7	RNAST 5 R	RNAST 5	8.9	7	16	7.8	0.3	2 710	2 390
10	RNAST 6 R	RNAST 6	13.9	10	19	9.8	0.3	4 160	4 550
12	RNAST 8 R	RNAST 8	23.5	12	24	9.8	0.6	5 650	5 890
14	RNAST 10 R	RNAST 10	42.5	14	30	11.8	1	9 790	9 680
16	RNAST 12 R	RNAST 12	49.5	16	32	11.8	1	10 500	10 900
20	RNAST 15 R	RNAST 15	50	20	35	11.8	1	12 400	14 300
22	RNAST 17 R	RNAST 17	90	22	40	15.8	1	17 600	20 900
25	RNAST 20 R	RNAST 20	135	25	47	15.8	1	19 400	24 500
30	RNAST 25 R	RNAST 25	152	30	52	15.8	1	20 800	28 400
38	RNAST 30 R	RNAST 30	255	38	62	19.8	1	30 500	45 400
42	RNAST 35 R	RNAST 35	375	42	72	19.8	1	32 400	50 600
50	RNAST 40 R	RNAST 40	420	50	80	19.8	1.5	35 900	61 100
55	RNAST 45 R	RNAST 45	460	55	85	19.8	1.5	37 400	66 400
60	RNAST 50 R	RNAST 50	500	60	90	19.8	1.5	38 900	71 700


Note(1) Minimum allowable value of chamfer dimension r

Remarks1. No oil hole is provided.

Separable Roller Followers, Open Type With Cage/With Inner Ring

Shaft dia. 6 – 50mm

IAST	····R	
------	-------	--

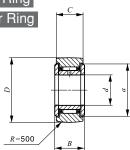
NAST

C14-	Identification	n number	Mass (Ref.)		В	Sound	•	imensi ım	ions		Basic dynamic load rating	Basic static load rating	Assembled inner ring
Shaft dia.		Open type				$ D _B C _B$		$r_{\rm s min} r_{\rm 1s min} F_{\rm w}$		C	C_0		
mm	Crowned outer ring	Cylindrical outer ring	g	а	D	D	C	s min	' 1s min	T W	N	N	
6	NAST 6R	NAST 6	17.8	6	19	10	9.8	0.3	0.3	10	4 160	4 550	LRT 61010 S
8	NAST 8 R	NAST 8	28	8	24	10	9.8	0.6	0.3	12	5 650	5 890	LRT 81210 S
10	NAST 10 R	NAST 10	49.5	10	30	12	11.8	1	0.3	14	9 790	9 680	LRT 101412 S
12	NAST 12 R	NAST 12	58	12	32	12	11.8	1	0.3	16	10 500	10 900	LRT 121612 S
15	NAST 15 R	NAST 15	62	15	35	12	11.8	1	0.3	20	12 400	14 300	LRT 152012 S
17	NAST 17 R	NAST 17	109	17	40	16	15.8	1	0.3	22	17 600	20 900	LRT 172216 S
20	NAST 20 R	NAST 20	157	20	47	16	15.8	1	0.3	25	19 400	24 500	LRT 202516 S
25	NAST 25 R	NAST 25	180	25	52	16	15.8	1	0.3	30	20 800	28 400	LRT 253016 S
30	NAST 30 R	NAST 30	320	30	62	20	19.8	1	0.6	38	30 500	45 400	LRT 303820 S
35	NAST 35 R	NAST 35	440	35	72	20	19.8	1	0.6	42	32 400	50 600	LRT 354220 S
40	NAST 40 R	NAST 40	530	40	80	20	19.8	1.5	1	50	35 900	61 100	LRT 405020 S
45	NAST 45 R	NAST 45	580	45	85	20	19.8	1.5	1	55	37 400	66 400	LRT 455520 S
50	NAST 50 R	NAST 50	635	50	90	20	19.8	1.5	1	60	38 900	71 700	LRT 506020 S

Note(1) Minimum allowable value of chamfer dimension r or r_1

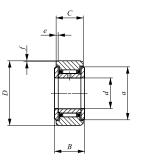
Remarks1. No oil hole is provided.

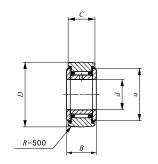
^{2.} Not provided with prepacked grease. Perform proper lubrication for use.

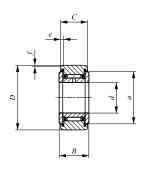

^{2.} Not provided with prepacked grease. Perform proper lubrication for use.

ROLLER FOLLOWERS

Separable Roller Followers, Shield Type With Cage/With Inner Ring Separable Roller Followers, Sealed Type With Cage/With Inner Ring




Shaft dia. 6 – 50mm


NAST…ZZR

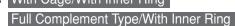
	Identification number									
Shaft					(Ref.)					
dia.	Shiel	d type	Seale							
mm	Crowned outer ring	Cylindrical outer ring	Crowned outer ring	Cylindrical outer ring	g					
6	NAST 6 ZZR	NAST 6 ZZ	NAST 6 ZZUUR	NAST 6 ZZUU	24.5					
8	NAST 8 ZZR	NAST 8 ZZ	NAST 8 ZZUUR	NAST 8 ZZUU	39					
10	NAST 10 ZZR	NAST 10 ZZ	NAST 10 ZZUUR	NAST 10 ZZUU	65					
12	NAST 12 ZZR	NAST 12 ZZ	NAST 12 ZZUUR	NAST 12 ZZUU	75					
15	NAST 15 ZZR	NAST 15 ZZ	NAST 15 ZZUUR	NAST 15 ZZUU	83					
17	NAST 17 ZZR	NAST 17 ZZ	NAST 17 ZZUUR	NAST 17 ZZUU	135					
20	NAST 20 ZZR	NAST 20 ZZ	NAST 20 ZZUUR	NAST 20 ZZUU	195					
25	NAST 25 ZZR	NAST 25 ZZ	NAST 25 ZZUUR	NAST 25 ZZUU	225					
30	NAST 30 ZZR	NAST 30 ZZ	NAST 30 ZZUUR	NAST 30 ZZUU	400					
35	NAST 35 ZZR	NAST 35 ZZ	NAST 35 ZZUUR	NAST 35 ZZUU	550					
40	NAST 40 ZZR	NAST 40 ZZ	NAST 40 ZZUUR	NAST 40 ZZUU	710					
45	NAST 45 ZZR	NAST 45 ZZ	NAST 45 ZZUUR	NAST 45 ZZUU	760					
50	NAST 50 ZZR	NAST 50 ZZ	NAST 50 ZZUUR	NAST 50 ZZUU	830					

Remarks1. The inner ring has an oil hole.

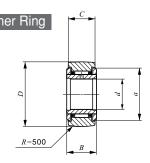
NAST…ZZ

NAST…ZZUUR

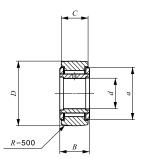
NAST…ZZUU

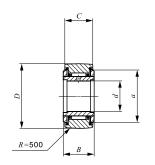

		Вс		y dime mm	nsions		Basic dynamic load rating	Basic static load rating
							C	C_0
d	D	В	C	а	e	f	N	N
6	19	14	13.8	14	2.5	0.8	4 160	4 550
8	24	14	13.8	17.5	2.5	0.8	5 650	5 890
10	30	16	15.8	23.5	2.5	0.8	9 790	9 680
12	32	16	15.8	25.5	2.5	0.8	10 500	10 900
15	35	16	15.8	29	2.5	0.8	12 400	14 300
17	40	20	19.8	32.5	3	1	17 600	20 900
20	47	20	19.8	38	3	1	19 400	24 500
25	52	20	19.8	43	3	1	20 800	28 400
30	62	25	24.8	50.5	4	1.2	30 500	45 400
35	72	25	24.8	53.5	4	1.2	32 400	50 600
40	80	26	25.8	61.5	4	1.2	35 900	61 100
45	85	26	25.8	66.5	4	1.2	37 400	66 400
50	90	26	25.8	76	4	1.2	38 900	71 700

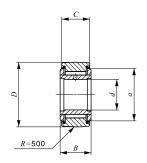
^{2.} The sealed type is provided with prepacked grease. The shield type is not provided with prepacked grease. Perform proper


ROLLER FOLLOWERS

Non-separable Roller Followers With Cage/With Inner Ring






Shaft dia. 5 — 40mm

NART…R

		lden	tification number		Mass (Ref.)			
Shaft	Shiel	d type	Sealed type					
dia.	Crowned	outer ring	Crowned					
mm	With cage	Full complement	With cage	Full complement	g			
5	NART 5 R	NART 5 VR	NART 5 UUR	— NART 5 VUUR	14.5 15.1			
6	NART 6 R	NART 6 VR	NART 6 UUR	NART 6 VUUR	20.5 21.5			
8	NART 8 R	NART 8 VR	NART 8 UUR —	NART 8 VUUR	41.5 42.5			
10	NART 10 R	NART 10 VR	NART 10 UUR —	NART 10 VUUR	64.5 66.5			
12	NART 12 R	NART 12 VR	NART 12 UUR —	NART 12 VUUR	71 73			
15	NART 15 R —	NART 15 VR	NART 15 UUR —	NART 15 VUUR	102 106			
17	NART 17 R —	– NART 17 VR	NART 17 UUR —	NART 17 VUUR	149 155			
20	NART 20 R	NART 20 VR	NART 20 UUR —	NART 20 VUUR	250 255			
25	NART 25 R	NART 25 VR	NART 25 UUR —	NART 25 VUUR	285 295			
30	NART 30 R	NART 30 VR	NART 30 UUR —	NART 30 VUUR	470 485			
35	NART 35 R	NART 35 VR	NART 35 UUR —	NART 35 VUUR	640 655			
40	NART 40 R —	NART 40 VR	NART 40 UUR —	NART 40 VUUR	845 865			

NART…VR

NART…UUR

NART…VUUR

Е	Boundary dimensions mm				Basic dynamic load rating	Basic static	Maximum allowable			
	_	_			_		C	C_0	static load	
d	D	В	С	а	N	N	N			
5	16	12	11	12	3 650	3 680	3 680			
5	16	12	11	12	6 810	8 370	7 310			
6	19	12	11	14	4 250	4 740	4 740			
6	19	12	11	14	7 690	10 300	10 300			
8	24 24	15 15	14 14	17.5 17.5	5 640 11 800	5 900 15 600	5 900 15 600			
10	30	15	14	23.5	8 030	7 540	7 540			
10	30	15	14	23.5	15 600	18 100	17 500			
12	32	15	14	25.5	8 580	8 470	8 470			
12	32	15	14	25.5	16 800	20 500	18 600			
15	35	19	18	29	13 700	16 400	16 400			
15	35	19	18	29	25 200	36 400	24 000			
17	40	21	20	32.5	17 600	21 000	21 000			
17	40	21	20	32.5	32 000	46 300	33 100			
20	47	25	24	38	23 000	30 700	30 700			
20	47	25	24	38	41 600	67 300	67 300			
25	52	25	24	43	24 700	35 400	35 400			
25	52	25	24	43	45 500	79 100	79 100			
30	62	29	28	50.5	33 600	51 400	51 400			
30	62	29	28	50.5	59 900	110 000	92 500			
35	72	29	28	53.5	35 700	57 400	57 400			
35	72	29	28	53.5	63 100	121 000	121 000			
40	80	32	30	61.5	44 900	81 500	81 500			
40	80	32	30	61.5	76 300	164 000	164 000			

I84

NAST NART NURT

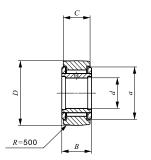
Remarks1. The inner ring has an oil hole.

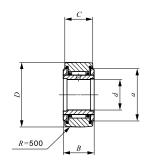
2. The sealed type is provided with prepacked grease. The shield type is not provided with prepacked grease. Perform proper

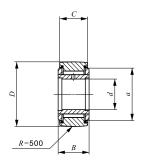
ROLLER FOLLOWERS

Non-separable Roller Followers With Cage/With Inner Ring

Full Complement Type/With Inner Ring




Shaft dia. 45 – 50mm


NART…R

Shaft dia. Crowned outer ring Crowned outer ring mm With cage Full complement With cage Full complement 9 NART 45 R — NART 45 UUR — 9 NART 45 VR — NART 45 VUUR 99 NART 50 R — NART 50 UUR — 99			lder	tification number		Mass
dia. Crowned outer ring Crowned outer ring mm With cage Full complement 9 45 NART 45 R NART 45 UUR 9 NART 45 VR NART 45 VUUR 9 50 NART 50 R NART 50 UUR 9	Shaft	Shiel	d type	Seale	d type	(Ref.)
45 NART 45 R — NART 45 UUR — 9 NART 45 VR — NART 45 VUUR 99 NART 50 R — NART 50 UUR — 99	dia.	Crowned	outer ring	Crowned	outer ring	
- NART 45 VR - NART 45 VUUR 9. 50 NART 50 R - NART 50 UUR - 9.	mm	With cage	Full complement	With cage Full complement		g
30	45	NART 45 R	NART 45 VR	NART 45 UUR —	NART 45 VUUR	915 935
	50	NART 50 R	_	NART 50 UUR	_	980 1 010

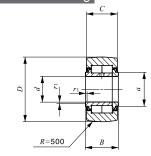
Remarks1. The inner ring has an oil hole.

NART…VR

NART…UUR

NART…VUUR

	Е	Bounda I	ry dim mm	ension	is 	Basic dynamic load rating $oldsymbol{C}$	Basic static load rating C_0	Maximum allowable static load	
	d	D	В	C	а	N	N	N	
•	45 45	85 85	32 32	30 30	66.5 66.5	46 800 80 300	88 600 181 000	88 600 181 000	
	50 50	90 90	32 32 32	30 30	76 76	48 600 84 300	95 600 198 000	95 600 198 000	

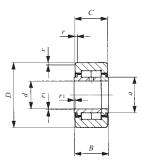

NAST NART NURT CRY

^{2.} The sealed type is provided with prepacked grease. The shield type is not provided with prepacked grease. Perform proper lubrication for use.

ROLLER FOLLOWERS

Cylindrical Roller Followers Full Complement Type/With Inner Ring

Shaft dia. 15 – 50mm


NURT…R

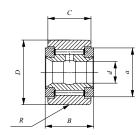
Shaft	Identificati	on number	Mass (Ref.)			Bounda	ary dimo	ensions	
dia.	Crowned outer ring	Cylindrical outer ring	g	d	D	В	C	а	$r_{\rm s min}(1)$
15	NURT 15 R	NURT 15	100	15	35	19	18	20	0.6
	NURT 15-1 R	NURT 15-1	160	15	42	19	18	20	0.6
17	NURT 17 R	NURT 17	147	17	40	21	20	22	1
	NURT 17-1 R	NURT 17-1	222	17	47	21	20	22	1
20	NURT 20 R	NURT 20	245	20	47	25	24	27	1
	NURT 20-1 R	NURT 20-1	321	20	52	25	24	27	1
25	NURT 25 R	NURT 25	281	25	52	25	24	31	1
	NURT 25-1 R	NURT 25-1	450	25	62	25	24	31	1
30	NURT 30 R	NURT 30	466	30	62	29	28	38	1
	NURT 30-1 R	NURT 30-1	697	30	72	29	28	38	1
35	NURT 35 R	NURT 35	630	35	72	29	28	44	1
	NURT 35-1 R	NURT 35-1	840	35	80	29	28	44	1
40	NURT 40 R	NURT 40	817	40	80	32	30	49	1
	NURT 40-1 R	NURT 40-1	1 130	40	90	32	30	49	1
45	NURT 45 R	NURT 45	883	45	85	32	30	53	1
	NURT 45-1 R	NURT 45-1	1 400	45	100	32	30	53	1
50	NURT 50 R NURT 50-1 R	NURT 50 NURT 50-1	950 1 690	50 50	90 110	32 32	30 30	58 58	1 1

Note(1)	Minimum	allowable	value o	f chamfer	dimension r	or	r_1
-------	----	---------	-----------	---------	-----------	---------------	----	-------

Remarks1. The inner ring has an oil hole.

2. Provided with prepacked grease.

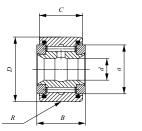
NURT


	Basic dynamic	Basic static	Maximum	
	load rating	load rating	allowable static load	
	C	C_0	Static load	
$r_{1\text{s min}}(^1)$	N	N	N	
0.3	23 400	27 300	11 800	
0.3	23 400	27 300	27 300	
0.3	25 200	30 900	20 300	
0.3	25 200	30 900	30 900	
0.3	38 900	49 000	27 200	
0.3	38 900	49 000	49 000	
0.3	43 100	58 100	30 000	
0.3	43 100	58 100	58 100	
0.3	58 200	75 300	35 200	
0.3	58 200	75 300	75 300	
0.6	63 900	88 800	57 000	
0.6	63 900	88 800	88 800	
0.6	86 500	122 000	75 300	
0.6	86 500	122 000	122 000	
0.6	91 500	135 000	78 700	
0.6	91 500	135 000	135 000	
0.6	96 300	148 000	82 100	
0.6	96 300	148 000	148 000	
	1	I	1	

NART NURT

ROLLER FOLLOWERS

Non-separable Roller Followers, Inch Series Full Complement Type / With Inner Ring



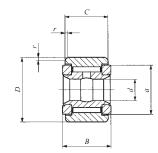
Shaft dia. 6.350 — 31.750mm

CRY…VR

Identificati	on number	Mass (Ref.)	Boundary dimensions mm(inch)					
Shield type Crowner outer ring	Sealed type Crowned outer ring	g	d	D	В	C		
CRY 12 VR CRY 14 VR	CRY 12 VUUR CRY 14 VUUR	27 36	, 4,	, 4/	14.288(0.5625) 14.288(0.5625)	12.700 (½) 12.700 (½)		
CRY 16 VR CRY 18 VR	CRY 16 VUUR CRY 18 VUUR	68 77	7.938 (½) 7.938 (½)	25.400 (1) 28.575 (1½)	17.463(0.6875) 17.463(0.6875)	15.875 (½) 15.875 (½)		
CRY 20 VR CRY 22 VR	CRY 20 VUUR CRY 22 VUUR	109 136	9.525 (³ / ₈) 9.525 (³ / ₈)	31.750 (1½) 34.925 (1¾)	20.638(0.8125) 20.638(0.8125)	19.050 (³ / ₄) 19.050 (³ / ₄)		
CRY 24 VR CRY 26 VR	CRY 24 VUUR CRY 26 VUUR	186 227	11.112 (½) 11.112 (½)			22.225 (½) 22.225 (½)		
CRY 28 VR CRY 30 VR	CRY 28 VUUR CRY 30 VUUR	290 363	12.700 (½) 12.700 (½)			25.400(1) 25.400(1)		
CRY 32 VR CRY 36 VR	CRY 32 VUUR CRY 36 VUUR	476 599			33.338(1.3125) 33.338(1.3125)	31.750 (1½) 31.750 (1½)		
CRY 40 VR CRY 44 VR	CRY 40 VUUR CRY 44 VUUR	816 1 020	19.050 (¾) 19.050 (¾)	63.500 (2½) 69.850 (2¾)	39.688(1.5625) 39.688(1.5625)	38.100 (1½) 38.100 (1½)		
CRY 48 VR CRY 52 VR	CRY 48 VUUR CRY 52 VUUR	1 410 1 640	25.400(1) 25.400(1)	76.200(3) 82.550(3½)	46.038(1.8125) 46.038(1.8125)	44.450 (1 ³ / ₄) 44.450 (1 ³ / ₄)		
CRY 56 VR	CRY 56 VUUR	2 250	28.575 (1 ½)	88.900(3½)	52.388(2.0625)	50.800(2)		
CRY 64 VR	CRY 64 VUUR	3 200	31.750 (1½)	101.600(4)	58.738(2.3125)	57.150 (2½)		
	CRY 12 VR CRY 14 VR CRY 16 VR CRY 18 VR CRY 20 VR CRY 22 VR CRY 24 VR CRY 26 VR CRY 30 VR CRY 30 VR CRY 30 VR CRY 30 VR CRY 32 VR CRY 36 VR CRY 40 VR CRY 44 VR CRY 44 VR CRY 45 VR CRY 55 VR	Crowner outer ring CRY 12 VR CRY 14 VR CRY 14 VR CRY 14 VR CRY 16 VR CRY 18 VR CRY 18 VR CRY 20 VR CRY 22 VR CRY 22 VUUR CRY 26 VR CRY 26 VR CRY 30 VR CRY 30 VR CRY 30 VR CRY 30 VR CRY 36 VR CRY 40 VR CRY 44 VUUR CRY 44 VR CRY 45 VR CRY 45 VR CRY 45 VR CRY 56 VR CRY 56 VUUR	Shield type Crowner outer ring	Shield type Crowner outer ring CRY 12 VR CRY 12 VUUR 27 6.350 (½) 7.938 (½) 7.	Shield type Crowned outer ring Gasto Family CRY 12 VR CRY 12 VUUR CRY 14 VR CRY 14 VUUR CRY 14 VUUR CRY 16 VUR CRY 18 VUR CRY 18 VUR CRY 18 VUR CRY 20 VUR CRY 22 VUR CRY 22 VUR CRY 22 VUR CRY 22 VUR CRY 24 VUR CRY 26 VUR CRY 26 VUR CRY 30 VUR CRY 30 VUR CRY 30 VUR CRY 36 VR CRY 36 VUR CRY 36 VR CRY 36 VUR CRY 36 VR CRY 36 VUR CRY 44 VUR CRY 44 VUR CRY 44 VUR CRY 45 VUR CRY 36 VR CRY 36 VUR CRY 44 VUR CRY 44 VUR CRY 44 VUR CRY 44 VUR CRY 46 VUR CRY 36 VR CRY 36 VUR CRY 36 VR CRY 44 VUR CRY 45 VUR CRY 46 VIR CRY 46 VIR CRY 47 VIR CRY 48 VIR CRY 52 VIR CRY 52 VIR CRY 56 VIR CRY 57 VIR CRY 57 VIR CRY 57 VIR CRY 57 VIR CRY 57 VIR CRY 57 VIR CRY 57 VIR CRY 57 VIR CRY 57 V	Shield type Crowner outer ring Crowned outer ring g d D B CRY 12 VR CRY 12 VUUR 27 6.350 (⅓) 19.050 (⅓) 14.288(0.5625) 14.28		

Remarks1. The inner ring has an oil groove and an oil hole.
2. Provided with prepacked grease.

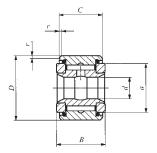
CRY...VUUR


				Shaft di	a. mm			Basic dynamic load rating	Basic static load rating
	D	Pus	h fit	Driv	e fit	Pres	s fit	C	C_0
а	R	Min.	Max.	Min.	Max.	Min.	Max.	N	N
14.4(0.567)	250 (10)	6.332	6.342	6.348	6.358	6.353	6.363	8 710	12 300
14.4(0.567)	250 (10)	6.332	6.342	6.348	6.358	6.353	6.363	8 710	12 300
19.6(0.772)	300 (12) 300 (12)	7.920	7.930	7.935	7.945	7.940	7.950	13 100	22 700
19.6(0.772)		7.920	7.930	7.935	7.945	7.940	7.950	13 100	22 700
25.0(0.984)	360 (14) 360 (14)	9.507	9.517	9.523	9.533	9.528	9.538	23 600	31 700
25.0(0.984)		9.507	9.517	9.523	9.533	9.528	9.538	23 600	31 700
28.8(1.134)	500 (20) 500 (20)	11.095	11.105	11.110	11.120	11.115	11.125	28 200	40 100
28.8(1.134)		11.095	11.105	11.110	11.120	11.115	11.125	28 200	40 100
32.7(1.287)	500 (20) 500 (20)	12.682	12.692	12.698	12.708	12.708	12.718	35 300	55 600
32.7(1.287)		12.682	12.692	12.698	12.708	12.708	12.718	35 300	55 600
36.0(1.417)	600 (24) 600 (24)	15.857	15.867	15.873	15.883	15.883	15.893	45 700	80 600
36.0(1.417)		15.857	15.867	15.873	15.883	15.883	15.893	45 700	80 600
43.3(1.705)	760 (30)	19.032	19.042	19.048	19.058	19.058	19.068	61 400	116 000
43.3(1.705)	760 (30)	19.032	19.042	19.048	19.058	19.058	19.068	61 400	116 000
54.0(2.125)	760 (30)	25.377	25.390	25.397	25.410	25.408	25.420	77 600	172 000
54.0(2.125)	760 (30)	25.377	25.390	25.397	25.410	25.408	25.420	77 600	172 000
61.9(2.437)	760 (30)	28.522	28.565	28.572	28.585	28.583	28.595	111 000	239 000
71.0(2.797)	760 (30)	31.727	31.740	31.747	31.760	31.758	31.770	142 000	317 000

NAST NART NURT CRY

ROLLER FOLLOWERS

Non-separable Roller Followers, Inch Series Full Complement Type /With Inner Ring

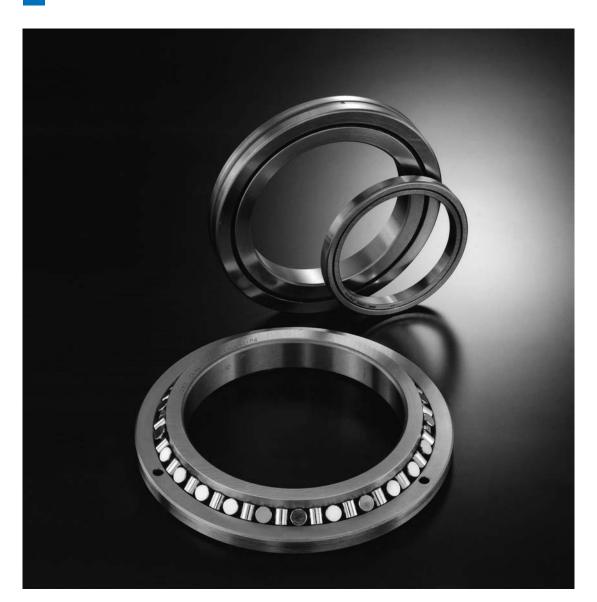


Shaft dia. 6.350 — 31.750mm

CRY...V

Shaft	Identificati	on number	Mass (Ref.)	В	Boundary dimensions mm(inch)				
dia.		I	(1161.)						
mm (inch)	Shield type Cylindrical outer ring	Sealed type Cylindrical outer ring	g	d	D	В	C		
6.350 (½)	CRY 12 V CRY 14 V	CRY 12 VUU CRY 14 VUU	27 36	6.350 (½) 6.350 (½)	19.050 (¾ ₄) 22.225 (½ ₈)		12.700 (½) 12.700 (½)		
7.938 (5/16)	CRY 16 V CRY 18 V	CRY 16 VUU CRY 18 VUU	68 77	7.938 (½) 7.938 (½)	25.400(1) 28.575(1½)	17.463(0.6875) 17.463(0.6875)	15.875 (½) 15.875 (½)		
9.525 (3/8)	CRY 20 V CRY 22 V	CRY 20 VUU CRY 22 VUU	109 136	9.525 (³ / ₈) 9.525 (³ / ₈)	31.750 (1½) 34.925 (1¾)	20.638(0.8125) 20.638(0.8125)	19.050 (¾ ₄) 19.050 (¾ ₄)		
11.112 (½16)	CRY 24 V CRY 26 V	CRY 24 VUU CRY 26 VUU	186 227	11.112 (½) 11.112 (½)	38.100 (1½) 41.275 (1⅓)		22.225 (½) 22.225 (½)		
12.700 (½)	CRY 28 V CRY 30 V	CRY 28 VUU CRY 30 VUU	290 363	12.700 (½) 12.700 (½)	44.450 (1 ³ / ₄) 47.625 (1 ⁷ / ₈)		25.400(1) 25.400(1)		
15.875 (⁵ / ₈)	CRY 32 V CRY 36 V	CRY 32 VUU CRY 36 VUU	476 599	15.875 (½) 15.875 (½)		33.338(1.3125) 33.338(1.3125)	31.750 (1½) 31.750 (1½)		
19.050 (³ ⁄ ₄)	CRY 40 V CRY 44 V	CRY 40 VUU CRY 44 VUU	816 1 020	19.050 (³ / ₄) 19.050 (³ / ₄)	63.500 (2½) 69.850 (2¾)		38.100 (1½) 38.100 (1½)		
25.400 (1)	CRY 48 V CRY 52 V	CRY 48 VUU CRY 52 VUU	1 410 1 640	25.400(1) 25.400(1)	76.200 (3) 82.550 (3 ½)	46.038(1.8125) 46.038(1.8125)	44.450 (1 ³ / ₄) 44.450 (1 ³ / ₄)		
28.575 (1½)	CRY 56 V	CRY 56 VUU	2 250	28.575 (1 ½)	88.900 (3½)	52.388(2.0625)	50.800(2)		
31.750 (1½)	CRY 64 V	CRY 64 VUU	3 200	31.750 (1½)	101.600(4)	58.738(2.3125)	57.150 (2½)		

Remarks1. The inner ring has an oil groove and an oil hole.
2. Provided with prepacked grease.

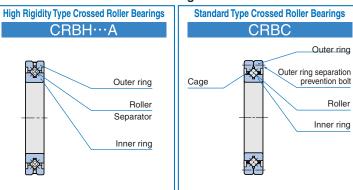

CRY...VUU

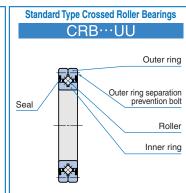
			Shaft dia. mm					Basic dynamic load rating	Basic static load rating
		Pus	h fit	Driv	e fit	Pres	ss fit	C	C_0
а	r	Min.	Max.	Min.	Max.	Min.	Max.	N	N
14.4(0.567)	0.794(½)	6.332	6.342	6.348	6.358	6.353	6.363	8 710	12 300
14.4(0.567)	0.794(½)	6.332	6.342	6.348	6.358	6.353	6.363	8 710	12 300
19.6(0.772)	1.191(¾)	7.920	7.930	7.935	7.945	7.940	7.950	13 100	22 700
19.6(0.772)	1.588(½)	7.920	7.930	7.935	7.945	7.940	7.950	13 100	22 700
25.0(0.984)	1.588 (½)	9.507	9.517	9.523	9.533	9.528	9.538	23 600	31 700
25.0(0.984)	1.588 (½)	9.507	9.517	9.523	9.533	9.528	9.538	23 600	31 700
28.8(1.134)	1.588 (½)	11.095	11.105	11.110	11.120	11.115	11.125	28 200	40 100
28.8(1.134)	1.588 (½)	11.095	11.105	11.110	11.120	11.115	11.125	28 200	40 100
32.7(1.287)	1.588 (½)	12.682	12.692	12.698	12.708	12.708	12.718	35 300	55 600
32.7(1.287)	1.588 (½)	12.682	12.692	12.698	12.708	12.708	12.718	35 300	55 600
36.0(1.417)	1.588 (½)	15.857	15.867	15.873	15.883	15.883	15.893	45 700	80 600
36.0(1.417)	1.588 (½)	15.857	15.867	15.873	15.883	15.883	15.893	45 700	80 600
43.3(1.705)	2.381(¾)	19.032	19.042	19.048	19.058	19.058	19.068	61 400	116 000
43.3(1.705)	2.381(¾)	19.032	19.042	19.048	19.058	19.058	19.068	61 400	116 000
54.0(2.125)	2.381(¾)	25.377	25.390	25.397	25.410	25.408	25.420	77 600	172 000
54.0(2.125)	2.381(¾)	25.377	25.390	25.397	25.410	25.408	25.420	77 600	172 000
61.9(2.437)	2.381(3/2)	28.522	28.565	28.572	28.585	28.583	28.595	111 000	239 000
71.0(2.797)	2.381(¾)	31.727	31.740	31.747	31.760	31.758	31.770	142 000	317 000

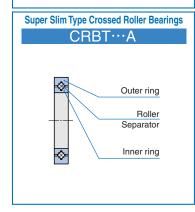
NAST NART NURT CRY

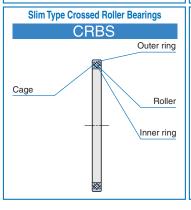
CROSSED ROLLER BEARINGS

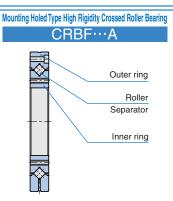
- High Rigidity Type Crossed Roller Bearings
- Standard Type Crossed Roller Bearings
- Super Slim Type Crossed Roller Bearings
- **Slim Type Crossed Roller Bearings**
- Mounting Holed Type High Rigidity Crossed Roller Bearing




■ Structure and Features


IKO Crossed Roller Bearings are compact bearings with their rollers alternately crossed at right angles to each other between inner and outer rings. They can take loads from any directions at the same time such as radial, thrust and moment loads. The rollers make line-contact with raceway surfaces, and, therefore, elastic deformation due to bearing loads is very small. These bearings are widely used in the rotating parts of industrial robots, machine tools, medical equipment, etc., which require compactness, high rigidity and high rotational accuracy.


In addition, bearings made of stainless steel or those with inner and outer rings provided with mounting holes are also available on request. Please contact **IKD**.


Structure of Crossed Roller Bearings

CRBH CRBC CRB CRBT CRBS CRBF

J1 J2

Crossed Roller Bearings are available in the types shown in Table 1.

Table 1 Crossed Roller Bearing Type

Туре		With Cage	With Separator	Full complement
High Rigidity Type Crossed Roller Bearings	Open type	_	CRBH ··· A	_
CRBH	Sealed type	_	CRBH ··· AUU	_
Standard Type Crossed Roller Bearings	Open type	CRBC	_	CRB
CRBC, CRB	Sealed type	CRBC ··· UU	_	CRB UU
Super Slim Type Crossed Roller Bearings CRBT	Open type	_	CRBT ··· A	_
Slim Type Crossed Roller Bearings	Open type	CRBS	_	CRBS ··· V
CRBS	Sealed type	_	CRBS ··· AUU	CRBS ··· VUU
Mounting Holed Type High Rigidity Crossed Roller Bearing	Open type	_	CRBF ··· A	_
CRBF	Sealed type	_	CRBF AUU	_

High Rigidity Type Crossed Roller Bearings

Both inner and outer rings have a solid one-piece construction. Therefore, high accuracy and high rigidity are achieved, and mounting errors can be minimized. As separators are incorporated between the cylindrical rollers for smooth rotation, these bearings are suitable for applications where rotational speed is comparatively high.

Standard Type Crossed Roller Bearings

The outer ring is made of two split pieces, which are bolted together to prevent separation during transportation or mounting. So, handling is easy.

Super Slim Type Crossed Roller Bearings

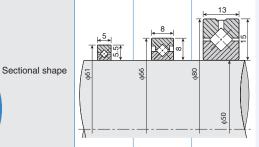
This Type is extremely compact bearing having 5.5mm of sectional height and 5mm of width. Separators are incorporated between Cylindrical rollers for smooth rotation. These compactness, lightness and smoothness contribute downsizing of the machine and saving driving power.

Slim Type Crossed Roller Bearings

These bearings are slim bearings having a small outside diameter, in comparison with the bore diameter, and a narrow width. The type with cage and the type with separator provide smooth rotation and are suitable for applications where rotational speed is comparatively high.

Mounting Holed Type High Rigidity Crossed Roller Bearing

Mounting holes are prepared on outer ring and inner ring providing easy mounting together with high rigidity and high accuracy.


■ Features of Super Slim Type Crossed Roller Bearing CRBT

The world's thinnest roller type! Very low cross sectional height of 5.5 mm

The cross sectional height is reduced by 69% in comparison with CRBS, which was the thinnest before (bearing bore diameter 50 mm).

The width is also as small as 5 mm and the cross sectional area is reduced by 43% in comparison with conventional products.

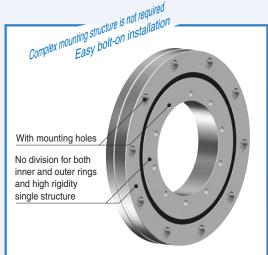
Comparison of bearing bore diameter 50 mm

tem	Series	Super Slim CRBT505A	Slim CRBS508	High rigidity CRBH5013A	
Outer d	iameter mm	61	66	80	
Width	mm	5	8	13	
Section	al height mm	5.5	8	15	
C	N	2280	4900	17300	
C_0	N	3200	6170	20900	
Mass	g	32.3	84	290	
	Compared with CRBH	0.11	0.29	1.00	
	Compared with CRBS	0.38	1.00	3.45	

Significant weight saving by 38% in comparison with conventional types was realized

Weight reduction is thoroughly pursued. The mass ratio is 0.38 and significant weight saving was realized in comparison with conventional slim type CRBS (bearing bore diameter 50 mm).

Features of Mounting Holed Type High Rigidity Crossed Roller Bearing CBRF


High rigidity and high accuracy

The single structure to reduce the mounting errors is adopted for both inner and outer rings. Further, mounting holes for direct fixing on mating mounting surface are available. So high rigidity and high accuracy guide can be easily realized, being less subject to the structure of the housing and the accuracy.

Contributing to miniaturization

It can be easily mounted to a device with bolts without need for housing and fixing plate, so surrounding parts of the bearing can be made compact.

Further, it allows for reduction of the number of parts and assembly processes, which contributes to miniaturization and weight saving of devices.

Single structure for both inner and outer rings!

Mounting Holed Type High Rigidity Crossed Roller Bearing

CRBF

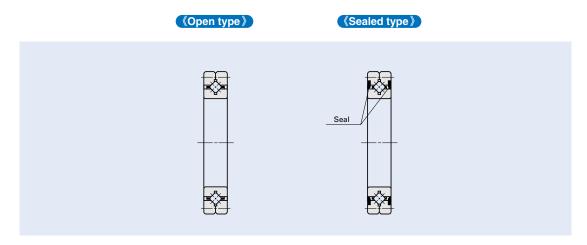
CRBH CRBC CRB CRBT CRBS CRBF

Internal Structures and Shapes

Various types are lined up in Crossed Roller Bearing series, including the type with cage, the type with separator, open type, sealed type, etc..

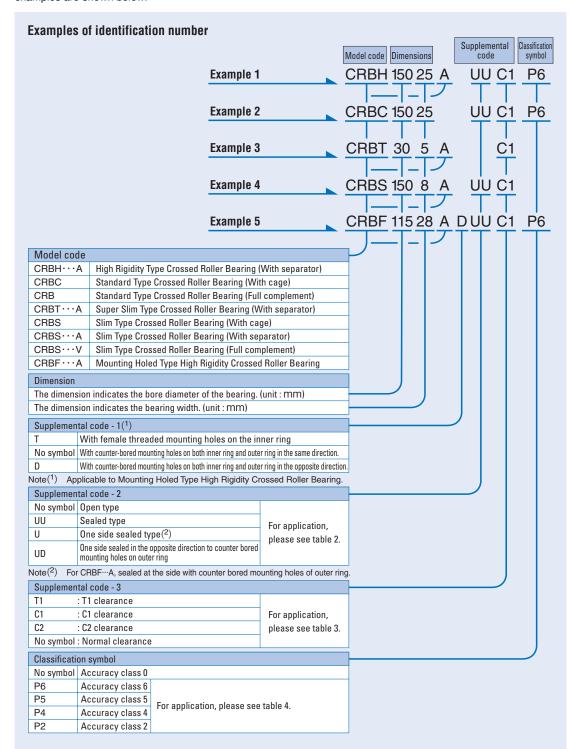
Roller guide method

Crossed Roller Bearings include the type with cage, type with separator and full complement type. The type with cage and the type with separator have a small coefficient of friction and are suitable for com-


paratively high speed rotations, while the full complement type is suitable for heavy load applications at low speed rotations.

Roller Outer ring Separation prevention bolt Inner ring Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Separation prevention bolt Inner ring Outer ring Outer ring Separation prevention bolt Inner ring Outer ring Outer ring Separation prevention bolt Inner ring Outer rin

Seal structure


Crossed Roller Bearings include the open type and sealed type. The sealed type bearing incorporates seals made of special synthetic rubber that have

excellent sealing performance against dust and dirt penetration and grease leakage. However, excess grease may be discharged during initial operations.

Identification number

The identification number of Crossed Roller Bearings consists of a model code, dimensions, any supplemental codes and a classification symbol. Some examples are shown below.

J6

Table 2 Seal Specification

Model code	No Symbol	UU	U	UD
CRBHA	0	0	0	_
CRBC	0	0	0	_
CRB	0	0	0	_
CRBT ··· A	0	-	_	_
CRBS	0	_	_	_
CRBS ··· A	_	0	0	_
CRBS ··· V	0	0	0	_
CRBF ··· A	0	0	0	0

Table 3 Clearance Specification

Model code	T1	C1	C2	No Symbol
CRBHA	0	0	0	_
CRBC	0	0	0	_
CRB	0	0	0	_
CRBT ··· A	_	0	_	_
CRBS	0	0	_	0
CRBS···A	0	0	_	0
CRBS ··· V	0	0	_	0
CRBFA	0	0	0	_

Table 4 Accuracy Class

Model code	No Symbol	P6	P5	P4	P2
CRBHA	0	0	0	0	0
CRBC	0	0	0	0	0
CRB	0	0	0	0	0
CRBT ··· A	0	_	_	_	_
CRBS	0	_	_	_	_
CRBS···A	0	_	_	_	_
CRBS ··· V	0	_	_	_	_
CRBF ··· A	0	0	0	0	0

Dynamic Equivalent Load

The direction of basic dynamic load rating of Crossed Roller Bearing is the radial direction. When a load in any direction other than the direction of basic dynamic load rating or a complex load is applied, calculate the dynamic equivalent load to calculate the rating life.

$$P_{\rm r} = X \left(F_{\rm r} + \frac{2M}{D_{\rm pw}} \right) + Y F_{\rm a} \quad \cdots \qquad \cdots \qquad (1)$$
 where, $P_{\rm r}$: Dynamic equivalent radial load, N

 $F_{\rm r}$: Radial load, N $F_{\rm a}$: Axial load, N

M: Moment, N-mm

 D_{pw} : Pitch circle diameter of roller set, mm

X: Radial load factor (Refer to Table 5.)

Y: Axial load factor (Refer to Table 5.)

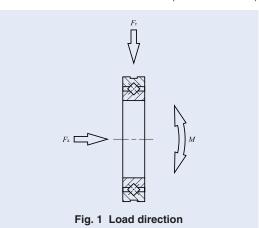


Table 5 Radial load factor and axial load factor

Conditions	X	Y
$\frac{F_{\rm a}}{F_{\rm r} + 2M/D_{\rm pw}} \le 1.5$	1	0.45
$\frac{F_{\rm a}}{F_{\rm r} + 2M/D_{\rm pw}} > 1.5$	0.67	0.67

Static Equivalent Load

The direction of basic static load rating of Crossed Roller Bearing is the radial direction. When a load in any direction other than the direction of basic static load rating or a complex load is applied, calculate the static equivalent load to calculate the static safety fac-

$$P_{0\,\mathrm{r}}\!=\!F_{\mathrm{r}}\!+\!\frac{2M}{D_{\mathrm{pw}}}\!+\!0.44\,F_{\mathrm{a}}\cdot\cdots\cdot\cdot\cdot\cdot\cdot\cdot\cdot(2)$$
 where, $P_{0\,\mathrm{r}}$: Static equivalent radial load, N F_{r} : Radial load, N

 $F_{\rm a}$: Axial load, N

M: Moment, N-mm

 $D_{
m pw}$: Pitch circle diameter of roller set, mm

$$\left(D_{\mathrm{pw}} = \frac{d+D}{2}\right)$$

Accuracy

The accuracy of Crossed Roller Bearings is shown in Tables 6 and 7. However the accuracy of Super Slim Type Crossed Roller Bearings is based on Table 8. the accuracy of Slim Type Crossed Roller Bearings is

based on Table 9, and the accuracy of Mounting Holed type High Rigidity Crossed Roller Bearings is based on Table 10.1 and 10.2.

Bearings with special accuracy are also optionally available. Please consult IKI

Table 6 Tolerances and allowable values of inner rings and tolerances of outer ring width

unit: μ m

	a	!				$\Delta_{d\mathrm{m}}$	_p (1)				Δ_{Bs} Δ_{Cs} (2)						K_{ia}					S_{ia}				
N	omina diam	al bore eter		Single	e plane	mean	bore d	lia. dev	riation			tion of ngle r rina		tion of ngle r rina	Rad	ial run- bearii	out of ng inne		bled			bearin out with	•	•		
	mı	m	Cla	ss 0	Cla	ss 6	Cla	ss 5	Clas	ss 4		dth	Wi		Class	Class	Class	Class	Class	Class	Class	Class	Class	Class		
(Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	0	6	5	4	2	0	6	5	4	2		
	18	30	0	-10	0	- 8	0	- 6	0	- 5	0	- 75	0	-100	13	8	4	3	2.5	13	8	4	3	2.5		
	30	50	0	-12	0	-10	0	- 8	0	- 6	0	- 75	0	-100	15	10	5	4	2.5	15	10	5	4	2.5		
	50	80	0	-15	0	-12	0	- 9	0	- 7	0	- 75	0	-100	20	10	5	4	2.5	20	10	5	4	2.5		
	80	120	0	-20	0	- 15	0	-10	0	- 8	0	- 75	0	-100	25	13	6	5	2.5	25	13	6	5	2.5		
-	120	150	0	-25	0	-18	0	-13	0	-10	0	-100	0	-120	30	18	8	6	2.5	30	18	8	6	2.5		
_	150	180	0	-25	0	-18	0	-13	0	-10	0	-100	0	-120	30	18	8	6	5	30	18	8	6	5		
-	180	250	0	-30	0	-22	0	- 15	0	-12	0	-100	0	-120	40	20	10	8	5	40	20	10	8	5		
2	250	315	0	-35	0	-25	0	-18	_	_	0	-120	0	-150	50	25	13	10	7	50	25	13	10	7		
3	315	400	0	-40	0	-30	0	-23	_	_	0	-150	0	-200	60	30	15	12	8	60	30	15	12	8		
4	100	500	0	-45	0	-35	_	_	_	_	0	-150	0	-200	65	35	18	14	10	65	35	18	14	10		
į	500	630	0	-50	0	-40	_	_	_	_	0	-150	0	-200	70	40	20	16	12	70	40	20	16	12		
(30	800	0	-75	_	_	_	_	_	_	0	-150	0	-200	80	50	25	20	15	80	50	25	20	15		

Notes(1) When values are not indicated in the table (Class 2, etc.), those for the highest class for which the values are indicated are applicable. (2) In case of High Rigidity Type Crossed Roller Bearings, the tolerances for deviation of a single inner ring width are applicable to those

Remark The accuracy specified in this table is not applicable to Mounting Holed Type High Rigidity Crossed Roller Bearings. Slim Type Crossed Roller Bearings and Super Slim Type Crossed Roller Bearings.

Table 7 Tolerances and allowable values of outer ring

of a single outer ring width.

unit: μ m

	Non outs diam	inal side		Singl	e plane	$arDelta_{D\mathrm{m}}$ mean o	p (1) outside o	lia. devi	ation		Radial		$K_{ m ea}$ of asse		pearing	$S_{\rm ea}$ Assembled bearing outer ring face run-out with raceway Class Class Class Class				
	m	m	Cla	ss 0	Cla	ss 6	Clas	ss 5	Cla	ss 4	Class	Class	Class	Class	Class	Class	Class	Class	Class	Class
	0ver	Incl.	High	Low	High	Low	High	Low	High	Low	0	6	5	4(2)	2(2)	0	6	5	4(2)	2(2)
Ī	30	50	0	- 11	0	- 9	0	- 7	0	- 6	20	10	7	5	2.5	20	10	7	5	2.5
	50	80	0	- 13	0	-11	0	- 9	0	- 7	25	13	8	5	4	25	13	8	5	4
	80	120	0	- 15	0	-13	0	-10	0	- 8	35	18	10	6	5	35	18	10	6	5
-	120	150	0	- 18	0	- 15	0	-11	0	- 9	40	20	11	7	5	40	20	11	7	5
	150	180	0	- 25	0	-18	0	-13	0	-10	45	23	13	8	5	45	23	13	8	5
	180	250	0	- 30	0	-20	0	- 15	0	-11	50	25	15	10	7	50	25	15	10	7
	250	315	0	- 35	0	-25	0	-18	0	-13	60	30	18	11	7	60	30	18	11	7
	315	400	0	- 40	0	-28	0	-20	_	_	70	35	20	_	_	70	35	20	_	_
	400	500	0	- 45	0	-33	0	-23	_	_	80	40	23	_	_	80	40	23	_	_
	500	630	0	- 50	0	-38	0	-28	_	_	100	50	25	_	_	100	50	25	_	_
	630	800	0	- 75	0	-45	_	_	_	_	120	60	30	_	_	120	60	30	_	_
	800	1000	0	-100	0	-60	_	_	_	_	120	75	35	_	_	120	75	35	_	_
	1000	1030	0	- 125	_	_	_		_	_	120	75	35	_	_	120	75	35	-	_

Notes(1) When values are not indicated in the table (Class 2, etc.), those for the highest class for which the values are indicated are applicable. (2) Classes 4 and 2 apply to High Rigidity Type Crossed Roller Bearings. For Standard Type Crossed Roller Bearings, the tolerance values for Class 5 are applicable to Classes 4 and 2.

The accuracy specified in this table is not applicable to Super Slim Type Crossed Roller Bearings, Slim Type Crossed Roller Bearings and Mounting Holed Type High Rigidity Crossed Roller Bearings.

Table 8 Tolerances and allowable values of Super Slim Type Crossed Roller Bearings

Table 8 Tolera	ances and a	allowable v	alues of S	uper Slim 1	Type Cross	ed Roller I	Bearings	unit:μ m
d Nominal bore diameter			Single plane m	Omp ean outside dia. ation	Deviations of a sin	nd $\Delta_{C\mathrm{s}}$ gle inner ring width ring width	$K_{ m ia}$ and $S_{ m ia}$ Radial and axial run-out of assembled bearing	$K_{ m ea}$ and $S_{ m ea}$ Radial and axial run-out of assembled bearing
mm	High	Low	High	Low	High Low		inner ring	outer ring
20	0	- 10	0	-11	0	- 75	13	20
30	0	-10	0	-11	0 -75		13	20
40	0	-12	0	- 13	0	- 75	15	25
50	0	-12	0	- 13	0	- 75	15	25

Table 9 Tolerances and allowable values of Slim Type Crossed Roller Bearings

Table 9 Tolera	able 9 Tolerances and allowable values of SIIII Type Crossed Holler Bearings unit: μ m $d \qquad \qquad \Delta_{dmp} \qquad \Delta_{Dmp} \qquad \Delta_{Bs} \text{ and } \Delta_{Cs} \qquad K_{ia} \text{ and } S_{ia} \qquad K_{ea} \text{ and } S_{ea}$											
d Nominal bore diameter	Single plane n $devia$	nean bore dia.	Single plane me		Deviations of a sing	nd $\Delta_{C_{ m S}}$ gle inner ring width ring width	$K_{ m ia}$ and $S_{ m ia}$ Radial and axial run-out of assembled bearing	$K_{ m ea}$ and $S_{ m ea}$ Radial and axial run-out of assembled bearing				
mm	High	Low	High	Low	High	Low	inner ring	outer ring				
50	0	- 15	0	- 13	0	- 127	13	13				
60	0	- 15	0	- 13	0	- 127	13	13				
70	0	- 15	0	- 15	0	- 127	15	15				
80	0	-20	0	- 15	0	- 127	15	15				
90	0	-20	0	- 15	0	- 127	15	15				
100	0	-20	0	- 15	0	- 127	15	15				
110	0	-20	0	- 20	0	- 127	20	20				
120	0	- 25	0	- 20	0	- 127	20	20				
130	0	- 25	0	- 25	0	- 127	25	25				
140	0	- 25	0	- 25	0	- 127	25	25				
150	0	- 25	0	- 25	0	- 127	25	25				
160	0	- 25	0	- 25	0	- 127	25	25				
170	0	- 25	0	- 30	0	- 127	25	25				
180	0	- 30	0	- 30	0	- 127	30	30				
190	0	- 30	0	- 30	0	- 127	30	30				
200	0	-30	0	- 30	0	- 127	30	30				

Table 10.1 Tolerances and allowable values of inner rings of Mounting Holed Type High Rigidity Crossed Roller Bearings $_{ ext{unit:}}$ $_{ ext{unit:}}$ $_{ ext{unit:}}$

	<i>d</i> Nomina diame			Singl	le pla	$arDelta_d$ ine mean		dia. devi	ation	ı		Dev	$arDelta_{B{ m s}}$ iation of gle inner			$K_{ m ia}$ -out of a ng inne	assemb r ring	led				g inner 1 racew	•
	mr	n	C	lass 0	С	lass 6	С	lass 5		lass 4 lass 2		rin	g width	Class	Class	Class	Class	Class	Class	Class	Class	Class	Class
	Over	Incl.	High	Low	High	Low	High	Low	High	Lov	v	High	Low	0	6	5	4	2	0	6	5	4	2
Ī	_	20	0	- 10	0	- 8	0	- 6	0	-	5	0	- 75	13	8	4	3	2.5	13	8	4	3	2.5
	20	30	0	-10	0	- 8	0	- 6	0	_	5	0	- 75	15	10	5	4	2.5	15	10	5	4	2.5
	30	35	0	- 12	0	-10	0	- 8	0	_	6	0	− 75	15	10	5	4	2.5	15	10	5	4	2.5
	35	50	0	- 12	0	-10	0	- 8	0	_	6	0	- 75	20	10	5	4	2.5	20	10	5	4	2.5
	50	65	0	- 15	0	- 12	0	- 9	0	_	7	0	− 75	20	10	5	4	2.5	20	10	5	4	2.5
	65	80	0	- 15	0	- 12	0	- 9	0	_	7	0	− 75	25	13	6	5	2.5	25	13	6	5	2.5
	80	100	0	- 20	0	- 15	0	-10	0	_	8	0	- 75	25	13	6	5	2.5	25	13	6	5	2.5
	100	120	0	- 20	0	- 15	0	-10	0	_	8	0	- 75	30	18	8	6	2.5	30	18	8	6	2.5

Table 10.2 Tolerances and allowable values of outer rings of Mounting Holed Type High Rigidity Crossed Roller Bearings $unit: \mu m$

L					Δ_L	mp					$\Delta_{C\mathrm{s}}$			Kea					S_{ea}	S_{ea}					
Nom outs diam	ide		Single	plan	e mean o	utsid	le dia. de			a si	viation of ngle outer			out of	assemb r ring	led				g outer racew	•				
m	m	CI	lass 0	С	lass 6	С	lass 5		lass 4 lass 2	rii	ng width	Class	Class	Class	Class	Class	Class	Class	Class	Class	Class				
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	0	6	5	4	2	0	6	5	4	2				
50	60	0	- 13	0	-11	0	- 9	0	- 7	0	- 75	20	10	7	5	2.5	20	10	7	5	2.5				
60	80	0	-13	0	- 11	0	- 9	0	- 7	0	- 75	25	13	8	5	4	25	13	8	5	4				
80	95	0	- 15	0	- 13	0	-10	0	– 8	0	- 75	25	13	8	5	4	25	13	8	5	4				
95	120	0	- 15	0	- 13	0	- 10	0	- 8	0	- 75	35	18	10	6	5	35	18	10	6	5				
120	140	0	- 18	0	- 15	0	- 11	0	— 9	0	- 75	35	18	10	6	5	35	18	10	6	5				
140	150	0	- 18	0	- 15	0	-11	0	– 9	0	- 75	40	20	11	7	5	40	20	11	7	5				
150	165	0	- 25	0	- 18	0	- 13	0	— 10	0	- 75	40	20	11	7	5	40	20	11	7	5				
165	180	0	- 25	0	- 18	0	- 13	0	- 10	0	- 75	45	23	13	8	5	45	23	13	8	5				
180	210	0	-30	0	- 20	0	- 15	0	- 11	0	- 75	45	23	13	8	5	45	23	13	8	5				
200	240	0	- 30	0	- 20	0	- 15	0	- 11	0	- 75	50	25	15	10	7	50	25	15	10	7				

Clearance

The radial internal clearances of Crossed Roller Bearings are shown in Table 11.1. However, the radial internal clearances of Super Slim Type Crossed Roller Bearings are based on Table11.2, Slim Type Crossed Roller Bearings are based on Table 11.3, and Mounting Holed Type High Rigidity Crossed Roller Bearings are based on Table 11.4.

Table 11.1 Radial internal clearances

Table	u	nit: μ n					
-	l .		Rad	dial intern	al cleara	nce	
Nominal bo m		Т	1	С	:1	С	2
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.
_	30	- 10	0	0	10	10	20
30	40	-10	0	0	10	10	20
40	50	-10	0	0	10	10	25
50	65	-10	0	0	10	10	25
65	80	-10	0	0	15	15	30
80	100	-10	0	0	15	15	35
100	120	- 15	0	0	15	15	35
120	140	- 15	0	0	20	20	45
140	160	- 15	0	0	20	20	50
160	200	- 15	0	0	20	20	50
200	250	-20	0	0	25	25	60
250	315	-20	0	0	25	25	60
315	400	- 25	0	0	30	30	70
400	500	-30	0	0	40	40	85
500	630	-30	0	0	50	50	100
630	710	- 30	0	0	60	60	120
710	800	-40	0	0	70	70	140
Remark	This to	able is n	ot applic	able to S	Super Sli	m Type	Crosse

This table is not applicable to Super Slim Type Crossed Roller Bearings, Slim Type Crossed Roller Bearings and Mounting Holed Type High Rigidity Crossed Roller Bearings.

Table 11.2 Radial internal clearances for Super Slim Type Crossed Roller Bearings unit: // m

Type	crossed Holler De	unit: μ m
d Nominal bore diameter of bearing	Radial intern	
mm	Min.	Max.
20	0	15
30	0	15
40	0	15
50	0	15

Table 11.3 Radial internal clearances of Slim

	/pe Cro	ssea r	Roller E	searing	js u	nit: μ m
d		Rad	dial intern	al clearaı	nce	
Nominal bore diameter	Т	1	С	1	Nor	mal
mm	Min.	Max.	Min.	Max.	Min.	Max.
50	- 8	0	0	15	30	56
60	- 8	0	0	15	30	56
70	- 8	0	0	15	30	56
80	- 8	0	0	15	41	66
90	- 8	0	0	15	41	66
100	- 8	0	0	15	41	66
110	- 8	0	0	15	41	66
120	- 8	0	0	15	51	76
130	- 8	0	0	15	51	76
140	- 8	0	0	15	51	76
150	- 8	0	0	15	51	76
160	-10	0	0	20	51	76
170	-10	0	0	20	51	76
180	-10	0	0	20	61	86
190	-10	0	0	20	61	86
200	-10	0	0	20	61	86

Table 11.4 Radial internal clearances of Mounting Holed Type High Rigidity Crossed Roller Bearings

2 p								
Ť	d .		Rad	dial intern	al cleara	nce		
Nominal bo m	re diameter m	Т	1	C	21	C2		
Over	Incl.	Min.	Max.	Min.	Max.	Min.	Max.	
	20	- 10	0	0	10	10	20	
20	25	-10	0	0	10	10	20	
25	35	-10	0	0	10	10	25	
35	65	- 10	0	0	15	15	30	
65	80	- 10	0	0	15	15	35	
80	95	- 15	0	0	15	15	35	
95	110	- 15	0	0	20	20	45	
110	125	- 15	0	0	20	20	50	

The standard fits of Crossed Roller Bearings are shown in Table 12.1, and recommended fits for Slim Type Crossed Roller Bearings with normal clearances are shown in Table 12.2. For Super Slim Type Crossed Roller Bearings, it is recommended to use a slight interference fit adjusted to the actual measured dimensions. For large bearings, fit based on the actual measured dimensions of the bearings is recommended, and fit allowance should be chosen as small as possible in accordance with the tolerance class given in Table 12.1. When complex loads or shock loads are applied or when high rotational accuracy and rigidity of the bearing are required, it is recommended to use a slight interference fit adjusted to the actual measured dimensions for both inner and outer rings.

For the interference fit, the radial internal clearance after the fit decreases by approximately 70% to 90% of the interference amount. To avoid excessive preload due to fit, it is recommended to use a slight interference fit adjusted to the actual measured dimensions for both T1 and C1 clearances.

Table 12.1 Recommended fits for Crossed Roller Bearings under normal load

I			Toleran	ce class		
	Radial internal clearance	Inner ring r	otating load	Outer ring rotating load		
		Shaft	Housing bore	Shaft	Housing bore	
ĺ	C1 clearance	h5	H7	g5	J7 ⁽¹⁾	
Ī	C2 clearance	j5	H7	g5	J7(1)	

Note(1) It is recommended that a slight interference fit adjusted to the actual measured dimensions of the bearing is used.

Table 12.2 Recommended fits for Slim Type Crossed Roller Bearings with normal clearances

(Dimensional tolerances of shaft and housing bore)

unit: μ m

d		Inner ring r	otating load		Outer ring rotating load				
Nominal bore diameter	Sh	aft	Housin	ig bore	Sh	aft	Housin	ig bore	
mm	High	Low	High	Low	High	Low	High	Low	
50	+ 15	0	+ 13	0	- 15	-30	- 13	- 25	
60	+ 15	0	+13	0	- 15	-30	- 13	- 25	
70	+ 15	0	+ 15	0	- 15	-30	- 15	-30	
80	+20	0	+ 15	0	-20	-40	- 15	-30	
90	+20	0	+ 15	0	- 20	-40	- 15	-30	
100	+20	0	+ 15	0	- 20	-40	- 15	-30	
110	+20	0	+20	0	- 20	-40	- 20	-40	
120	+25	0	+20	0	- 25	- 50	- 20	-40	
130	+ 25	0	+ 25	0	- 25	- 50	- 25	-50	
140	+ 25	0	+ 25	0	- 25	- 50	- 25	-50	
150	+ 25	0	+ 25	0	- 25	- 50	- 25	-50	
160	+25	0	+ 25	0	- 25	- 50	- 25	-50	
170	+ 25	0	+30	0	- 25	- 50	- 30	-60	
180	+30	0	+30	0	- 30	-60	- 30	-60	
190	+30	0	+30	0	- 30	-60	- 30	-60	
200	+30	0	+30	0	- 30	-60	- 30	-60	

■ Allowable rotational speed

Allowable rotational speeds of Crossed Roller Bearings are affected by mounting and operating conditions. The values in general operation are shown in Table 13.

Table 13 $d_m n$ values⁽¹⁾ of Crossed Roller Bearings

rabio io ami raio	.00() 0. 0.00		Doamingo
Туре	Lubricant	Grease	Oil
With cage or	Open type	75 000	150 000
with separator	Sealed type	60 000	_
Full complement	Open type	50 000	75 000
Full complement	Sealed type	40 000	_

· $d_{\rm m}n$ value = $d_{\rm m} \times n$

where, $d_{
m m}$: Mean value of bearing bore and outside diameters, $\,{
m mm}$ n: Number of rotations per minute, rpm

Rotational torque

Rotational torque of **IKO** Crossed Roller Bearings are lower than that of plain bearings and the difference between the static torque and the dynamic (kinetic) torque is small. Therefore, these bearings minimize power consumption and operating temperature rise of machinery and increase the overall efficiency of machines.

The rotational torque is affected by many factors, but the following formula can be used expediently.

$$T = \mu P_{0r} \frac{D_{pw}}{2}$$

where, T: Rotational torque, $N \cdot mm$

 μ : Friction coefficient (Approx. 0.010) P_{0r} : Static equivalent radial load, N D_{nw} : Pitch circle diameter, mm

 $\left(D_{\text{pw}} = \frac{d+D}{2}\right)$

Lubrication

These bearings are generally lubricated with grease. Grease is supplied through the clearance between the inner ring and the outer ring.

Grease specification is shown in Table 14, ALVANIA GREASE EP2 (SHOWA SHELL SEKIYU K.K) is prepacked as the lubricating grease.

For bearings without prepacked grease, supply grease or oil for use. Operating without grease or oil will increase the wear of the rolling contact surfaces and cause a short bearing life.

When using a special grease, carefully examine the grease properties and contents such as base oil viscosity and extreme pressure additives. In this case, please contact IKD.

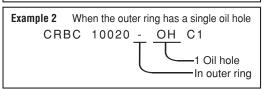
Table 14 Bearings with prepacked grease

○ : With prepacked grease × : Without prepacked grease

	S	eal specification	on
Model code	Open type (No symbol)	Sealed type (UU)	One side sealed type (U)
CRBHA	×	0	×
CRBC	×	0	×
CRB	×	0	×
CRBT ··· A	0	_	_
CRBS	×	_	_
CRBS ··· A	_	0	×
CRBS ··· V	×	0	×
CRBF ··· A	×	0	×

Oil Hole

For Crossed Roller Bearings, oil holes and oil grooves can be provided on bearing rings on request. When an oil hole is required on the outer ring, attach "-OH" before the clearance symbol in the identification number. When an oil hole and an oil groove are required on the outer ring, attach "-OG" at the same place in the identification number. For an oil hole on the inner ring, attach "/OH", and for an oil hole and an oil groove on the inner ring, attach "/OG", at the same place in the identification number. High Rigidity Type Crossed Roller Bearings have an oil groove and two oil holes on the outer ring as standard. Table 15 shows availability of oil holes for each bearing type.


Table 15 Oil holes

Bearing type		Oil hol	e code	
bearing type	/nOH	/nOG	-nOH	-nOG
CRBHA	0	0	_	- (1)
CRBC	0	0	0	0
CRB	0	0	0	0
CRBT ··· A	_	_	_	_
CRBS	0	_	0	_
CRBS ··· A	0	_	0	_
CRBS ··· V	0	_	0	_
CRBF ··· A	_	_	_	- (1)

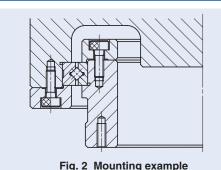
Notes(1) CRBH ··· A and CRBF ··· A are provided with an oil groove and two oil holes on the outer ring.

n denotes the number of oil holes not exceeding 4. For one oil hole, number is not indicated.

When preparing multiple oil holes, please contact ${f IKD}$.

Operating Temperature Range

The operating temperature range for Crossed Roller Bearings is $-20\,^{\circ}\text{C} \! \sim \! +120\,^{\circ}\text{C}$. However, the maximum allowable temperature for types with separator and with seal is $+110\,^{\circ}\text{C}$, and $+100\,^{\circ}\text{C}$ when they are continuously operated.


Mounting

When the rigidity of the mounting parts is not sufficient, stress concentration will occur at the contact area between the rollers and raceways, and the bearing performance will be deteriorated significantly.

Therefore, it is necessary to carefully examine the rigidity of housing and the strength of fixing bolts when a large moment will be applied.

The shoulder height diameters ($d_{\rm a}$ and $D_{\rm a}$) that are related to mounting should certainly satisfy the values shown in the dimension tables. When these dimensions are incorrect, deformations of inner and outer rings will occur and the bearing performance will be deteriorated remarkably.

1. For other Mounting Holed Type High Rigidity Crossed Roller Bearing

● The inner and outer rings should be securely fixed in the axial direction by using fixing plates, etc. Recommended thickness of the fixing plate is 1/2 or more of the bearing width *B*. The dimensions in the axial direction of the housing bore and the fixing

plates should be determined to get a secure fixing while considering the dimension of bearing width which is given a minus tolerance. (See Fig.2)

- The depth of the housing bore is recommended to be equal to or larger than the bearing width.
- **③** Separation prevention bolts for the outer ring of Standard Type Crossed Roller Bearings are provided to prevent separation of two halves of the outer ring during transportation or mounting. When mounting, they should be loosened slightly.
- ♠ High Rigidity Type Crossed Roller Bearings, Super Slim Type Crossed Roller Bearings and Slim Type Crossed Roller Bearings have a plug for hole for inserting rollers. When mounting the bearings, locate the plug at a position that is not included in the maximum loading zone. The plug location can be found by the pin that is at the side of the outer ring.

2. For Mounting Holed Type High Rigidity Crossed Roller Bearing

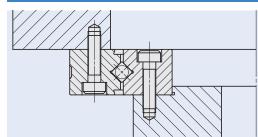


Fig.3 Example of direct mounting to the mating surface of Mounting Holed Type High Rigidity Crossed Roller Bearing

♠ Mounting Holed Type High Rigidity Crossed Roller Bearing can be mounted directly to the mounting surface by fixing bolts. (See Fig.3)

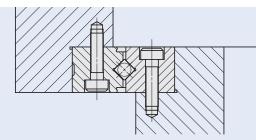


Fig.4 Example of mounting to the housing of Mounting Holed Type High Rigidity Crossed Roller Bearing

- ② If large number of radial load and/or moment is expected, it is recommended to prepare flange part. (See Fig.4)
- Mounting Holed Type High Rigidity Crossed Roller Bearing has a plug for hole for inserting cylindrical rollers. When mounting the bearings, locate the plug at a position that is not included in the maximum loading zone. The plug location can be found by the pin that is at the side of the outer ring.

Tightening torque of mounting bolts

The standard torque values for Mounting Holed Type High Rigidity Crossed Roller Bearings mounting bolts are shown in Tables 16.

When machines or equipment are subjected to severe vibration, shock, large fluctuating load, or moment load, the bolts should be tightened with a torque 1.2 to 1.5 times higher than the standard torque values shown.

When the mating member material is cast iron or aluminum, tightening torque should be lowered in accordance with the strength characteristics of the material. Please do not tighten with too much torque as abnormal frictional torque or short life may occur.

Table 16 Tightening torque of mounting bolts

Bolt size	Tightening torque N · m
M3 × 0.5	1.7
M4 × 0.7	4.0
M5 × 0.8	7.9
M8 × 1.25	32

Above values are for Carbon steel bolt (Strength division 12.9)

Double Row Angular Contact Roller Bearing

We provide Double Row Angular Contact Roller Bearing indicated to the right to order.

If needed, please contact IKU.

IKO Double Row Angular Contact Roller Bearing has a large number of cylindrical rollers with a large contact area with a raceway and an excellent load capability, between the inner and outer rings arranged in two rows of raceways. This underpins further higher rigidity and lower torque than High Rigidity Type Crossed Roller Bearings.

The mounting holes in both inner and outer rings facilitate installation to your machines and equipment.

Further, the integrated structure (non split) constructed in both inner and outer rings can avoid an installation error, which yields extra-high-rigidity and high-accuracy guiding performance without being affected by other peripheral structures such as a housing and a fixing plate.

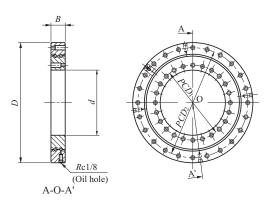


Fig. 5 Manufacturing example

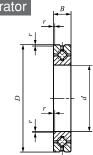
Table 17 Example of manufacturing dimensions

	mm						ynamic ating		rating
d	D	В	r_{\min}	PCD_1	PCD_2	N		N	
160	295	35	2	184	270	60	300	167	000
210	380	40	2.5	240	380	108	000	313	000

Structure of Double-acting Angular Roller Bearing

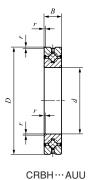
J13

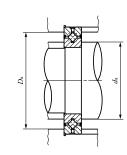
CRBH CRBC CRB CRBT CRBS CRBF


CROSSED ROLLER BEARINGS

High Rigidity Type Crossed Roller Bearings Open Type/With Separator

Sealed Type/With Separator




Shaft dia. 20 - 250mm

CRBH...A

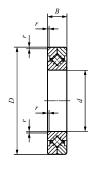
Shaft dia.	ldentif	ication number	Mass (Ref.)							
mm	Open Type	Sealed Type	kg	d	D	В	$r_{\min}^{(1)}$	$d_{\rm a}$	$D_{\rm a}$	
20	CRBH 208 A	CRBH 208 A UU	0.04	20	36	8	0.3	24	31	
25	CRBH 258 A	CRBH 258 A UU	0.05	25	41	8	0.3	29	36	
30	CRBH 3010 A	CRBH 3010 A UU	0.12	30	55	10	0.3	36.5	48.5	
35	CRBH 3510 A	CRBH 3510 A UU	0.13	35	60	10	0.3	41.5	53.5	
40	CRBH 4010 A	CRBH 4010 A UU	0.15	40	65	10	0.3	46.5	58.5	
45	CRBH 4510 A	CRBH 4510 A UU	0.16	45	70	10	0.3	51.5	63.5	
50	CRBH 5013 A	CRBH 5013 A UU	0.29	50	80	13	0.6	56	74	
60	CRBH 6013 A	CRBH 6013 A UU	0.33	60	90	13	0.6	66	84	
70	CRBH 7013 A	CRBH 7013 A UU	0.38	70	100	13	0.6	76	94	
80	CRBH 8016 A	CRBH 8016 A UU	0.74	80	120	16	0.6	88	112	
90	CRBH 9016 A	CRBH 9016 A UU	0.81	90	130	16	0.6	98	122	
100	CRBH 10020 A	CRBH 10020 A UU	1.45	100	150	20	0.6	110	140	
110	CRBH 11020 A	CRBH 11020 A UU	1.56	110	160	20	0.6	120	150	
120	CRBH 12025 A	CRBH 12025 A UU	2.62	120	180	25	1	132	168	
130	CRBH 13025 A	CRBH 13025 A UU	2.82	130	190	25	1	142	178	
140	CRBH 14025 A	CRBH 14025 A UU	2.96	140	200	25	1	152	188	
150	CRBH 15025 A	CRBH 15025 A UU	3.16	150	210	25	1	162	198	
200	CRBH 20025 A	CRBH 20025 A UU	4.0	200	260	25	1	212	248	
250	CRBH 25025 A	CRBH 25025 A UU	4.97	250	310	25	1.5	262	298	
300	CRBH 30025 A	CRBH 30025 A UU	5.29	300	360	25	1.5	312	348	

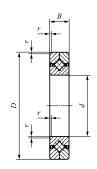
Note(1) Minimum allowable single value of chamfer dimension r

Basic dynamic load rating	Basic static load rating	
C	C_0	
N	N	
2 910	2 430	
3 120	2 810	
7 600	8 370	
7 900	9 130	
8 610	10 600	
8 860	11 300	
17 300	20 900	
18 800	24 300	
20 100	27 700	
32 100	43 400	
33 100	46 800	
50 900	72 200	
52 400	77 400	
73 400	108 000	
75 900	115 000	
81 900	130 000	
84 300	138 000	
92 300	169 000	
102 000	207 000	
112 000	245 000	

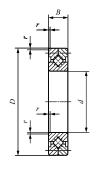
Remarks1. The outer ring has an oil groove and two oil holes.

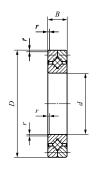
2. No grease is prepacked for Open Type. Perform proper lubrication. Grease is prepacked for Sealed Type.

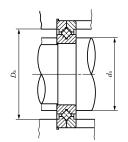

CROSSED ROLLER BEARINGS


Standard Type Crossed Roller Bearings

Sealed Type/With Cage | Sealed Type/Full Complement Type




Shaft dia. 30 — 200mm


CRBC CRBC...UU

Shaft dia.	Wit	Identification th Cage		mplement	Mass (Ref.)	Bound	ary dime mm	nsions		
mm	Open Type	Seald Type	Open Type	Seald Type	kg	d	D	В		
30	CRBC 3010	CRBC 3010 UU	CRB 3010	CRB 3010 UU	0.12	30	55	10		
40	CRBC 4010	CRBC 4010 UU	CRB 4010	CRB 4010 UU	0.15	40	65	10		
50	CRBC 5013	CRBC 5013 UU	CRB 5013	CRB 5013 UU	0.29	50	80	13		
60	CRBC 6013	CRBC 6013 UU	CRB 6013	CRB 6013 UU	0.33	60	90	13		
70	CRBC 7013	CRBC 7013 UU	CRB 7013	CRB 7013 UU	0.38	70	100	13		
80	CRBC 8016	CRBC 8016 UU	CRB 8016	CRB 8016 UU	0.74	80	120	16		
90	CRBC 9016	CRBC 9016 UU	CRB 9016	CRB 9016 UU	0.81	90	130	16		
100	CRBC 10020	CRBC 10020 UU	CRB 10020	CRB 10020 UU	1.45	100	150	20		
110	CRBC 11020	CRBC 11020 UU	CRB 11020	CRB 11020 UU	1.56	110	160	20		
120	CRBC 12025	CRBC 12025 UU	CRB 12025	CRB 12025 UU	2.62	120	180	25		
130	CRBC 13025	CRBC 13025 UU	CRB 13025	CRB 13025 UU	2.82	130	190	25		
140	CRBC 14025	CRBC 14025 UU	CRB 14025	CRB 14025 UU	2.96	140	200	25		
150	CRBC 15025 CRBC 15030	CRBC 15025 UU CRBC 15030 UU	CRB 15025 CRB 15030	CRB 15025 UU CRB 15030 UU	3.16 5.3	150 150	210 230	25 30		
200	CRBC 20025 CRBC 20030 CRBC 20035	CRBC 20025 UU	CRB 20025 CRB 20030 CRB 20035	CRB 20025 UU	4.0 6.7 9.58	200 200 200	260 280 295	25 30 35		

Minimum allowable single value of chamfer dimension r

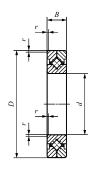
	Mounting		CR	ВС	CF	₹B	
	dimensio	ns mm	Basic dynamic	Basic static	Basic dynamic	Basic static	
(1)	,	D	load rating $$	load rating C_{0}	load rating $$	load rating ${C}_{0}$	
r_{\min}	d_{a}	$D_{\rm a}$	N	N N	N	N	
0.3	34	44	3 830	4 130	5 290	6 350	
0.3	44	54	4 280	5 140	5 980	8 040	
0.6	55	71	10 700	12 600	14 200	18 400	
0.6	64	81	11 600	14 600	15 400	21 500	
0.6	75	91	12 300	16 700	17 000	25 500	
0.6	86	107	18 200	25 500	24 300	37 500	
1	98	118	19 400	28 600	25 900	42 100	
1	108	134	31 500	45 100	39 400	61 100	
1	118	144	33 500	50 700	41 200	66 700	
1.5	132	164	47 700	70 500	59 900	95 400	
1.5	140	172	49 200	74 800	61 000	99 800	
1.5	151	183	50 700	79 200	64 100	108 000	
1.5	160	192	53 800	87 700	65 000	113 000	
1.5	166	202	69 200	108 000	85 900	144 000	
2	208	239	60 200	110 000	75 300	148 000	
2	218	262	108 000	178 000	133 000	234 000	
2	221	274	137 000	215 000	168 000	282 000	

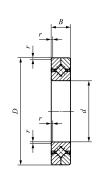
J18

Remarks1. No oil hole is provided.

2. No grease is prepacked for Open Type. Perform proper lubrication. Grease is prepacked for Sealed Type.

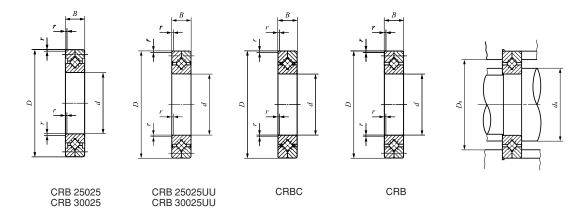
CROSSED ROLLER BEARINGS


Standard Type Crossed Roller Bearings


Open Type/Full Complement Type

Sealed Type/With Cage | Sealed Type/Full Complement Type

Shaft dia. 250 — 800mm


CRBC 25025 CRBC 30025

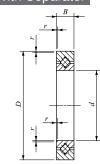
CRBC 25025UU CRBC 30025UU

Shaft	\A/:	Identification	n numbe 			Mass (Ref.)	Bound	ary dime mm	nsions		
dia.		h Cage			mplement						
mm	Open Type	Seald Type	Ope	n Type	Seald Type	kg	d	D	В		
	CRBC 25025	CRBC 25025 UU	CRB	25025	CRB 25025 UU	4.97	250	310	25		
250	CRBC 25030 CRBC 25040	_	CRB	25030 25040	_	8.1 14.8	250	330 355	30 40		
							250		_		
000	CRBC 30025	CRBC 30025 UU	CRB	30025	CRB 30025 UU	5.88		360	25		
300	CRBC 30035		CRB	30035		13.4	300	395	35		
	CRBC 30040		CRB	30040		17.2	300	405	40		
	CRBC 40035	_	CRB	40035	_	14.5	400	480	35		
400	CRBC 40040	_	CRB	40040	_	23.5	400	510	40		
	CRBC 40070	_	CRB	40070	_	72.4	400	580	70		
	CRBC 50040	_	CRB	50040	_	26.0	500	600	40		
500	CRBC 50050	_	CRB	50050	_	41.7	500	625	50		
	CRBC 50070	_	CRB	50070		86.1	500	680	70		
	CRBC 60040	_	CRB	60040	_	30.6	600	700	40		
600	CRBC 60070	_	CRB	60070	_	102	600	780	70		
	CRBC 600120	_	CRB	600120	_	274	600	870	120		
	CRBC 70045	_	CRB	70045	_	46.5	700	815	45		
700	CRBC 70070	_	CRB	70070	_	115	700	880	70		
	CRBC 700150	_	CRB	700150	_	478	700	1 020	150		
800	CRBC 80070	_	CRB	80070	_	109	800	950	70		
000	CRBC 800100	_	CRB	800100	_	247	800	1 030	100		

Minimum allowable single value of chamfer dimension r

Remarks1. No oil hole is provided.

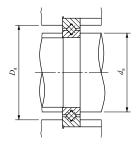
	М с		CD	BC	CI	RB	
	Mou		_	Basic static	Basic dynamic	Basic static	
	ullilelisid)	load rating	load rating	load rating	load rating	
$r_{\min}^{(1)}$	$d_{\rm a}$	$D_{\rm a}$	C	C_0	C	C_0	
, min	c a	Da	N	N	N	N	
2.5	259	290	67 200	136 000	83 900	183 000	
2.5	265	310	116 000	208 000	146 000	283 000	
2.5	271	330	179 000	299 000	215 000	382 000	
2.5	310	341	73 800	162 000	91 900	217 000	
2.5	318	372	163 000	299 000	205 000	408 000	
2.5	321	381	194 000	351 000	235 000	451 000	
2.5	414	457	133 000	300 000	165 000	400 000	
2.5	423	483	222 000	455 000	270 000	590 000	
2.5	430	532	470 000	811 000	576 000	1 060 000	
2.5	517	573	212 000	497 000	259 000	648 000	
2.5	531	592	247 000	561 000	306 000	747 000	
2.5	530	633	536 000	1 020 000	653 000	1 330 000	
3	621	676	231 000	581 000	287 000	774 000	
3	630	734	591 000	1 230 000	700 000	1 540 000	
3	643	817	1 250 000	2 210 000	1 490 000	2 800 000	
3	730	785	250 000	681 000	313 000	917 000	
3	731	834	630 000	1 390 000	766 000	1 810 000	
3	751	953	1 660 000	3 010 000	1 980 000	3 820 000	
4	831	907	417 000	1 090 000	513 000	1 440 000	
4	840	972	936 000	2 040 000	1 140 000	2 640 000	


J20

^{2.} No grease is prepacked for Open Type. Perform proper lubrication. Grease is prepacked for Sealed Type.

CROSSED ROLLER BEARINGS

Super Slim Type Crossed Roller Bearings Open Type/With Separator



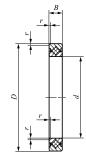
Shaft dia. 20 – 50mm

CRBT...A

Shaft					limensio m	ns	Mou dimensi	inting ons mm	Basic dynamic load rating
dia. mm		g	d	D	В	$r_{\min}^{(1)}$	d_{a}	$D_{\rm a}$	C N
20	CRBT 205 A	14.8	20	31	5	0.15	22.5	27	1 400
30	CRBT 305 A	20.7	30	41	5	0.15	32.5	37	1 770
40	CRBT 405 A	26.5	40	51	5	0.15	42.5	47	2 000
50	CRBT 505 A	32.3	50	61	5	0.15	52.5	57	2 280

Basic static load rating			
C_0 N			
1 290			
1 970			
2 520			
3 200			

CROSSED ROLLER BEARINGS

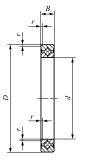

Slim Type Crossed Roller Bearings

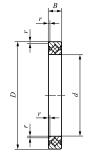
Open Type/With Cage

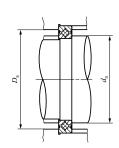
Open Type/Full Complement Type

Sealed Type/With Separator | Sealed Type/Full Complement Type

Shaft dia. 50 — 200mm


C	RBS
_	


0. 6		Identifica	tion number	Mass
Shaft dia.	With Cage	With Separator	Full complement	(Ref.)
mm	Open Type	Seald Type	Open Type Seald Type	g
50	CRBS 508	CRBS 508 A UU	CRBS 508 V CRBS 508 V UU	84
60	CRBS 608	CRBS 608 A UU	CRBS 608 V CRBS 608 V UU	94
70	CRBS 708	CRBS 708 A UU	CRBS 708 V CRBS 708 V UU	108
80	CRBS 808	CRBS 808 A UU	CRBS 808 V CRBS 808 V UU	122
90	CRBS 908	CRBS 908 A UU	CRBS 908 V CRBS 908 V UU	135
100	CRBS 1008	CRBS 1008 A UU	CRBS 1008 V CRBS 1008 V UU	152
110	CRBS 1108	CRBS 1108 A UU	CRBS 1108 V CRBS 1108 V UU	163
120	CRBS 1208	CRBS 1208 A UU	CRBS 1208 V CRBS 1208 V UU	184
130	CRBS 1308	CRBS 1308 A UU	CRBS 1308 V CRBS 1308 V UU	199
140	CRBS 1408	CRBS 1408 A UU	CRBS 1408 V CRBS 1408 V UU	205
150	CRBS 1508	CRBS 1508 A UU	CRBS 1508 V CRBS 1508 V UU	220
160	CRBS 16013	CRBS 16013 A UU	CRBS 16013 V CRBS 16013 V UU	620
170	CRBS 17013	CRBS 17013 A UU	CRBS 17013 V CRBS 17013 V UU	675
180	CRBS 18013	CRBS 18013 A UU	CRBS 18013 V CRBS 18013 V UU	710
190	CRBS 19013	CRBS 19013 A UU	CRBS 19013 V CRBS 19013 V UU	740
200	CRBS 20013	CRBS 20013 A UU	CRBS 20013 V CRBS 20013 V UU	780


lote(1)	Minimum allowable single value of chamfer dimension is

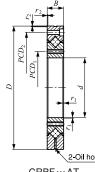
No grease is prepacked. Perform proper lubrication. Grease is prepacked.

Remark No oil hole is provided.

CRBS····AUU ····VUU

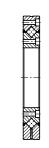
CRBS...V

	Boundary dimensions mm			sions	Mou	nting ons mm	CRBS(2) With cage			• AUU(3)	CRBS ··· V(2) CRBS ··· VUU(3) Full complement		
	d	D	В	$r_{\min}^{(1)}$	d_{a}	$D_{\rm a}$		namic load rating $\left egin{array}{c} Basic & static & load & rating \\ C & C & 0 \end{array} ight $					
_	50	66	8	0.4	54	61	4 900	6 170	4 680	5 810	6 930	9 800	
	60	76	8	0.4	64	71	5 350	7 310	5 350	7 310	7 600	11 700	
	70	86	8	0.4	74	81	5 740	8 440	5 740	8 440	8 190	13 600	
	80	96	8	0.4	84	91	6 130	9 590	6 130	9 590	8 790	15 500	
	90	106	80	0.4	94	101	6 490	10 700	6 490	10 700	9 310	17 400	
	100	116	8	0.4	104	111	6 850	11 900	6 530	11 100	9 850	19 300	
	110	126	8	0.4	114	121	7 160 13 000		6 850	12 300	10 300	21 200	
	120	136	8	0.4	124	131	7 530	7 530 14 100		13 000	10 900	23 000	
	130	146	8	0.4	134	141	7 860	15 300	7 270	13 800	11 200	24 600	
	140	156	8	0.4	144	151	8 060	16 400	7 510	14 900	11 700	26 800	
	150	166	8	0.4	154	161	8 350	17 500	7 810	16 000	12 100	28 700	
	160	186	13	0.6	166	179	20 300	39 900	19 400	37 700	26 900	58 200	
	170	196	13	0.6	176	189	20 900	42 200	20 000	39 900	27 800	61 600	
	180	206	13	0.6	186	199	21 500	44 600	21 900	45 700	28 600	65 200	
_	190	216	13	0.6	196	209	22 100	46 900	22 900	49 200	29 300	68 600	
	200	226	13	0.6	206	219	22 500	49 300	23 300	51 600	30 000	72 200	

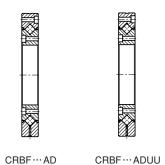

J24

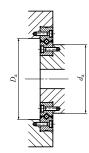
CROSSED ROLLER BEARINGS

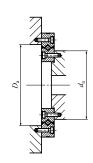
Mounting Holed Type High Rigidity Open Type/With Separator Crossed Roller Bearings


Sealed Type/With Separator

Shaft dia. 10 — 115mm


CRBFAT	


CRBF...ATUU


CRBF...AUU

Onai	t dia. 10 113111111	CRBF···AT	CRBF	ATUU	J CRBF…A CRBF…AUU				
Shaft	Identificat	ion number	Mass (Ref.)		Boundary	/ dimensi	ons mm		
dia. mm	Open Type	Sealed Type	kg	d	D	В	$r_{1\min}^{(1)}$	$r_{2\min}^{(1)}$	
10	CRBF 108 AT	CRBF 108 AT UU	0.12	10	52	8	0.3	0.3	
20	CRBF 2012 AT	CRBF 2012 AT UU	0.31	20	70	12	0.3	0.3	
25	CRBF 2512 AT	CRBF 2512 AT UU	0.40	25	80	12	0.6	0.6	
35	CRBF 3515 AT	CRBF 3515 AT UU	0.66	35	95	15	0.6	0.6	
55	CRBF 5515 AT	CRBF 5515 AT UU	0.96	55	120	15	0.6	0.6	
	CRBF 8022 AT	CRBF 8022 AT UU	2.63						
80	CRBF 8022 A	CRBF 8022 A UU		80	165	22	0.6	1	
	CRBF 8022 AD	CRBF 8022 AD UU	2.60						
	CRBF 9025 AT	CRBF 9025 AT UU	4.83						
90	CRBF 9025 A	CRBF 9025 A UU		90	210	25	1.5	1.5	
	CRBF 9025 AD	CRBF 9025 AD UU	4.67						
	CRBF 11528 AT	CRBF 11528 AT UU	6.81					1.5	
115	CRBF 11528 A	CRBF 11528 A UU		115	240	28	1.5		
	CRBF 11528 AD	CRBF 11528 AD UU	6.63						

Note(1) Minimum allowable single value of chamfer diameter r_1 and r_2 .

ChbrAD ChbrAD00								
	М	ounting h	oles mm	Mounting dimensions		Basic dynamic load rating	Basic static load rating	
	Inner ring		Outer ring	mm		C	C_0	
PCD_1	Mounting holes	PCD_2	Mounting holes	$d_{\rm a}$	$D_{\rm a}$	N	N	
16	4-M3 through	42	$6-\phi$ 3.4 through ϕ 6.5 counter bore depth 3.3	24	31	2 910	2 430	
28	6-M3 through	57	$6-\phi$ 3.4 through ϕ 6.5 counter bore depth 3.3	36.5	48.5	7 600	8 370	
35	6-M3 through	67	6- ϕ 3.4 through ϕ 6.5 counter bore depth 3.3	46.5	58.5	8 610	10 600	
45	8-M4 through	83	8- ϕ 4.5 through ϕ 8 counter bore depth 4.4	56	74	17 300	20 900	
65	8-M5 through	105	8- ϕ 5.5 through ϕ 9.5 counter bore depth 5.4	76	94	20 100	27 700	
	10-M5 through							
97	10-φ 5.5 through φ 9.5 counter bore depth 5.4	148	10-φ5.5 through φ9.5 counter bore depth 5.4	107	137	51 100	72 000	
	12-M8 through							
112	12-\$\phi\$ 9 through \$\phi\$ 14 counter bore depth 12	187	12-φ9 through φ14 counter bore depth 12	132	168	73 400	108 000	
	12-M8 through							
139	12- ϕ 9 through ϕ 14 counter bore depth 13.5	217	12-φ9 through φ14 counter bore depth 13.5	162	198	84 300	138 000	

J26

Remarks1. The outer ring has an oil groove and two oil holes.

2. No grease is prepacked for Open Type. Perform proper lubrication. Grease is prepacked for Sealed Type.

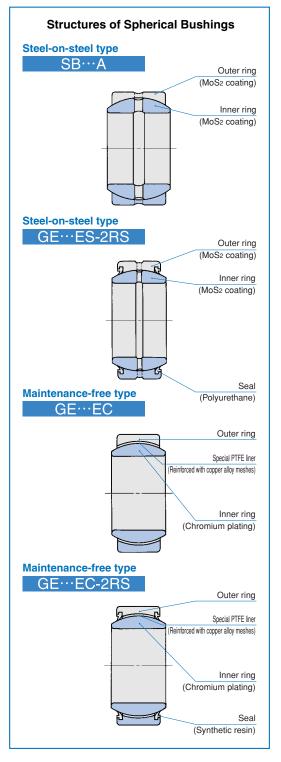
SPHERICAL BUSHINGS

- Steel-on-steel Spherical Bushings
- Maintenance-free Spherical Bushings

Structure and Features

IKO Spherical Bushings are self-aligning spherical plain bushings that have inner and outer rings with spherical sliding surfaces, and can take a large radial load and a bi-directional axial load at the same time. There are many types of Spherical Bushings, but they are basically divided into steel-on-steel types and maintenance-free types according to the kind of sliding surfaces.

Steel-on-steel Spherical Bushings have inner and outer rings of high carbon chromium bearing steel, of which sliding surfaces are phosphate-treated and then dry-coated with molybdenum disulfide (MoS2). They can, therefore, operate with low torque, and have excellent wear resistance and large load capacity. They are especially suitable for applications where there are alternate loads and shock loads. They have wide applications mainly in industrial and construction machinery.


Maintenance-free Spherical Bushings consist of an outer ring which has a special PTFE liner reinforced with copper alloy meshes on the sliding surface, and a spherical inner ring of which sliding surface has a hard chromium plating. Creep deformation due to compressive load is small, and wear resistance is superior. Thus, they are maintenance-free and can be used for extended periods of time without re-lubrication. They are especially suitable in cases where fixed directional loads are applied and are used mainly in food processing machines and construction machinery and in other applications in which the use of oil is undesirable or lubrication is not possible.

Spherical Bushings are available in various types shown in Table 1.

Table 1 Type of bearing

		_				
Туре	Steel-o	n-steel	Maintenance-free			
Series	Without seals	With seals	Without seals	With seals		
	SB	_				
Metric	SB···A	_	GE…EC	GE···EC-2RS		
ivietric	GE ··· E, ES	GE ··· ES-2RS	GEEC	GE EU-2N3		
	GE…G, GS	GE…GS-2RS				
Inch	SBB	SBB··· -2RS	_	_		

SB GE

K1 K2

Steel-on-steel Spherical Bushings SB

These bushings have an outer ring split into halves. The split outer ring and the inner ring are held together by a snap ring placed in the groove around the outer periphery of the outer ring.

Steel-on-steel Spherical Bushings SB...A

These bushings have an outer ring split only at one position, and therefore, the outer and inner rings will not separate. Handling before mounting and mounting to the housing are simple. The boundary dimensions are the same as those of the SB type. Therefore, SB and SB \cdots A types are dimensionally interchangeable, but the radial internal clearances of the SB \cdots A type are smaller than those of the SB type.

Steel-on-steel Spherical Bushings GE...E.GE...ES

The dimension series of these types conform to ISO standards and they can be used internationally. The outer ring is split at one position. The GE \cdots E and GE \cdots ES types are available. These are classified by bushing size.

The GE...ES type can be provided with seals, which are double-lip type polyurethane seals effective for prevention against grease leakage and dust penetration. The sealed type is indicated by the suffix "-2RS" at the end of the identification number.

Steel-on-steel Spherical Bushings GE…G,GE…GS

As compared with the $GE\cdots E$ and $GE\cdots ES$ types, these bushings have larger load capacities and larger permissible tilting angles. The dimension series also conform to ISO standards, and they can be used internationally. The outer ring is split at one position. The $GE\cdots G$ and $GE\cdots GS$ types are available. They are classified by bushing size.

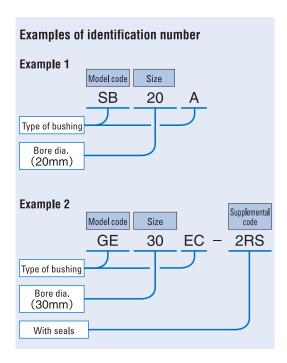
The GE \cdots GS type can be provided with seals, which are double-lip type polyurethane seals effective for prevention against grease leakage and dust penetration.

Steel-on-steel Spherical Bushings SBB

These are inch series bushings. The outer ring is split at one position.

These bushings can be provided with seals, which are double-lip type polyurethane seals effective for prevention against grease leakage and dust penetration.

Maintenance-free Spherical Bushings GE...EC


These bushings have the same boundary dimensions as the GE...ES type and can be used internationally. A special PTFE liner reinforced with copper alloy meshes is used on the sliding surface. Therefore, creep deformation due to compressive loads is small, and wear resistance is superior. These bushings are used as maintenance-free bushings.

These bushings can be provided with synthetic resin seals which are effective in preventing dust penetration. They are indicated by the suffix "-2RS" at the end of the identification number.

Spherical Bushings with superior rust prevention properties, which can be used in a corrosive environment or in an environment where water splashes, are also available on request. Please consult **IKD**.

Identification number

The identification number of Spherical Bushings consists of a model code, a size and any supplemental codes. Examples are shown below.

Accuracy

The tolerances of Steel-on-steel Spherical Bushings of the metric series is shown in Table 2.

The tolerances of the GE type are applicable to bushings before splitting the outer ring and after surface treatment.

The tolerances of the SB and SB···A types are applicable to bushings before splitting the outer ring and before surface treatment.

The tolerances of the GE···EC type are applicable to bushings before splitting the outer ring.

The tolerances of the Spherical Bushings of the inch series are shown in Table 3. The tolerances of the bore diameter are applicable to bushings after surface treatment, while other tolerances are applicable to bushings before splitting the outer ring and before surface treatment.

Although minor dimensional changes may occur during surface treatment, they have negligible influence on the overall performance.

Table 2 Tolerances of inner and outer rings of metric series (JIS Class 0) $_{
m unit:}~\mu$ m

d or $D(1)Nominal bore dia.or outside dia.mm$		$\Delta_{d\mathrm{mp}}$ Single plane mean bore dia. deviation		$\Delta_{D{ m mp}}$ Single plane mean outside dia. deviation		$\Delta_{B{ m S}}$ or $\Delta_{C{ m S}}$ Deviation of a single inner ring width or outer ring width	
Over	Incl.	High	Low	High	Low	High	Low
2.5	6	0	- 8	_	_	0	- 120
6	18	0	- 8	0	- 8	0	- 120
18	30	0	-10	0	- 9	0	- 120
30	50	0	- 12	0	- 11	0	- 120
50	80	0	- 15	0	- 13	0	— 150
80	120	0	-20	0	- 15	0	- 200
120	150	0	- 25	0	- 18	0	- 250
150	180	0	- 25	0	- 25	0	- 250
180	250	0	- 30	0	-30	0	- 300
250	315	0	- 35	0	- 35	0	- 350
315	400	0	-40	0	-40	0	-400
400	500	0	- 45	0	- 45	0	- 450

Note(1) d for Δ_{dmn} , Δ_{Bs} and Δ_{Cs} and D for Δ_{Dmn} , respectively

Table 3 Tolerances of inner and outer rings of inch series SBB unit: μ m

d or $D(1)Nominal bore dia. oroutside dia.mm$		$\Delta_{d\mathrm{mp}}$ Single plane mean bore dia. deviation		$\Delta_{D\mathrm{mp}}$ Single plane mean outside dia. deviation		$\Delta_{B_{ m S}}$ or $\Delta_{C_{ m S}}$ Deviation of a single inner ring width or outer ring width	
Over	Incl.	High	Low	High	Low	High	Low
_	50.800	0	- 13	0	- 13	0	— 130
50.800	76.200	0	- 15	0	- 15	0	- 130
76.200	80.962	0	- 20	0	- 15	0	- 130
80.962	120.650	0	- 20	0	- 20	0	— 130
120.650	152.400	0	- 25	0	- 25	0	- 130
152.400	177.800	_	_	0	- 25	0	- 130
177.800	222.250	_	_	0	- 30	0	— 130

Note(1) d for Δ_{dmp} , Δ_{Bs} and Δ_{Cs} and D for Δ_{Dmp} , respectively.

Clearance

The radial internal clearances of Spherical Bushings are the values before splitting the outer ring, and are shown in Tables 4, 5 and 6. The radial internal clearances of the inch series are shown in the dimension table.

Clearances other than these can also be prepared on request. Please consult ${\bf IKD}$.

Table 4 Radial internal clearance of SB and SB \cdots A types (Steel-on-steel)

unit: *U*

unit: μ r							
d Nominal bore dia.	SB type		SB · · ·	A type			
mm	Min.	Max.	Min.	Max.			
12	70	125	32	68			
15	70	125	40	82			
20							
22	75	140					
25			50	100			
30							
35							
40	85	150					
45		.00	60	120			
50				0			
55		160					
60	90			142			
65							
70			72				
75	95	170					
80							
85							
90	100	185					
95	100	100					
100			85	165			
110							
115	110	200					
120							
130	120	215	100	192			
150	1.20			.02			

Table 5 Radial internal clearance of GE type (Steel-on-steel)

			unit: μ m		
Nominal m	m	Radial internal clearance			
GE…E GE…ES	GE…G GE…GS	Min.	Max.		
4 5 6 8 10 12	- - - 6 8 10	32	68		
15 17 20	12 15 17	40	82		
25 30 35	20 25 30	50	100		
40 45 50 60	35 40 45 50	60	120		
70 80 90	60 70 80	72	142		
100 110 120 140	90 100 110 120	85	165		
160 180 200 220 240	140 160 180 200 220	100	192		
260 280 300	240 260 280	110	214		

Remark Also applicable to bushings with seals.

Table 6 Radial internal clearance of GE ··· EC type (Maintenance-free)

		unit: μ m		
d Nominal bore dia.	Radial internal clearance			
mm	Min.	Max.		
15				
17	0	40		
20				
25				
30	0	50		
35				
40				
45	0	60		
50	0	00		
60				
70	0	72		

Remark Also applicable to bushings with seals.

The recommended fits for Spherical Bushings are shown in Tables 7 and 8.

Table 7 Recommended fits for Steel-on-steel Spherical Bushings

C	ondition	Tolerance class				
C	onanion	Shaft	Housing bore			
Normal opera	tion	h6, j6	H7, J7			
With direction	ally indeterminate load	m6, n6	M7, N7			

Remark N7 tolerance is recommended for light metal housings.

Table 8 Recommended fits for Maintenance-free Spherical Bushings

Tolerance class of shaft	Tolerance class of housing bore		
h6, j6	H7, J7, K7		

Remark K7 tolerance is recommended for light metal housings.

Selection of Spherical Bushings

Selection between the steel-on-steel type and the maintenance-free type is made considering the operating conditions such as load, lubrication, temperature, and sliding velocity.

Load capacity

1 Dynamic load capacity

The dynamic load capacity C_d is the maximum allowable load that can be applied on a spherical bushing under oscillating motion. It is obtained on the basis of the contact pressure on the spherical surfaces. The dynamic load capacity is also used for calculating the life of spherical bushings.

The recommended value of bushing load is obtained by multiplying the dynamic load capacity C_d by a numerical factor, which differs depending on the bushing type and the load condition. A guideline for selection is shown in Table 9.

Table 9 Guide for determination of load

Type of bushing	Load direction				
Type of busining	Constant	Alternate			
Steel-on-steel	$\leq 0.3C_{\rm d}$	$\leq 0.6C_{\rm d}$			
Maintenance-free	$\leq C_{\rm d}$	$\leq 0.5C_{\rm d}$			

When the magnitude of load exceeds the value given in Table 9, please consult IKD.

The dynamic load capacity C_{df} considering the influence of bushing temperature can be obtained from the following equation using the temperature factor.

 $f_{\rm t}$: Temperature factor (Refer to Table 10.)

 $C_{\rm d}$: Dynamic load capacity N (Refer to the dimension tables.)

Table 10 Temperature factor f_t

		Temperature °C						
Type of bushing		- 30 + 80	+ 80 + 90	+ 90 + 100	+ 100 + 120	+ 120 + 150	+ 150 + 180	
Steel-on-	Without seals	1	1	1	1	1	0.7	
steel	With seals	1	-	_	_	-	_	
Maintena	Without seals	1	1	0.9	0.75	0.55	_	
nce-free	With seals	1	-	_	_	-	_	

2 Static load capacity

The static load capacity C_s is the maximum static load that can be applied on the spherical bushing without breaking inner and outer rings or causing any permanent deformation severe enough to render the bush-

It must be noted that if the magnitude of the applied load becomes comparable to the static load capacity of bushing, the stresses in the shaft or housing may also reach to their limits. This possibility must be taken into consideration in the design.

Equivalent radial load

Spherical Bushings can take radial and axial loads at the same time. When the magnitude and direction of loads are constant, the equivalent radial load can be obtained from the following formula.

$$P = F_{\rm r} + YF_{\rm a} \quad \cdots \qquad (2)$$

where, P: Equivalent radial load N

 $F_{\rm r}$: Radial load N

 F_a : Axial load N

Y: Axial load factor (Refer to Table 11.)

Table 11 Axial load factor Y

$F_{ m a}/F_{ m r}$ Type of bushing	0.1	0.2	0.3	0.4	0.5	>0.5
Steel-on-steel	1	2	3	4	5	Unusable
Maintenance-free	1	2	3	U	nusab	le

Life

The life of Spherical Bushings is defined as the total number of oscillating motions before the bushings cannot be operated normally because of wear, increase in internal clearance, increase in sliding torque, rise of operating temperature, etc.

As the actual life is affected by many factors such as the material of the sliding surface, the magnitude and direction of load, lubrication, sliding velocity, etc., the calculated life can be used as a practical measure of expected service life.

1 Life of Steel-on-steel spherical bushings

[1] Confirmation of *pV* value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.1.

When the operating conditions are out of the permissible range, please consult IKI.

The contact pressure p and the sliding velocity V are obtained from the following formulae.

$$p = \frac{100P}{C_{\text{dt}}}$$
 (3)
$$V = 5.82 \times 10^{-4} d_k \beta f$$
 (4)

where, p: Contact pressure N/mm²

P: Equivalent radial load N (Refer to Formula (2).)

 $C_{
m dt}$: Dynamic load capacity considering temperature increase $\,$ N

(Refer to Formula (1).)

V: Sliding velocity mm/s

 d_k : Sphere diameter mm

(Refer to the dimension tables.)

 2β : Oscillating angle degrees (Refer to Fig.2.) when $\beta < 5^{\circ}$, $\beta = 5$

when rotating. $\beta = 90$ f: Number of oscillations per minute cpm

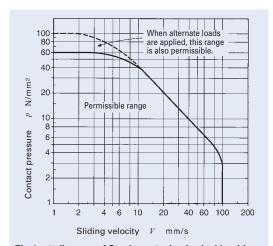
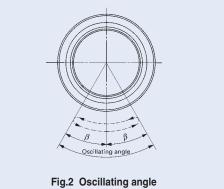



Fig.1 pV diagram of Steel-on-steel spherical bushings

GE

SB

K

[2] Life calculation

The life of steel-on-steel spherical bushings can be calculated from the following formulae.

$$G = \frac{3.18b_1b_2b_3}{\sqrt{d_k \beta}} \left(\frac{C_{dt}}{P}\right)^2 \times 10^5 \dots (5)$$

$$L_{\rm h} = \frac{G}{60f} \qquad (6)$$

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 12.)

 b_2 : Lubrication factor (Refer to Table 13.)

 b_3 : Sliding velocity factor (Refer to Fig.3.)

 $C_{
m dt}$: Dynamic load capacity considering temperature increase $\,$ N

(Refer to Formula (1).)

P: Equivalent radial load N

(Refer to Formula (2).)

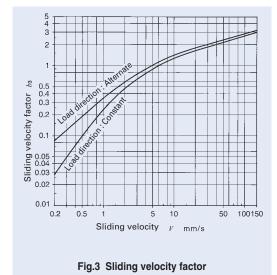

 $L_{\rm h}$: Life in hours $\,$ h

Table 12 Load directional factor b_1 (Steel-on-steel)

Load direction	Constant	Alternate
Load directional factor b_1	1	5

Table 13 Lubrication factor b_2

Periodical lubrication	None	Regular
Lubrication factor b_2	1	15

2 Life of Maintenance-free spherical bushings

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.4.

When the operating conditions are out of the permissible range, please consult **IKD**.

The contact pressure p and the sliding velocity V are obtained from Formulae (3) and (4) shown on page 439

[2] Life calculation

The life of maintenance-free spherical bushings is obtained from the total sliding distance S which is given in Fig.5 for the contact pressure p obtained from Formula (3).

The total number of oscillations and life in hours can be obtained from the following formulae.

$$G = 16.67 \times b_1 \frac{Sf}{V} \qquad (7)$$

$$L_{\rm h} = \frac{G}{60f} \qquad (8)$$

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 14.)

S: Total sliding distance m (Refer to Fig.5.)

f: Number of oscillations per minute cpm

V: Sliding velocity $\,$ mm/s

 $L_{\rm h}$: Life in hours h

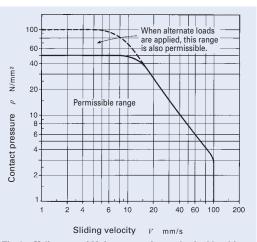


Fig.4 pV diagram of Maintenance-free spherical bushings

Table 14 Load directional factor b_1 (Maintenance-free)

Load direction	Constant	Alternate
Load directional factor b_1	1	0.2(1)

Note(1) This value is applicable when the load changes comparatively slowly. When the load changes rapidly, please consult **IKO**, as the factor degreases sharply.



Fig.5 Total sliding distance against contact pressure of Maintenance-free spherical bushings

Lubrication

Steel-on-steel Spherical Bushings can be operated without lubrication when the magnitude of applied load is small and the sliding velocity of oscillation is small. However, in general, it is necessary to supply grease periodically. During initial operation, it is recommended to shorten the lubrication interval. Lithium soap base grease (NLGI consistency No.2) containing molybdenum disulfide (MoS2) is widely used as the lubricating grease.

Maintenance-free Spherical Bushings can be used without lubrication. However, if lithium soap base grease is supplied before operation, the spherical bushings can be operated for an extended period of time. The spherical bushings can be effectively protected from dust and rust if the space around the bushings is filled with grease.

Oil Hole

The number of oil holes on inner and outer rings is shown in Table 15.

Table 15 Number of oil holes on inner and outer rings

	Number of oil holes on inner and outer rings		
0. 1	Metric series	GE···E GE···G	0
Steel-on-steel Spherical Bushings	wedic series	SB, SB···A GE···ES, GE···GS	2
	Inch series	SBB	2
Maintenance-free Spherical Bushings	Metric series	GE···EC	0

Remark Types with oil holes are also provided with oil grooves on inner and outer rings

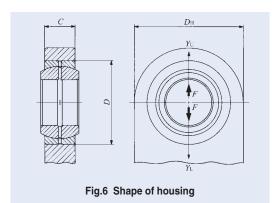
Operating Temperature Range

The operating temperature range for Spherical Bushings with seals is -30 $^{\circ}$ C \sim +80 $^{\circ}$ C.

The maximum allowable temperature for Spherical Bushings without seals is +180 °C for the steel-onsteel type and +150 °C for the maintenance-free type.

Precautions for Use

Design of shaft


When the load is large, sliding may occur between the shaft and the inner ring bore of bushing. For such cases, it is necessary to prepare the shaft with a hardness of 58HRC or greater and surface roughness of 0.8 μ m R_a or less.

Furthermore, attention must be paid to the strength of shaft because the shear and/or bending stresses in the shaft may surpass the allowable values even when the load is below the static load capacity of Spherical Bushings.

Design of housing

The housing should have sufficient rigidity to avoid harmful deformation under load.

When the housing shown in Fig.6 is used, it should be designed with sufficient strength as follows.

1 When the load acts in the Y_L direction;

Select the housing material considering the compressive stress obtained from the following formula.

$$\sigma_1 = \frac{F}{CD}$$
 ·····(9)

where, σ_1 : Maximum compressive stress occurring in the housing bore N/mm²

F: Applied load N

C: Width of outer ring and housing mm

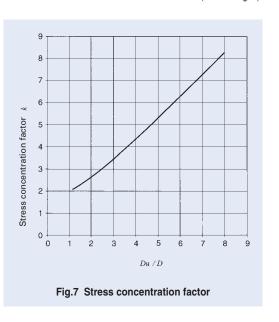
D: Outside diameter of outer ring mm

2When the load acts in the Yu direction;

Select the housing material considering the tensile stress obtained from the following formula.

$$\sigma_2 = \frac{F}{C (D_{\mathrm{H}} - D)} k \cdots (10)$$

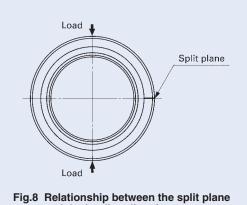
where, σ_2 : Maximum tensile stress occurring in the housing bore N/mm²

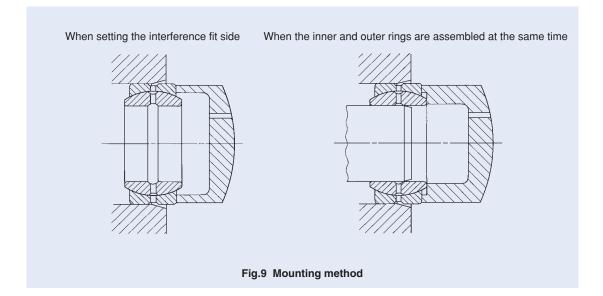

F: Applied load N

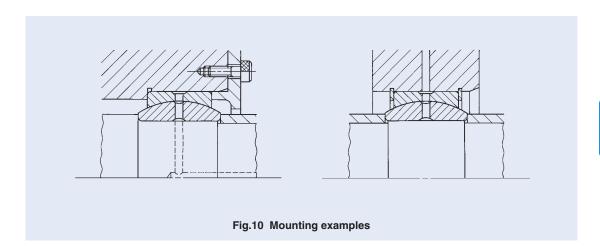
C: Width of outer ring and housing mm

 $D_{
m H}$: Outside diameter of housing $\,$ mm

D: Outside diameter of outer ring mm


k: Stress concentration factor (Refer to Fig.7.)

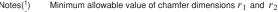

Mounting

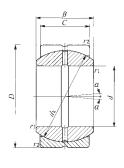

1 When mounting Spherical Bushings, pay attention to the location of the split plane of the outer ring. Set the split plane at right angles to the direction of load to avoid the application of load to the split plane as shown in Fig. 8.

2 The shoulder dimensions of shaft and housing are shown in the dimension tables.

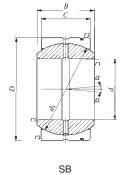
and the loading direction

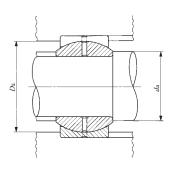
SPHERICAL BUSHINGS


Steel-on-steel Spherical Bushings



Shaft dia. 12 — 100mm


Shaft dia.	Identi	fication number	Mass (Ref.)		Во	,	dimens nm	ions	ı	Permissible tilting angle degree
mm			kg	d	D	В	C	$d_{\rm k}$	$r_{\rm s min}$	α
12	SB 12A	SB 122211	0.019	12	22	11	9	18	0.3	7
15	SB 15A	SB 152613	0.028	15	26	13	11	22	0.3	6
20	SB 20A	SB 203216	0.053	20	32	16	14	28	0.3	4
22	SB 22A	SB 223719	0.085	22	37	19	16	32	0.3	6
25	SB 25A	SB 254221	0.116	25	42	21	18	36	0.3	5
30	SB 30A	SB 305027	0.225	30	50	27	23	45	0.6	6
35	SB 35A	SB 355530	0.300	35	55	30	26	50	0.6	5
40	SB 40A	SB 406233	0.375	40	62	33	28	55	0.6	6
45	SB 45A	SB 457236	0.600	45	72	36	31	62	0.6	5
50	SB 50A	SB 508042	0.870	50	80	42	36	72	0.6	5
55	SB 55A	SB 559047	1.26	55	90	47	40	80	0.6	5
60	SB 60A	SB 6010053	1.70	60	100	53	45	90	0.6	6
65	SB 65A	SB 6510555	2.05	65	105	55	47	94	0.6	5
70	SB 70A	SB 7011058	2.22	70	110	58	50	100	0.6	5
75	SB 75A	SB 7512064	3.02	75	120	64	55	110	0.6	5
80	SB 80A	SB 8013070	3.98	80	130	70	60	120	0.6	5
85	SB 85A	SB 8513574	4.29	85	135	74	63	125	0.6	6
90	SB 90A	SB 9014076	4.71	90	140	76	65	130	0.6	5
95	SB 95A	SB 9515082	6.05	95	150	82	70	140	0.6	5
100	SB 100A	SB 10016088	7.42	100	160	88	75	150	1	5



Minimum allowable value of chamfer dimensions r_1 and r_2 When Spherical Bushings are used with full tilting angle, the shaft shoulder dimesion must be less than the maximum value of d_a .

 $\mathsf{SB} \cdots \mathsf{A}$

Мо	ounting o		ns	Dynamic load capacity	Static load capacity
d	!a	D) _a	$C_{\rm d}$	$C_{\rm s}$
Min.	Max.(2)		Min.	N	N
14	14	19.5	17	15 900	95 300
17.5	17.5	23.5	21	23 700	142 000
22.5	23	29.5	26	38 400	231 000
24.5	25.5	34.5	30	50 200	301 000
27.5	29	39.5	34	63 500	381 000
34.5	36	45.5	42	101 000	609 000
39.5	40	50.5	46.5	127 000	765 000
44	44	57.5	51.5	151 000	906 000
49.5	50.5	67.5	58	188 000	1 130 000
54.5	58.5	75.5	67	254 000	1 530 000
59.5	64.5	85.5	74.5	314 000	1 880 000
64.5	72.5	95.5	83.5	397 000	2 380 000
69.5	76	100.5	87	433 000	2 600 000
74.5	81.5	105.5	93	490 000	2 940 000
79.5	89.5	115.5	102	593 000	3 560 000
84.5	97.5	125.5	112	706 000	4 240 000
89.5	100.5	130.5	116	772 000	4 630 000
94.5	105.5	135.5	121	829 000	4 970 000
99.5	113.5	145.5	130	961 000	5 770 000
105.5	121.5	154.5	139	1 100 000	6 620 000

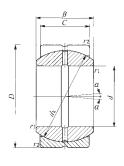
Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

2. No grease is prepacked. Perform proper lubrication.

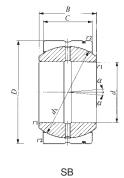
SPHERICAL BUSHINGS

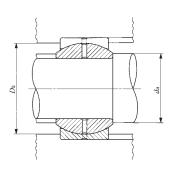
Steel-on-steel Spherical Bushings

Shaft dia. 110 — 150mm


Shaft dia.	Identi	fication number	Mass (Ref.)			Permissible tilting angle degree				
mm			kg	d	D	В	С	$d_{\rm k}$	$r_{\rm s min}^{(1)}$	α
110	SB 110A	SB 11017093	8.55	110	170	93	80	160	1	5
115	SB 115A	SB 11518098	10.3	115	180	98	85	165	1	5
120	SB 120A	SB 120190105	12.4	120	190	105	90	175	1	5
130	SB 130A	SB 130200110	13.8	130	200	110	95	185	1	5
150	SB 150A	SB 150220120	17.0	150	220	120	105	205	1	5

Notes(1)	Minimum allowable value of chamfer dimensions r_1	and r_2
----------	---	-----------

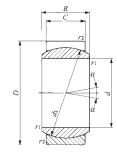

⁽²⁾ When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .


Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

2. No grease is prepacked. Perform proper lubrication.

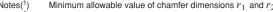
 $\mathsf{SB} \cdots \mathsf{A}$

M	Mounting dimensions mm			Dynamic load capacity	Static load capacity	
a	d_{a} D_{a}) _a	C_{d}	$C_{\rm s}$	
Min.	Max.(2)	Max.	Min.	N	N	
115.5	130	164.5	149	1 260 000	7 530 000	
120.5	132.5	174.5	152	1 380 000	8 250 000	
125.5	140	184.5	162	1 540 000	9 270 000	
135.5	148.5	194.5	171	1 720 000	10 300 000	
155.5	166	214.5	189	2 110 000	12 700 000	



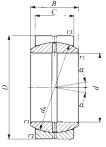
SPHERICAL BUSHINGS

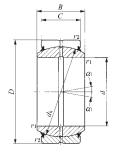
Steel-on-steel Spherical Bushings



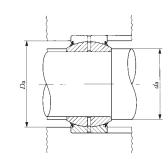
 $\mathsf{GE} \cdots \mathsf{E}$

Shaft dia. 4 – 100mm


Shaft dia.		Identific	cation number	Mass (Ref.)			Bound	dary dii mm	mension	s		Permissible tilting angle degree	
mm	Witho	out seals	With seals	kg	d	D	В	C	$d_{\rm k}$	$r_{1\text{s min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
4	GE	4E	_	0.003	4	12	5	3	8	0.3	0.3	16	_
5	GE	5E	_	0.004	5	14	6	4	10	0.3	0.3	13	_
6	GE	6E	_	0.004	6	14	6	4	10	0.3	0.3	13	_
8	GE	8E	_	0.008	8	16	8	5	13	0.3	0.3	15	_
10	GE	10E	_	0.012	10	19	9	6	16	0.3	0.3	12	_
12	GE	12E	_	0.017	12	22	10	7	18	0.3	0.3	11	_
15	GE	15ES	GE 15ES-2RS	0.032	15	26	12	9	22	0.3	0.3	8	5
17	GE	17ES	GE 17ES-2RS	0.049	17	30	14	10	25	0.3	0.3	10	7
20	GE	20ES	GE 20ES-2RS	0.065	20	35	16	12	29	0.3	0.3	9	6
25	GE	25ES	GE 25ES-2RS	0.115	25	42	20	16	35.5	0.6	0.6	7	4
30	GE	30ES	GE 30ES-2RS	0.160	30	47	22	18	40.7	0.6	0.6	6	4
35	GE	35ES	GE 35ES-2RS	0.258	35	55	25	20	47	0.6	1	6	4
40	GE	40ES	GE 40ES-2RS	0.315	40	62	28	22	53	0.6	1	7	4
45	GE	45ES	GE 45ES-2RS	0.413	45	68	32	25	60	0.6	1	7	4
50	GE	50ES	GE 50ES-2RS	0.560	50	75	35	28	66	0.6	1	6	4
60	GE	60ES	GE 60ES-2RS	1.10	60	90	44	36	80	1	1	6	3
70	GE	70ES	GE 70ES-2RS	1.54	70	105	49	40	92	1	1	6	4
80	GE	80ES	GE 80ES-2RS	2.29	80	120	55	45	105	1	1	6	4
90	GE	90ES	GE 90ES-2RS	2.82	90	130	60	50	115	1	1	5	3
100	GE	100ES	GE 100ES-2RS	4.43	100	150	70	55	130	1	1	7	5

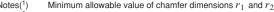

Notes(¹) Minimum allowable value of chamfer dimensions r_1 and r_2 (²) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .

Remarks1. GE ··· E has no oil hole. Others are provided with an oil groove and two oil holes on the inner ring and outer ring, respectively.

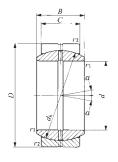

No grease is prepacked. Perform proper lubrication.

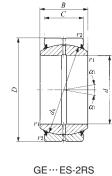
Mo		dimensio m	ns	Dynamic load capacity	Static load capacity	
d	! a	L) _a	$C_{\rm d}$	$C_{\rm s}$	
Min.	Max.(2)	Max.	Min.	N	N	
6	6	9.5	8	2 350	14 100	
7.5	8	11.5	10	3 920	23 500	
8	8	11.5	10	3 920	23 500	
10	10	13.5	13	6 370	38 200	
12.5	13	16.5	15.5	9 410	56 500	
14.5	15	19.5	17	12 400	74 100	
17.5	18	23.5	22.5	19 400	117 000	
19.5	20.5	27.5	26	24 500	147 000	
22.5	24	32.5	30.5	34 100	205 000	
29	29	37.5	37	55 700	334 000	
34	34	42.5	41.5	71 800	431 000	
39.5	39.5	49.5	48	92 200	553 000	
44.5	45	56.5	54.5	114 000	686 000	
49.5	50.5	62.5	60	147 000	883 000	
54.5	56	69.5	66	181 000	1 090 000	
65.5	66.5	84.5	79	282 000	1 690 000	
75.5	77.5	99.5	91	361 000	2 170 000	
85.5	89	114.5	103	463 000	2 780 000	
95.5	98	124.5	112	564 000	3 380 000	
105.5	109.5	144.5	127	701 000	4 210 000	

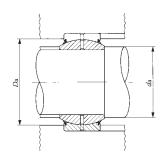
SPHERICAL BUSHINGS


Steel-on-steel Spherical Bushings

Shaft dia. 110 — 300mm


Shaft dia.	Identific	cation number	Mass (Ref.)			Bound	dary dir mm	mension	s		Permissible tilting angle degree	
mm	Without seals	With seals	kg	d	D	В	C	$d_{\rm k}$	$r_{1\text{s min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
110	GE 110ES	GE 110ES-2RS	4.94	110	160	70	55	140	1	1	6	4
120	GE 120ES	GE 120ES-2RS	8.12	120	180	85	70	160	1	1	6	4
140	GE 140ES	GE 140ES-2RS	11.4	140	210	90	70	180	1	1	7	5
160	GE 160ES	GE 160ES-2RS	14.4	160	230	105	80	200	1	1	8	6
180	GE 180ES	GE 180ES-2RS	18.9	180	260	105	80	225	1.1	1.1	6	5
200	GE 200ES	GE 200ES-2RS	28.1	200	290	130	100	250	1.1	1.1	7	6
220	GE 220ES	GE 220ES-2RS	36.1	220	320	135	100	275	1.1	1.1	8	6
240	GE 240ES	GE 240ES-2RS	40.4	240	340	140	100	300	1.1	1.1	8	6
260	GE 260ES	GE 260ES-2RS	52.0	260	370	150	110	325	1.1	1.1	7	6
280	GE 280ES	GE 280ES-2RS	66.0	280	400	155	120	350	1.1	1.1	6	5
300	GE 300ES	GE 300ES-2RS	76.0	300	430	165	120	375	1.1	1.1	7	6

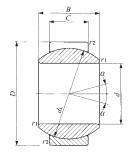

Notes(¹) Minimum allowable value of chamfer dimensions r_1 and r_2 (²) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .


Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

2. No grease is prepacked. Perform proper lubrication.

GE…ES

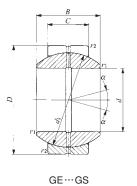
				1		
M	Mounting dimensions			Dynamic load	Static load	
	m	m		capacity	capacity	
a	$l_{\rm a}$		a	$C_{\rm d}$	C_{s}	
Min.	Max.(2)	Max.	Min.	N	N	
115.5	121	154.5	138	755 000	4 530 000	
125.5	135.5	174.5	154	1 100 000	6 590 000	
145.5	155.5	204.5	176	1 240 000	7 410 000	
165.5	170	224.5	195	1 570 000	9 410 000	
187	199	253	221	1 770 000	10 600 000	
207	213.5	283	244	2 450 000	14 700 000	
227	239.5	313	269	2 700 000	16 200 000	
247	265	333	296	2 940 000	17 700 000	
267	288	363	320	3 510 000	21 000 000	
287	313.5	393	345	4 120 000	24 700 000	
307	336.5	423	371	4 410 000	26 500 000	

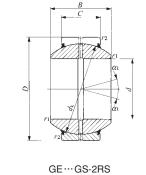


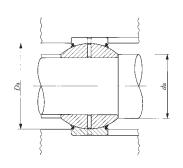
SPHERICAL BUSHINGS

Steel-on-steel Spherical Bushings

GE…G


Shaft dia. 6 — 120mm


Shaft	ldentifi	cation number	Mass (Ref.)			Bound	lary dii mm	mension	S		tilting	issible angle
dia. mm	Without seals	With seals	kg	d	D	В	C	d_{k}	$r_{1s \text{ min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$		α_1
6	GE 6G	_	0.010	6	16	9	5	13	0.3	0.3	21	
8	GE 8G	_	0.015	8	19	11	6	16	0.3	0.3	21	_
10	GE 10G	_	0.022	10	22	12	7	18	0.3	0.3	18	_
12	GE 12G	_	0.041	12	26	15	9	22	0.3	0.3	18	_
15	GE 15GS	GE 15GS-2RS	0.059	15	30	16	10	25	0.3	0.3	16	13
17	GE 17GS	GE 17GS-2RS	0.083	17	35	20	12	29	0.3	0.3	19	16
20	GE 20GS	GE 20GS-2RS	0.155	20	42	25	16	35.5	0.3	0.6	17	16
25	GE 25GS	GE 25GS-2RS	0.215	25	47	28	18	40.7	0.6	0.6	17	15
30	GE 30GS	GE 30GS-2RS	0.330	30	55	32	20	47	0.6	1	17	16
35	GE 35GS	GE 35GS-2RS	0.400	35	62	35	22	53	0.6	1	16	15
40	GE 40GS	GE 40GS-2RS	0.515	40	68	40	25	60	0.6	1	17	14
45	GE 45GS	GE 45GS-2RS	0.660	45	75	43	28	66	0.6	1	15	13
50	GE 50GS	GE 50GS-2RS	1.50	50	90	56	36	80	0.6	1	17	16
60	GE 60GS	GE 60GS-2RS	2.05	60	105	63	40	92	1	1	17	15
70	GE 70GS	GE 70GS-2RS	3.00	70	120	70	45	105	1	1	16	14
80	GE 80GS	GE 80GS-2RS	3.60	80	130	75	50	115	1	1	14	13
90	GE 90GS	GE 90GS-2RS	5.41	90	150	85	55	130	1	1	15	14
100	GE 100GS	GE 100GS-2RS	6.15	100	160	85	55	140	1	1	14	12
110	GE 110GS	GE 110GS-2RS	9.70	110	180	100	70	160	1	1	12	11
120	GE 120GS	GE 120GS-2RS	15.5	120	210	115	70	180	1	1	16	15


Notes(1)	Minimum allowable value of chamfer dimensions r_1	and r_2
----------	---	-----------

⁽²⁾ When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a . Remarks1. GE ··· G has no oil hole. Others are provided with an oil groove and two oil holes on the inner ring and outer ring, respectively.

2. No grease is prepacked. Perform proper lubrication.

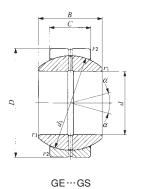
Me	ounting o	dimensio m	ns	Dynamic load capacity	Static load capacity	
á	l _a) _a	C_{d}	C_{s}	
Min.	Max.(2)	Max.	Min.	N	N	
8.5	9	13.5	13	6 370	38 200	
10.5	11.5	16.5	15.5	9 410	56 500	
12.5	13	19.5	17	12 400	74 100	
14.5	16	23.5	21	19 400	117 000	
17.5	19	27.5	26	24 500	147 000	
19.5	21	32.5	30.5	34 100	205 000	
22.5	25	37.5	37	55 700	334 000	
29.5	29.5	42.5	41.5	71 800	431 000	
34	34	49.5	48	92 200	553 000	
39.5	39.5	56.5	54.5	114 000	686 000	
44.5	44.5	62.5	60	147 000	883 000	
49.5	50	69.5	66	181 000	1 090 000	
54.5	57	84.5	79	282 000	1 690 000	
65.5	67	99.5	91	361 000	2 170 000	
75.5	78	114.5	103	463 000	2 780 000	
85.5	87	124.5	112	564 000	3 380 000	
95.5	98	144.5	127	701 000	4 210 000	
105.5	111	154.5	138	755 000	4 530 000	
115.5	124.5	174.5	154	1 100 000	6 590 000	
125.5	138.5	204.5	176	1 240 000	7 410 000	

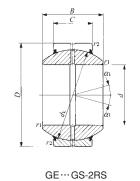
K20

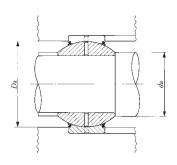
SPHERICAL BUSHINGS


Steel-on-steel Spherical Bushings

Shaft dia. 140 — 280mm


Shaft dia.	Identific	cation number	Mass (Ref.)							Permissible tilting angle degree		
mm	Without seals	With seals	kg	d	D	В	C	$d_{\mathbf{k}}$	$r_{1s \text{ min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
140	GE 140GS	GE 140GS-2RS	19.2	140	230	130	80	200	1	1	16	15
160	GE 160GS	GE 160GS-2RS	25.4	160	260	135	80	225	1	1.1	16	14
180	GE 180GS	GE 180GS-2RS	34.7	180	290	155	100	250	1.1	1.1	14	13
200	GE 200GS	GE 200GS-2RS	43.8	200	320	165	100	275	1.1	1.1	15	14
220	GE 220GS	GE 220GS-2RS	51.3	220	340	175	100	300	1.1	1.1	16	14
240	GE 240GS	GE 240GS-2RS	66.1	240	370	190	110	325	1.1	1.1	15	14
260	GE 260GS	GE 260GS-2RS	81.8	260	400	205	120	350	1.1	1.1	15	14
280	GE 280GS	GE 280GS-2RS	97.4	280	430	210	120	375	1.1	1.1	15	14




Notes(¹) Minimum allowable value of chamfer dimensions r_1 and r_2 (²) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .

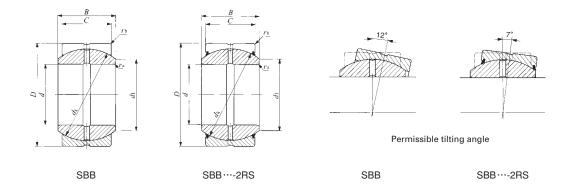
Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

2. No grease is prepacked. Perform proper lubrication.

Me		dimensio m	ns	Dynamic load capacity	Static load capacity	
á	l _a	L) ့	C_{d}	C_{s}	
Min.	Max.(2)	Max.	Min.	N	N	
145.5	152	224.5	195	1 570 000	9 410 000	
165.5	180	253	221	1 770 000	10 600 000	
187	196	283	244	2 450 000	14 700 000	
207	220	313	269	2 700 000	16 200 000	
227	243.5	333	296	2 940 000	17 700 000	
247	263.5	363	320	3 510 000	21 000 000	
267	283.5	393	345	4 120 000	24 700 000	
287	310.5	423	371	4 410 000	26 500 000	

SPHERICAL BUSHINGS

Steel-on-steel Spherical Bushings Inch Series


Shaft dia. 12.700 — 63.500mm

Shaft dia.	ldentific	ation number	Mass (Ref.)	Boundary dimensions mm(inch)						
mm (inch)	Without seal	With seals	kg	d	D	В	C			
12.700 (½)	SBB 8	_	0.020	12.700(½)	22.225(1/8)	11.10(.437)	9.52(.375)			
15.875 (5/8)	SBB 10	_	0.036	15.875(1/8)	26.988 (1½)	13.89(.547)	11.91(.469)			
19.050 (¾)	SBB 12	SBB 12-2RS	0.057	19.050(¾)	31.750(11/4)	16.66(.656)	14.27(.562)			
22.225 (%)	SBB 14	SBB 14-2RS	0.088	22.225(7/8)	36.512 (1 ½)	19.43(.765)	16.66(.656)			
25.400 (1)	SBB 16	SBB 16-2RS	0.125	25.400 (1)	41.275 (1 ½)	22.22(.875)	19.05(.750)			
31.750 (1 ¹ ⁄ ₄)	SBB 20	SBB 20-2RS	0.234	31.750(11/4)	50.800 (2)	27.76(1.093)	23.80(.937)			
34.925 (1 ³ / ₈)	SBB 22	SBB 22-2RS	0.349	34.925 (1 ³ / ₈)	55.562 (2 ¾ ₁₆)	30.15(1.187)	26.19(1.031)			
38.100 (1½)	SBB 24	SBB 24-2RS	0.424	38.100 (1½)	61.912(2½)	33.32(1.312)	28.58(1.125)			
44.450 (1 ³ ⁄ ₄)	SBB 28	SBB 28-2RS	0.649	44.450 (1 ³ ⁄ ₄)	71.438 (213/16)	38.89(1.531)	33.32(1.312)			
50.800 (2)	SBB 32	SBB 32-2RS	0.939	50.800 (2)	80.962 (3 3/16)	44.45(1.750)	38.10(1.500)			
57.150 (2½)	SBB 36	SBB 36-2RS	1.32	57.150 (2 ½)	90.488 (3 1/16)	50.01(1.969)	42.85(1.687)			
63.500 (2½)	SBB 40	SBB 40-2RS	1.85	63.500 (2 ½)	100.012(315/16)	55.55(2.187)	47.62(1.875)			

Note(1) Maximum allowable corner radius of the shaft or housing
Remarks1. The value with mark * is applicable to types without seals. For types with seals, the value is 0.4 mm.

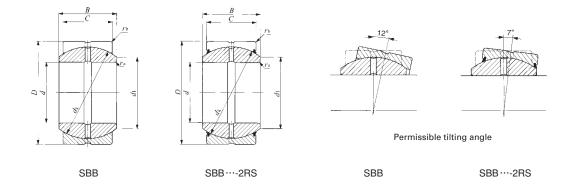
2. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

3. No grease is prepacked. Perform proper lubrication.

	Radial internal clearance	Mount	ing dime mm	ensions	Dynamic load capacity	Static load capacity	
$d_{\mathbf{k}}$	mm	d_1	$r_{\rm asmax}^{(1)}$	$r_{\rm bsmax}^{(1)}$	C_{d}	C_{s}	
W K	Min./Max.	00 1	Max.	Max.	N	N	
18 (.709)	0.05 / 0.15	14.0	0.2	0.6	16 800	101 000	
23 (.906)	0.05 / 0.15	17.9	0.2	0.8	26 900	161 000	
27.5(1.083)	0.08 / 0.18	21.4	0.6	*0.8	38 500	231 000	
32 (1.260)	0.08 / 0.18	25.0	0.6	*0.8	52 300	314 000	
36 (1.417)	0.08 / 0.18	28.0	0.6	*0.8	67 300	404 000	
45 (1.772)	0.08 / 0.18	35.1	0.6	0.8	105 000	630 000	
49 (1.929)	0.08 / 0.18	38.5	0.6	0.8	126 000	755 000	
55 (2.165)	0.08 / 0.18	43.3	0.6	0.8	154 000	925 000	
64 (2.520)	0.08 / 0.18	50.4	0.6	0.8	209 000	1 250 000	
73 (2.874)	0.08 / 0.18	57.6	0.6	0.8	273 000	1 640 000	
82 (3.228)	0.10 / 0.20	64.9	0.6	0.8	345 000	2 070 000	
91 (3.583)	0.10 / 0.20	72.0	0.6	0.8	425 000	2 550 000	

SPHERICAL BUSHINGS

Steel-on-steel Spherical Bushings Inch Series


Shaft dia. 69.850 — 152.400mm

Shaft dia.	Identific	ation number	Mass (Ref.)		dimensions inch)		
mm (inch)	Without seal	With seals	kg	d	D	В	С
69.850 (2 ³ ⁄ ₄)	SBB 44	SBB 44-2RS	2.44	69.850 (2 ³ ⁄ ₄)	111.125(43/8)	61.11(2.406)	52.37(2.062)
76.200 (3)	SBB 48	SBB 48-2RS	3.12	76.200 (3)	120.650(4¾)	66.68(2.625)	57.15(2.250)
82.550 (3 ¹ ⁄ ₄)	SBB 52	SBB 52-2RS	3.92	82.550 (3 ½)	130.175(51/8)	72.24(2.844)	61.90(2.437)
88.900 (3½)	SBB 56	SBB 56-2RS	4.83	88.900 (3 ½)	139.700(5½)	77.77(3.062)	66.68(2.625)
95.250 (3 ³ ⁄ ₄)	SBB 60	SBB 60-2RS	5.87	95.250 (3 ³ ⁄ ₄)	149.225 (5 1/8)	83.34(3.281)	71.42(2.812)
101.600	SBB 64	SBB 64-2RS	7.07	101.600(4)	158.750(6½)	88.90(3.500)	76.20(3.000)
107.950 (4 ¹ ⁄ ₄)	SBB 68	SBB 68-2RS	8.46	107.950(41/4)	168.275 (6 %)	94.46(3.719)	80.95(3.187)
114.300 (4½)	SBB 72	SBB 72-2RS	9.94	114.300 (4 1/2)	177.800(7)	100.00(3.937)	85.72(3.375)
120.650 (4 ³ ⁄ ₄)	SBB 76	SBB 76-2RS	11.6	120.650(4¾)	187.325(73/8)	105.56(4.156)	90.47(3.562)
127.000 (5)	SBB 80	SBB 80-2RS	13.5	127.000(5)	196.850(7¾)	111.12(4.375)	95.25(3.750)
152.400 (6)	SBB 96	SBB 96-2RS	17.6	152.400(6)	222.250(8¾)	120.65(4.750)	104.78(4.125)

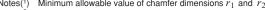
Note(1) Maximum allowable corner radius of the shaft or housing

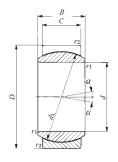
Remarks1. The inner ring and the outer ring have an oil groove and two oil holes, respectively.

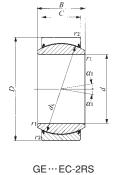
2. No grease is prepacked. Perform proper lubrication.

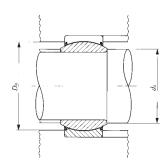
	Radial internal clearance	Mount	ing dime mm	ensions	Dynamic load capacity	Static load capacity
$d_{ m k}$	mm	d_1	$r_{\text{as max}}^{(1)}$	$r_{\rm bsmax}^{(1)}$	C_{d}	$C_{ m s}$
u _K	Min./Max.	и	Max.	Max.	N	N
100(3.937)	0.10 / 0.20	79.0	0.6	0.8	514 000	3 080 000
110(4.331)	0.10 / 0.20	86.5	0.6	0.8	616 000	3 700 000
119(4.685)	0.13 / 0.23	94.1	0.6	0.8	722 000	4 330 000
128(5.039)	0.13 / 0.23	101.6	0.6	0.8	837 000	5 020 000
137(5.394)	0.13 / 0.23	108.4	0.6	0.8	960 000	5 760 000
146(5.748)	0.13 / 0.23	115.8	0.6	0.8	1 090 000	6 550 000
155(6.102)	0.13 / 0.23	122.6	0.8	1.1	1 230 000	7 380 000
164(6.457)	0.13 / 0.23	129.8	0.8	1.1	1 380 000	8 270 000
173(6.811)	0.13 / 0.23	136.8	0.8	1.1	1 530 000	9 210 000
183(7.205)	0.13 / 0.23	144.9	0.8	1.1	1 710 000	10 300 000
207(8.150)	0.13 / 0.23	167.5	0.8	1.1	2 130 000	12 800 000

SPHERICAL BUSHINGS


Maintenance-free Spherical Bushings

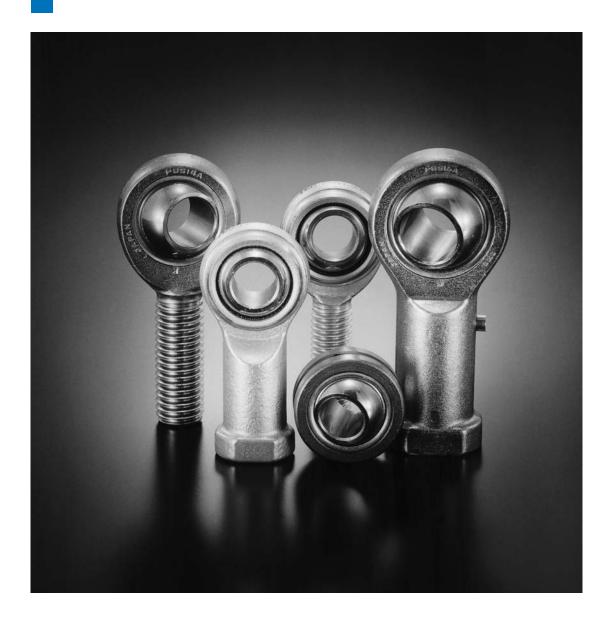

Shaft dia. 15 — 70mm


Shaft	Identific	cation number	Mass (Ref.)			Bound	dary di mm	mension า	ıs		Permissible tilting angle degree	
dia. mm	Without seals	With seals	kg	d	D	В	C	$d_{\rm k}$	$r_{1s \text{min}}^{(1)}$	$r_{2\text{s min}}^{(1)}$	α	α_1
15	GE 15EC	_	0.032	15	26	12	9	22	0.3	0.3	8	_
17	GE 17EC	_	0.049	17	30	14	10	25	0.3	0.3	10	_
20	GE 20EC	_	0.065	20	35	16	12	29	0.3	0.3	9	_
25	GE 25EC	_	0.115	25	42	20	16	35.5	0.6	0.6	7	_
30	GE 30EC	GE 30EC-2RS	0.160	30	47	22	18	40.7	0.6	0.6	6	4
35	_	GE 35EC-2RS	0.258	35	55	25	20	47	0.6	1	_	4
40	_	GE 40EC-2RS	0.315	40	62	28	22	53	0.6	1	_	4
45	_	GE 45EC-2RS	0.413	45	68	32	25	60	0.6	1	_	4
50	_	GE 50EC-2RS	0.560	50	75	35	28	66	0.6	1	_	4
60	_	GE 60EC-2RS	1.10	60	90	44	36	80	1	1	_	3
70		GE 70EC-2RS	1.54	70	105	49	40	92	1	1	_	4



Notes(¹) Minimum allowable value of chamfer dimensions r_1 and r_2 (²) When Spherical Bushings are used with full tilting angle, the shaft shoulder dimension must be less than the maximum value of d_a .

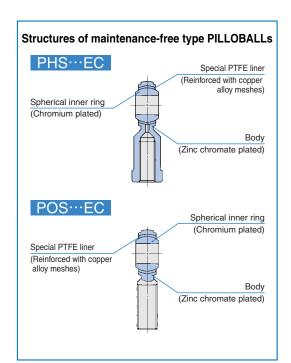
Remark No oil hole is provided.

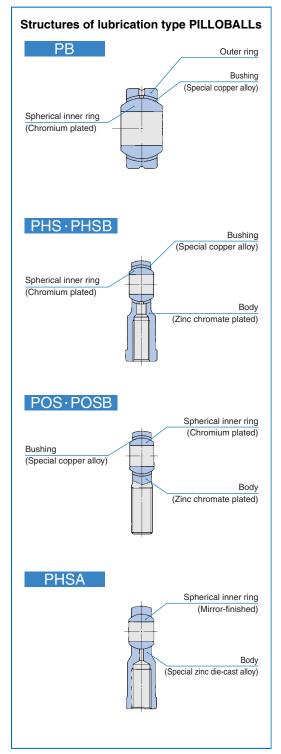

GE…EC		

Mounting dimensions mm		Dynamic load capacity	capacity			
a	a	L	a	C_{d}	$C_{\rm s}$	
Min.	Max.(2)	Max.	Min.	N	N	
17.5	18	23.5	21.5	19 400	48 500	
19.5	20.5	27.5	24.5	24 500	61 300	
22.5	24	32.5	28	34 100	85 300	
29	29	37.5	34	55 700	139 000	
34	34	42.5	41.5	71 800	180 000	
39.5	39.5	49.5	48	92 200	230 000	
44.5	45	56.5	54.5	114 000	286 000	
49.5	50.5	62.5	60	147 000	368 000	
54.5	56	69.5	66	181 000	453 000	
65.5	66.5	84.5	79	282 000	706 000	
75.5	77.5	99.5	91	361 000	902 000	

PILLOBALLS

- ●PILLOBALL Spherical Bushings Insert Type
- ●PILLOBALL Rod Ends Insert Type
- ●PILLOBALL Rod Ends Die-cast Type
- ●PILLOBALL Rod Ends Maintenance-free Type


Structure and Features


IKU PILLOBALLs are compact self-aligning spherical bushings that can support a large radial load and a bi-directional axial load at the same time.

These bushings are classified by sliding surface types, namely, insert type, die-cast type and maintenance-free type. In the insert type, a spherical inner ring makes contact with the special copper alloy bushing with superior run-in properties. In the die-cast type, a spherical inner ring makes direct contact with the bore surface of the body of special zinc die-cast alloy. In the maintenance-free type, a spherical inner ring makes contact with the special PTFE liner of maintenance-free type. Thus, a smooth rotational and oscillatory motion can be achieved with superior anti-wear and loading properties in each type.

PILLOBALL Rod Ends have either a female thread in the body or a male thread on the body, and they can be easily assembled onto machines.

PILLOBALLs are used in control and link mechanisms in machine tools, textile machines, packaging machines, etc. The maintenance-free type is especially suitable for loading in one direction and is the best choice for machines in which oil must be avoided such as food processing machines, or machines which cannot be re-lubricated.

K29

In PILLOBALLs, the types shown in Table 1 are available.

Table 1 Type

	Lu	brication ty	pe	Maintenance-free typ		
Type	Spherical Rod en			Rod end		
	Bushings	female thread	male thread	female thread	male thread	
Insert type	PB	PHS · PHSB	POS · POSB	DI IC FC	POS···EC	
Die-cast type		PHSA	_	PH3EC		

Lubrication Type PILLOBALL Spherical Bushings Insert Type PB

This type has superior anti-wear properties and high rigidity. It consists of a spherical inner ring, an outer ring, and a bushing of special copper alloy with superior run-in properties inserted in between. The spherical surface of the inner ring is chromium plated after heat treatment and grinding. This type is assembled with a shaft and a housing.

When especially large radial and/or axial loads are applied, Spherical Bushings with molybdenum disulfide (MoS₂) treated inner and outer rings are recommended. (See page K1.)

Lubrication Type PILLOBALL Rod Ends Insert Type PHS, POS, PHSB and POSB

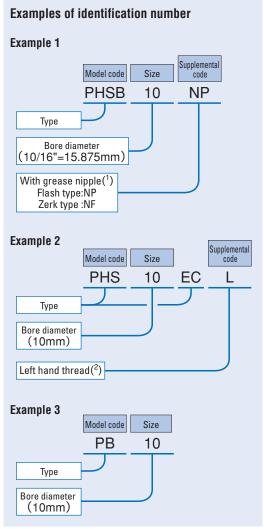
This type has superior anti-wear and anti-corrosion properties as well as high rigidity. It consists of a spherical inner ring of which spherical surface is chromium-plated after heat treatment and grinding, a body with a zinc chromate treated outer surface, and an inserted bushing of special copper alloy having superior run-in properties. This type includes PHS and PHSB, which has a female thread in the body, and POS and POSB, which has a male thread on the body.

Lubrication Type PILLOBALL Rod Ends Die-cast Type PHSA

The spherical inner ring of this type is mirror-finished after heat treatment and is built in a body of special zinc die-cast alloy. The sliding surfaces of the inner ring and body are in close contact with each other. Thus, this type is an economical rod end with superior anti-wear and loading properties.

Maintenance-free Type PILLOBALL Rod Ends PHS ··· EC . POS ··· EC

This type has superior anti-corrosion properties as the body is zinc chromate treated and the spherical inner


ring is chromium plated on the sphere surface after heat treatment and grinding.

A special PTFE liner, reinforced with copper alloy meshes, which is superior in anti-wear properties with little creep deformation is used for lining on the sliding surface of the body, and this type is maintenance-free.

PHS \cdots EC, which has a female thread in the body, and POS \cdots EC, which has a male thread on the body, are available.

Identification number

The identification number of PILLOBALLs consists of a model code, a size and any supplemental codes as shown in the examples.

Notes(1) Shapes of greace nipple are shown in Fig.1. In case of no indication of grease nipple type, grease nipple is not prepared.

(2) Right hand thread is indicated with no code.

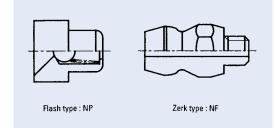


Fig. 1 Shapes of grease nipple

Accuracy

The accuracy of PILLOBALLs is shown in Tables 2 and 3. The maximum radial internal clearance of the insert type is 0.035 mm.

Table 2 Tolerance

unit: mm

Туре	Dimension	Dimension symbol	Tolerance
	Bore dia. of inner ring	d	H7
	Outside dia. of outer ring	D	h6
РВ	Width of inner ring	В	0 - 0.1
	Width of outer ring	С	± 0.1
PHS	Bore dia. of inner ring	d	H7
POS PHS····EC POS····EC	Width of inner ring	В	0 - 0.1
PHSB	Bore dia. of inner ring	d	+ 0.038 - 0.013
POSB	Width of inner ring	B ₁	0 - 0.127
PHSA	Bore dia. of inner ring	d	+ 0.063 - 0.012
	Width of inner ring	В	See Table 3.

Table 3 Tolerance of width B of inner ring of PHSA type unit: mm

Table 6 Tolerance of Math. 2 of Mills Tillig 6 T Tiest type Unit. Tilli					
Nominal bore d	d lia. of inner ring	Δ Deviation of a sing	20		
Over	Incl.	High	Low		
_	14	0	- 0.2		
14	20	0	- 0.3		
20	22	0	- 0.4		

Recommended fits for PILLOBALLs are shown in Table 4.

Table 4 Recommended fits

Condition	Tolerance class			
Condition	Shaft	Housing bore(1)		
Normal operation	h7	H7		
Directionally indeterminate loading	n6, p6	N7		

Note(1) This is applicable to PILLOBALL Spherical Bushings, Insert type.

Selection of PILLOBALL

Load capacities of PILLOBALLs are determined based on the allowable contact pressure on sliding surfaces and the strength of body for each type. Thus, a suitable type and size should be selected based on the dynamic load capacity $C_{\rm d}$ and static load capacity $C_{\rm s}$ shown in the dimension tables.

Load capacity

Dynamic load capacity

The dynamic load capacity \mathcal{C}_d is obtained on the basis of the contact pressure on the sliding surface. The dynamic load capacity is used for calculating the life.

The dynamic load capacity considering temperature increase is obtained from the following equation using the temperature factor, which is a correction factor for the effect of PILLOBALL temperature.

 $C_{\mathrm{dt}} = f_{\mathrm{t}} C_{\mathrm{d}} \qquad (1)$

where, C_{dt} : Dynamic load capacity considering temperature increase, N

 $f_{\rm t}$: Temperature factor (Refer to Table 5.)

 $C_{\rm d}$: Dynamic load capacity, N (Refer to the dimension tables.)

Table 5 Temperature factor f.

			Tempera	ture ℃		
Type	-30	+80	+ 90	+100	+120	+ 150
	+80	+90	+100	+120	+ 150	+180
PB PHS, POS PHSB, POSB	1	1	1	1	1	0.7
PHS···EC POS···EC	1	1	0.9	0.75	0.55	-

Static load capacity

The static load capacity $C_{\rm s}$ is the maximum static load that can be applied on the PILLOBALL without breaking the inner or outer ring of the PILLOBALL Spherical Bushing (or the inner ring or body of the PILLOBALL Rod End), and without causing severe permanent deformation that will make the PILLOBALL unusable.

Maximum Operating Load

The recommended value of bushing load is obtained by multiplying the dynamic load capacity $C_{\rm d}$ by a numerical factor, which differs depending on the bushing type and load condition. For PILLOBALL Rod Ends, the static load capacity $C_{\rm s}$ must also be considered in determining the applicable bushing load.

Table 6 shows the guidelines for maximum operating load of PILLOBALLs. When axial loads are added in addition to radial loads, bending stress occurs in the body. Pay attention to this bending stress.

Table 6 Maximum operating load

Tuno	Load direction		
Туре	Constant	Alternate	
PB	$\leq 0.3C_{\rm d}$	≤ 0.6 <i>C</i> _d	
PHS,POS,PHSB,POSB	≦ 0.3 <i>C</i> _d	≤ 0.2 <i>C</i> _s	
PHSA	≦0	.16 <i>C</i> _s	
PHS···EC,POS···EC	≤ 0.3 <i>C</i> _s	≤ 0.2 <i>C</i> _s	

Remark $\ C_{\rm d}$ is the dynamic load capacity and $\ C_{\rm S}$ is the static load capacity.

Equivalent radial load

PILLOBALLs can take radial and axial loads at the same time. When the magnitude and direction of loads are constant, the equivalent radial load can be obtained by the following formula.

$$P = F_{\rm r} + YF_{\rm a}$$
.....(2) where, P : Equivalent radial load, N

e, P . Equivalent radial load, $F_{\rm r}$: Radial load, ${\sf N}$

 $F_{\rm a}$: Axial load, N

Y: Axial load factor (Refer to Table 7.)

Table 7 Axial load factor Y

$F_{ m a}/F_{ m r}$	0.1	0.2	0.3	0.4	0.5	>0.5
PB PHS,POS PHSB,POSB	1	2	3	4	5	Unusable
PHS···EC POS···EC	1	2	3		Unusable	•

Life

The life of PILLOBALLs is defined as the total number of oscillating motions during which the PILLOBALLs can be operated without failure or malfunction due to wear, increase in internal clearance, increase in sliding torque and operating temperature, etc.

As the actual life is affected by many factors such as the material of the sliding surface, the magnitude and direction of load, lubrication, sliding velocity, etc., the calculated life can be used as a measure of expected service life.

♠ Life of lubrication type PILLOBALLS PB · PHS · POS · PHSB · POSB

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.2.

When the operating conditions are out of the permissible range, please consult ${\bf IKO}$.

The contact pressure p and the sliding velocity V are obtained from the following formulae.

$$p = \frac{50P}{C_{\text{dt}}}$$
 (3)

$$V = 5.82 \times 10^{-4} d_k \beta f$$
(4)

where, p: Contact pressure, N/mm²

P : Equivalent radial load, N

(Refer to Formula (2).)

 $C_{
m dt}$: Dynamic load capacity considering temperature increase, N

(Refer to Formula (1).)

V: Sliding velocity, mm/s

 $d_{\mathbf{k}}$: Sphere diameter, $\,$ mm

(Refer to the dimensional tables.)

 2β : Oscillating angle degrees (Refer to Fig.3.)

when β < 5°, β = 5

when rotating, $\beta = 90$

f: Number of oscillations per minute, $\ensuremath{\mathsf{cpm}}$

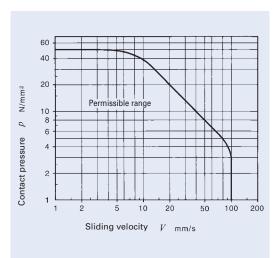
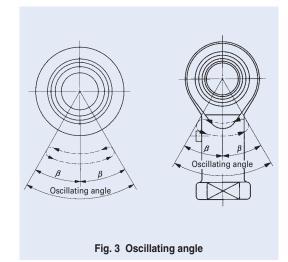



Fig. 2 pV diagram of lubrication type PILLOBALLs

[2] Life calculation

The life of lubrication type PILLOBALLs can be calculated by the following formulae.

$$G = \frac{3.18b_1b_2b_3}{\sqrt{d_k \beta}} \left(\frac{C_{\text{dt}}}{P}\right)^2 \times 10^5 \text{ } \cdots \cdots (5)$$

$$L_{\rm h} = \frac{G}{60f} \qquad (6)$$

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 8.)

b₂: Lubrication factor (Refer to Table 8.)

b₃: Sliding velocity factor (Refer to Fig. 4.)

C_{dt}: Dynamic load capacity considering temperature increase. N

(Refer to Formula (1).)

P: Equivalent radial load, N (Refer to Formula (2).)

 $L_{\rm h}$: Life in hours, h

f: Number of oscillations per minute, cpm

Table 8 Load directional factor b_1 and lubrication factor b_2 for lubrication type PILLOBALLs

Load direction	alfactor h.	Lubrication	factor he
	1		
Load di	rection	Periodical	lubrication
Constant	Alternate	None	Regular
1	5	1	15

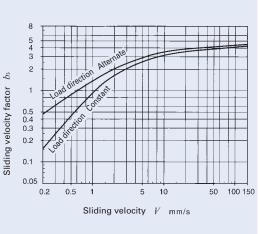


Fig. 4 Sliding velocity factor for lubrication type PILLOBALLs

$\ensuremath{\mathbf{2}}$ Life of maintenance-free type PILLOBALLs $\ensuremath{\mathsf{PHS}} \cdots \mathsf{EC} \cdot \mathsf{POS} \cdots \mathsf{EC}$

[1] Confirmation of pV value

Before attempting to calculate the life, make sure that the operating conditions are within the permissible range by referring to the pV diagram in Fig.5.

When the operating conditions are out of the permissible range, please consult \mathbf{IKD} .

The contact pressure p and sliding velocity V are obtained from Formulae (3) and (4) on page K6.

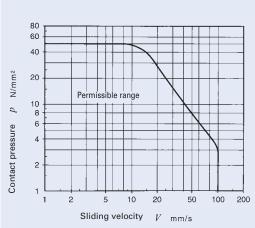


Fig. 5 $\,pV$ diagram for maintenance-free type PILLOBALL Rod Ends

[2] Life calculation

The life of maintenance-free type PILLOBALL Rod Ends is obtained from the total sliding distance S which is given in Fig.5 for the contact pressure p obtained from Formula (3).

The total number of oscillations and life in hours can be obtained from the following formulae.

$$G = 16.67 \times b_1 \times \frac{Sf}{V} \quad \cdots \qquad (7)$$

$$L_{\rm h} = \frac{G}{60f} \qquad (8)$$

where, G: Life (Total number of oscillations)

 b_1 : Load directional factor (Refer to Table 9.)

S: Total sliding distance m

f: Number of oscillations per minute cpm

V: Sliding velocity $\,$ mm/s

 $L_{\rm h}$: Life in hours h

Table 9 Load directional factor for maintenance-free type PILLOBALLS b_1

Load direction	Constant	Alternate
Load directional factor b_1	1	0.2(1)

Note(1) This value is applicable when the load changes comparatively slowly. When the load changes rapidly, please consult **IKU**, as the factor degreases sharply.

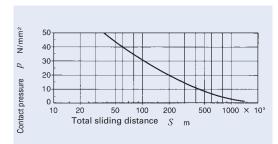


Fig. 6 Contact pressure and total sliding distance for maintenance-free type PILLOBALL Rod Ends

Lubrication

Maintenance-free type PILLOBALL Rod Ends have a sliding surface lined with a self-lubricating lining. Therefore, they can be used without lubrication.

Lubrication type PILLOBALLs are not provided with prepacked grease. Perform proper lubrication for use. Operating without lubrication will increase the wear of the sliding contact surfaces and cause seizure.

■ Oil Hole and Grease Nipple

Table 10 shows the specifications of oil hole and grease nipple on the outer ring or body. Further, lubrication nozzle models compatible with the grease nipple are shown in Table 11.

For PILLOBALLs without an oil hole and grease nipple, apply grease directly on the spherical surface.

Table 10 Specifications of oil hole and grease nipple

Type $egin{array}{c} {\sf Bore \ diameter \ of \ inner \ ring} \ d & {\sf mm} \end{array}$		Specification	
PB		1 oil hole + oil groove	
PHS	<i>d</i> ≤ 4	None	
FIIS	4 < d	With grease nipple	
	<i>d</i> ≤ 4	None	
POS	4 < d ≤ 6	1 oil hole	
	6 < d	With grease nipple	
PHSB · POSB		None(1)	
PHSA		With grease nipple	
PHS ···	EC, POS···EC	None	

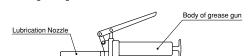

Note(1) Grease Nipple is available for size 4 or larger with supplemental code.

Table 11 Types and Dimension of Lubrication Nozzles

Туре	Dimension
A-5126T	126 29 Width across flats 12 PT1/8
A-5120R	120 29 Width across flats 12
B-5120R	120 29 Width across flats 12 PT1/8

Remark HSP-3(Yamada Corporation)can be used for them.

The above nozzles can be atached on the standard grease gun shown below.

■ Operating Temperature Range

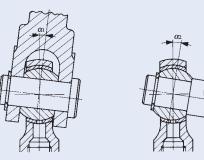
The maximum allowable temperature for Lubrication type PILLOBALLs is +180°C for the insert type and +80°C for the die-cast type.

The maximum allowable temperature for Maintenance-free type PILLOBALL Rod Ends is +150 °C.

Precautions for Use

1 Tightening depth

The recommended tightening depth of the screw into the PILLOBALL Rod End body is shown below.


Insert type and maintenance-free type: 1.25 times the nominal thread dia. or more.

Die-cast type: 2 times the nominal thread dia. or more.

Allowable tilting angle

The allowable tilting angle differs depending on the mounting structure as shown in Table 12 and Table 13.

Table 12 Allowable tilting angle

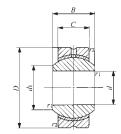
unit: degre

d Bore diameter	PB(1), PHS PHS…EC,	S, POS POS····EC	PH	ISA
mm	α_1	α_2	α_1	α_2
3	7	13	_	_
4	7	13	_	_
5	8	13	7	13
6	8	13	7	13
8	8	14	8	14
10	8	14	8	14
12	8	13	8	13
14	10	16	9	16
16	9	15	9	15
18	9	15	9	15
20	9	15	9	15
22	10	15	9	15
25	9	15	_	_
28	9	15	-	_
30	10	17	-	_

Note(1) In the case of the PB series, α_2 is applicable in general.

Table 13 Allowable tilting angle for inch series

nit: deare

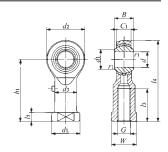

With female thread	With male thread	α_1	α_2
PHSB 2	POSB 2	8	16
PHSB 2.5	POSB 2.5	7	12
PHSB 3	POSB 3	6	10
PHSB 4	POSB 4	7	13
PHSB 5	POSB 5	6	10
PHSB 6	POSB 6	6	11
PHSB 7	POSB 7	7	11
PHSB 8	POSB 8	6	9
PHSB 10	POSB 10	7	11
PHSB 12	POSB 12	6	10
PHSB 16	POSB 16	7	14

PILLOBALL

Lubrication Type PILLOBALL Spherical Bushings Insert Type

РΒ

		Mass		В	oundary	dimen	sions	mm		Dynamic load	Static load
1	dentification	(Ref.)			,					capacity	capacity
	number	g	d	D	C	В	d_1	$r_{\rm s min}^{(1)}$	Ball dia. mm (inch)	$C_{\rm d}$	$C_{ m s}$ N
i	PB 5	8.5	5	16	6	8	7.7	0.2	11.112	3 270	7 850
	PB 6	13	6	18	6.75	9	9	0.2	12.700 (½)	4 200	10 100
	PB 8	24	8	22	9	12	10.4	0.2	15.875 (⁵ / ₈)	7 010	16 800
	PB 10	39	10	26	10.5	14	12.9	0.2	19.050 (³ ⁄ ₄)	9 810	23 500
	PB 12	58	12	30	12	16	15.4	0.2	22.225 (½)	13 100	31 400
	PB 14	84	14	34	13.5	19	16.9	0.3	25.400 (1)	16 800	40 400
	PB 16	111	16	38	15	21	19.4	0.3	28.575 (1 ½)	21 000	50 400
	PB 18	160	18	42	16.5	23	21.9	0.3	31.750 (1 ½)	25 700	61 600
	PB 20	210	20	46	18	25	24.4	0.3	34.925 (1 ³ / ₈)	30 800	74 000
	PB 22	265	22	50	20	28	25.8	0.3	38.100 (1 ½)	37 400	89 700
	PB 25	390	25	56	22	31	29.6	0.6	42.862 (1½)	46 200	111 000
	PB 28	410	28	62	25	35	32.3	0.6	47.625	58 400	140 000
	PB 30	610	30	66	25	37	34.8	0.6	50.800 (2)	62 300	149 000


Minimum allowable value of chamfer dimensions r_1 and r_2

Remarks1. The outer ring has an oil groove and an oil hole.

2. No grease is prepacked. Perform proper lubrication.

Lubrication Type PILLOBALL Rod Ends Insert Type/With Female Thread

PHS

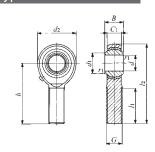
Identification	Mass (Ref.)		Boundary dimensions mm													Dynamic load capacity	Static load capacity	
number	g	d	Thread G	d_2	C_1	В	d_1	l_4	h_1	l_3	l_5	W	d_3	$d_{\rm L}$	(1) r _{1 s min}	Ball dia.	C_{d}	$C_{\rm s}$
	9															(inch)	N	N
PHS 3	5.7	3	M 3×0.5	12	4.5	6	5.2	27	21	10	3	5.5	5	6.5	0.2	7.938 (½)	1 750	3 670
PHS 4	11.9	4	M 4×0.7	14	5.3	7	6.5	31	24	12	4	8	8	9.5	0.2	9.525 (³ / ₈)	2 480	4 680
PHS 5	16.5	5	M 5×0.8	16	6	8	7.7	35	27	14	4	9	9	11	0.2	11.112	3 270	5 730
PHS 6	25	6	M 6×1	18	6.75	9	9	39	30	14	5	11	10	13	0.2	12.700 (½)	4 200	6 910
PHS 8	43	8	M 8×1.25	22	9	12	10.4	47	36	17	5	14	12.5	16	0.2	15.875 (⁵ ⁄ ₈)	7 010	10 200
PHS 10	72	10	M10×1.5	26	10.5	14	12.9	56	43	21	6.5	17	15	19	0.2	19.050 (³ ⁄ ₄)	9 810	13 300
PHS 12	107	12	M12×1.75	30	12	16	15.4	65	50	24	6.5	19	17.5	22	0.2	22.225 (⁷ / ₈)	13 100	16 900
PHS 14	160	14	M14×2	34	13.5	19	16.9	74	57	27	8	22	20	25	0.2	25.400 (1)	16 800	20 900
PHS 16	210	16	M16×2	38	15	21	19.4	83	64	33	8	22	22	27	0.2	28.575 (1½)	21 000	25 400
PHS 18	295	18	M18×1.5	42	16.5	23	21.9	92	71	36	10	27	25	31	0.2	31.750 (1½)	25 700	30 200
PHS 20	380	20	M20×1.5	46	18	25	24.4	100	77	40	10	30	27.5	34	0.2	34.925 (1 ³ / ₈)	30 800	35 500
PHS 22	490	22	M22×1.5	50	20	28	25.8	109	84	43	12	32	30	37	0.2	38.100 (1½)	37 400	41 700
PHS 25	750	25	M24×2	60	22	31	29.6	124	94	48	12	36	33.5	42	0.6	42.862 (1½)	46 200	72 700
PHS 28	950	28	M27×2	66	25	35	32.3	136	103	53	12	41	37	46	0.6	47.625 (1 ½)	58 400	87 000
PHS 30	1 130	30	M30×2	70	25	37	34.8	145	110	56	15	41	40	50	0.6	50.800 (2	62 300	92 200

Minimum allowable value of chamfer dimension r_1

Remarks 1. Neither oil hole nor grease nipple is provided for PHS with an inner ring bore diameter d of 4 mm or less.

For others, a grease nipple is provided on the body.

2. No grease is prepacked. Perform proper lubrication.


3. When a metric fine thread specification for inner ring bore deameter d of 8 mm to 14 mm is required, please contact **IKD**.

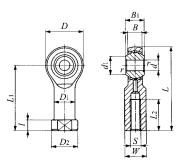
PILLOBALL

Lubrication Type PILLOBALL Rod Ends Insert Type/With Male Thread

POS

			Mass (Ref.)				Bound	ary d	imensio	ns m	m				Dynamic load capacity	Static load capacity
lo	entificat numbe		(1161.)		Thread	,		_	,	,	١.	,	(1)	Ball dia.	$C_{\rm d}$	$C_{\rm s}$
			g	d	G	d_2	C_1	В	d_1	l_2	h	l_1	r _{1s min}	mm (inch)	N	N
ı	POS	3	5.0	3	M 3×0.5	12	4.5	6	5.2	33	27	15	0.2	7.938 (½)	1 750	1 220
ı	POS	4	8.1	4	M 4×0.7	14	5.3	7	6.5	37	30	17	0.2	9.525 (³ / ₈)	2 480	2 060
I	Pos	5	12.5	5	M 5×0.8	16	6	8	7.7	41	33	20	0.2	11.112 (½)	3 270	3 340
ı	Pos	6	19	6	M 6×1	18	6.75	9	9	45	36	22	0.2	12.700 (½)	4 200	4 730
ı	POS	8	32	8	M 8×1.25	22	9	12	10.4	53	42	25	0.2	15.875	7 010	8 640
	POS 1	10	54	10	M10×1.5	26	10.5	14	12.9	61	48	29	0.2	19.050 (³ ⁄ ₄)	9 810	13 300
ı	POS 1	12	85	12	M12×1.75	30	12	16	15.4	69	54	33	0.2	22.225 (½)	13 100	16 900
	POS 1	14	126	14	M14×2	34	13.5	19	16.9	77	60	36	0.2	25.400 (1)	16 800	20 900
ı	POS 1	16	185	16	M16×2	38	15	21	19.4	85	66	40	0.2	28.575 (1 ½)	21 000	25 400
ı	POS 1	18	260	18	M18×1.5	42	16.5	23	21.9	93	72	44	0.2	31.750 (1 ½)	25 700	30 200
F	POS 2	20	340	20	M20×1.5	46	18	25	24.4	101	78	47	0.2	34.925 (1 ³ / ₈)	30 800	35 500
I	POS 2	22	435	22	M22×1.5	50	20	28	25.8	109	84	51	0.2	38.100 (1 ½)	37 400	41 700
E	POS 2	25	650	25	M24×2	60	22	31	29.6	124	94	57	0.6	42.862 (1½)	46 200	72 700
I	POS 2	28	875	28	M27×2	66	25	35	32.3	136	103	62	0.6	47.625	58 400	87 000
E	os a	30	1 070	30	M30×2	70	25	37	34.8	145	110	66	0.6	50.800 (2)	62 300	92 200

Minimum allowable value of chamfer dimension r_1

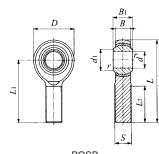

Remarks1. Neither oil hole nor grease nipple is provided for POS with an inner ring bore diameter d of 4 mm or less. For those with an inner ring bore diameter d of 5 to 6 mm, an oil hole is provided on the body. For others, a grease nipple is provided on the body.

2. No grease is prepacked. Perform proper lubrication.

3. When a metric fine thread specification for inner ring bore deameter d of 8 mm to 14 mm is required, please contact **IKD** .

Inch series PILLOBALL Rod Ends Insert Type/With Female Thread

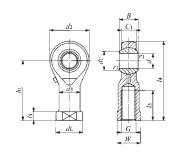
PHSB


Identification	Mass (Ref.)						Воц		y dim m(incl	ensio h)	ns						Dynamic load capacity	Static load capacity
number	g	d	Thread S class 3B	D	В	B_1	d_1	L	l	L_1	L_2	W	D_1	D_2	$r_{\rm smin}^{(1)}$	Ball dia. mm (inch)	$C_{ m d}$ N	$C_{ m s}$ N
PHSB 2	6.8		-32UNC (.1380)		4.75 (.187)	6.35 (.250)	4.75 (.187)	26.57 (1.046)	4.75 (.187)	20.62		6.35 (.250)	6.35 (.250)	7.92 (.312)	0.3 (.012)	7.938 (½)	1 850	5 840
PHSB 2.5	11	3.967 (.1562)	-32UNC (.1640)		5.56 (.219)	7.14 (.281)	6.32 (.249)	29.36 (1.156)		22.23 (.875)		7.14 (.281)	7.14 (.281)	8.74 (.344)	0.3	9.525 (³ ⁄ ₈)	2 600	8 210
PHSB 3	14	4.826 (.1900)			6.35 (.250)	7.92 (.312)	7.77 (.306)	34.93 (1.375)		26.97 (1.062)		7.92 (.312)	7.92 (.312)	10.31	0.3	11.112 (7/16)	3 460	9 090
PHSB 4	23	6.350 (.2500)	-28UNF (.2500)		7.14 (.281)	9.53 (.375)	9.02 (.355)	42.85 (1.687)		33.32 (1.312)	19.05 (.750)	9.53 (.375)	9.53 (.375)	11.89	0.5	13.097 (33/64)	4 590	13 200
PHSB 5	36	7.938 (.3125)	-24UNF (.3125)		8.74 (.344)			46.02 (1.812)		34.93 (1.375)	19.05 (.750)	11.10 (.437)		12.70 (.500)	0.5 (.020)	15.875 (⁵ ⁄ ₈)	6 800	16 500
PHSB 6	59		-24UNF (.3750)		10.31			53.98 (2.125)			23.80 (.937)	14.27 (.562)	14.27 (.562)	17.45 (.687)	0.5	18.256 (²³ / ₃₂)	9 230	21 600
PHSB 7	82	11.112 (.4375)					14.88 (.586)	l			26.97 (1.062)	15.88 (.625)	15.88 (.625)		0.5 (.020)	20.638 (¹³ / ₁₆)	11 200	26 100
PHSB 8	132	12.700 (.5000)			12.70 (.500)	15.88 (.625)		70.64 (2.781)			30.15 (1.187)	19.05 (.750)		22.23 (.875)	0.5	23.812 (¹⁵ ⁄ ₁₆)	14 800	36 200
PHSB 10	191	15.875 (.6250)				19.05 (.750)		82.55 (3.250)				22.23 (.875)	_	25.40 (1.000)	0.5 (.020)	28.575 (1 ½)	20 000	39 300
PHSB 12	286	19.050 (.7500)				22.23 (.875)		95.25 (3.750)				25.40 (1.000)		28.58 (1.125)	0.5 (.020)	33.338 (1 ½)	28 500	55 000
PHSB 16	998	25.400 (1.0000)	-12UNF (1.2500)												0.5 (.020)	47.625 (1 ½)	59 300	86 800

Note(1) r_s min stands for minimum allowable value of chamfer r. Remark No grease is prepacked. Perform proper lubrication.

PILLOBALL

Inch series PILLOBALL Rod Ends Insert Type/With Male Thread


Identification	Mass (Ref.)				Bou	ndary o mm(i	limensi inch)	ons					Dynamic load capacity	Static load capacity
number	g	d	Thread S class 3A	D	В	B_1	d_1	L	L_1	L_2	$r_{\rm smin}^{(1)}$	Ball dia. mm (inch)	C _d	$C_{\rm s}$
POSB 2	5.4	3.175 (.1250)	-32UNC (.1380)	11.91 (.469)	4.75 (.187)	6.35 (.250)	4.75 (.187)	29.77 (1.172)	23.80	12.70	0.3	7.938 (½)	1 850	2 160
POSB 2.5	9.1	3.967 (.1562)	-32UNC (.1640)	14.27 (.562)	5.56 (.219)	7.14 (.281)	6.32	35.71 (1.406)	28.58 (1.125)	15.88 (.625)	0.3	9.525 (³ ⁄ ₈)	2 600	3 370
POSB 3	14	4.826 (.1900)	-32UNF (.1900)	15.88 (.625)	6.35 (.250)	7.92 (.312)	7.77	39.70 (1.563)	31.75 (1.250)	19.05 (.750)	0.3 (.012)	11.112 (½)	3 460	4 850
POSB 4	23	6.350 (.2500)	-28UNF (.2500)	19.05 (.750)	7.14 (.281)	9.53 (.375)	9.02	49.20 (1.937)	39.67 (1.562)	25.40 (1.000)	0.5 (.020)	13.097 (33/64)	4 590	8 870
POSB 5	36	7.938 (.3125)	-24UNF (.3125)	22.23 (.875)	8.74 (.344)	11.10 (.437)	11.35 (.447)	58.72 (2.312)	47.63 (1.875)	31.75 (1.250)	0.5 (.020)	15.875 (⁵ ⁄ ₈)	6 800	14 200
POSB 6	54	9.525 (.3750)	-24UNF (.3750)	25.40 (1.000)	10.31	12.70 (.500)	13.13 (.517)	61.93 (2.438)	49.23 (1.938)	31.75 (1.250)	0.5 (.020)	18.256 (²³ / ₃₂)	9 230	21 600
POSB 7	77	11.112 (.4375)	-20UNF (.4375)	28.58 (1.125)	11.10 (.437)	14.27 (.562)	14.88 (.586)	68.28 (2.688)	53.98 (2.125)	34.93 (1.375)	0.5 (.020)	20.638 (¹³ / ₁₆)	11 200	26 100
POSB 8	122	12.700 (.5000)	-20UNF (.5000)	33.32 (1.312)	12.70 (.500)	15.88 (.625)	17.73 (.698)	78.59 (3.094)	61.93 (2.438)	38.10 (1.500)	0.5 (.020)	23.812 (¹⁵ / ₁₆)	14 800	36 200
POSB 10	186	15.875 (.6250)	-18UNF (.6250)	38.10 (1.500)	14.27 (.562)	19.05 (.750)	21.31	85.73 (3.375)	66.68 (2.625)	41.28 (1.625)	0.5 (.020)	28.575 (1 ½)	20 000	39 300
POSB 12	295	19.050 (.7500)	-16UNF (.7500)	44.45 (1.750)	17.45 (.687)	22.23 (.875)	24.84	95.25 (3.750)	73.03 (2.875)	44.45 (1.750)	0.5 (.020)	33.338 (1 ½)	28 500	55 000
POSB 16	1 129	25.400 (1.0000)	-12UNF (1.2500)	69.85 (2.750)	25.40 (1.000)	34.93 (1.375)	32.23 (1.269)	139.70 (5.500)	104.78 (4.125)	53.98 (2.125)	0.5 (.020)	47.625 (1 ½8)	59 300	112 000

Note(1) r_s min stands for minimum allowable value of chamfer r.

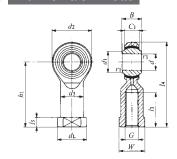
Remark No grease is prepacked. Perform proper lubrication.

Lubrication Type PILLOBALL Rod Ends Die-cast Type/With Female Thread

PHSA

Identification	Mass (Ref.)					Воц	undar	y dimei	nsior	ns n	nm						Static load capacity
number	g	d	Thread G	d_2	C_1	В	d_1	l_4	h_1	l_3	l_5	W	d_3	$d_{ m L}$	(1) r _{1 s min}	Ball dia. mm (inch)	$C_{ m s}$
PHSA 5	17	5	M 5×0.8	17	6	8	7.7	35.5	27	16	4	9	9	11	0.2	11.112 (½)	5 470
PHSA 6	25	6	M 6×1	19.5	6.75	9	9	39.7	30	16	5	11	10	13	0.2	12.700 (½)	6 760
PHSA 8	45	8	M 8×1.25	24	9	12	10.4	48	36	19	5	14	12.5	16	0.2	15.875 (⁵ ⁄ ₈)	10 200
PHSA 10	70	10	M10×1.5	28	10.5	14	12.9	57	43	23	6.5	17	15	19	0.2	19.050 (³ ⁄ ₄)	13 100
PHSA 12	105	12	M12×1.75	32	12	16	15.4	66	50	27	6.5	19	17.5	22	0.2	22.225 (½)	16 400
PHSA 14	155	14	M14×2	36	13.5	19	16.9	75	57	30	8	22	20	25	0.3	25.400 (1)	20 000
PHSA 16	190	16	M16×2	40	15	21	19.4	84	64	36	8	22	22	27	0.3	28.575 (1 ½)	23 900
PHSA 18	290	18	M18×1.5	45	16.5	23	21.9	93.5	71	40	10	27	25	31	0.3	31.750 (1 ½)	28 800
PHSA 20	400	20	M20×1.5	49	18	25	24.4	101.5	77	43	10	30	27.5	34	0.3	34.925 (1 ³ / ₈)	33 400
PHSA 22	500	22	M22×1.5	54	20	28	25.8	111	84	47	12	32	30	37	0.3	38.100 (1 ½)	40 400

Note(1) Minimum allowable value of chamfer dimension r_1

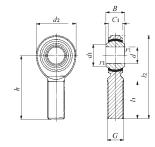

- Remarks1. A grease nipple is provided on the body.

 2. No grease is prepacked. Perform proper lubrication.
 - 3. When a metric fine thread specification for inner ring bore deameter d of 8 mm to 14 mm is required, please contact **IKD**.

PILLOBALL

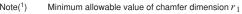
Maintenance-free Type PILLOBALL Rod Ends With Female Thread

PHS···EC


Identification	Mass (Ref.)					В	ounda	ary di	mei	nsion	s m	m					Dynamic load capacity	Static load capacity
number	g	d	Thread G	d_2	C_1	В	d_1	l_4	h_1	l_3	l_5	W	d_3	d_{L}	r _{1 s min}	Ball dia. mm (inch)	C_{d}	$C_{ m s}$ N
PHS 3EC	5.7	3	M 3×0.5	12	4.5	6	5.2	27	21	10	3	5.5	5	6.5	0.2	7.938 (½)	3 500	2 480
PHS 4EC	11.9	4	M 4×0.7	14	5.3	7	6.5	31	24	12	4	8	8	9.5	0.2	9.525 (³ / ₈)	4 950	3 260
PHS 5EC	16.5	5	M 5×0.8	16	6	8	7.7	35	27	12.5	4	9	9	11	0.2	11.112 (¾ ₆)	6 540	4 010
PHS 6EC	25	6	M 6×1	18	6.75	9	9	39	30	13.5	5	11	10	13	0.2	12.700 (½)	8 410	4 940
PHS 8EC	43	8	M 8×1.25	22	9	12	10.4	47	36	16	5	14	12.5	16	0.2	15.875 (⁵ ⁄ ₈)	14 000	7 760
PHS 10EC	72	10	M10×1.5	26	10.5	14	12.9	56	43	19.5	6.5	17	15	19	0.2	19.050 (³ ⁄ ₄)	19 600	10 500
PHS 12EC	107	12	M12×1.75	30	12	16	15.4	65	50	24	6.5	19	17.5	22	0.2	22.225 (7/ ₈)	26 200	13 700
PHS 14EC	160	14	M14×2	34	13.5	19	16.9	74	57	27	8	22	20	25	0.2	25.400 (1)	33 600	17 200
PHS 16EC	210	16	M16×2	38	15	21	19.4	83	64	33	8	22	22	27	0.2	28.575 (1 ½)	42 000	21 100
PHS 18EC	295	18	M18×1.5	42	16.5	23	21.9	92	71	36	10	27	25	31	0.2	31.750 (1 ½)	51 400	25 100
PHS 20EC	380	20	M20×1.5	46	18	25	24.4	100	77	40	10	30	27.5	34	0.2	34.925 (1 ³ / ₈)	61 600	30 000
PHS 22EC	490	22	M22×1.5	50	20	28	25.8	109	84	41	12	32	30	37	0.2	38.100 (1 ½)	74 700	36 400

Note(1) Minimum allowable value of chamfer dimension r_1

Remarks1. Neither oil hole nor grease nipple is provided.


Maintenance-free Type PILLOBALL Rod Ends With Male Thread

POS···EC

Identification	Mass (Ref.)												Dynamic load capacity	Static load capacity
number	g	d	Thread G	d_2	C_1	В	d_1	l_2	h	l_1	$r_{1 \mathrm{min}}^{(1)}$	Ball dia. mm (inch)	$C_{ m d}$	$C_{ m s}$ N
POS 3EC	5.0	3	M 3×0.5	12	4.5	6	5.2	33	27	15	0.2	7.938 (½)	3 500	1 220
POS 4EC	8.1	4	M 4×0.7	14	5.3	7	6.5	37	30	17	0.2	9.525 (³ / ₈)	4 950	2 060
POS 5EC	12.5	5	M 5×0.8	16	6	8	7.7	41	33	20	0.2	11.112 (½)	6 540	3 340
POS 6EC	19	6	M 6×1	18	6.75	9	9	45	36	22	0.2	12.700 (½)	8 410	4 730
POS 8EC	32	8	M 8×1.25	22	9	12	10.4	53	42	25	0.2	15.875 (⁵ ⁄ ₈)	14 000	7 760
POS 10EC	54	10	M10×1.5	26	10.5	14	12.9	61	48	29	0.2	19.050 (³ ⁄ ₄)	19 600	10 500
POS 12EC	85	12	M12×1.75	30	12	16	15.4	69	54	33	0.2	22.225 (½)	26 200	13 700
POS 14EC	126	14	M14×2	34	13.5	19	16.9	77	60	36	0.2	25.400 (1)	33 600	17 200
POS 16EC	185	16	M16×2	38	15	21	19.4	85	66	40	0.2	28.575 (1 ½)	42 000	21 100
POS 18EC	260	18	M18×1.5	42	16.5	23	21.9	93	72	44	0.2	31.750 (1 ½)	51 400	25 100
POS 20EC	340	20	M20×1.5	46	18	25	24.4	101	78	47	0.2	34.925 (1 ³ / ₈)	61 600	30 000
POS 22EC	435	22	M22×1.5	50	20	28	25.8	109	84	51	0.2	38.100 (1 ½)	74 700	36 400

Remarks1. Neither oil hole nor grease nipple is provided.

^{2.} When a metric fine thread specification for inner ring bore deameter d of 8 mm to 14 mm is required, please contact **IKD**.

^{2.} When a metric fine thread specification for inner ring bore deameter d of 8 mm to 14 mm is required, please contact **IKD**.

L-BALLS

L-Balls

●L-Ball Dust Cover

Structure and Features

IKO L-Balls are self-aligning rod-ends consisting of a special zinc die-cast alloy body and a studded ball which has its axis at right angles to the body.

They can perform tilting movement, oscillating movement and rotation with low torque, and transmit power smoothly due to uniform clearance between the sliding surfaces.

Their superior wear resistance assures stable accuracy for long periods of time, and maintenance is simple. They are very economical bearings.

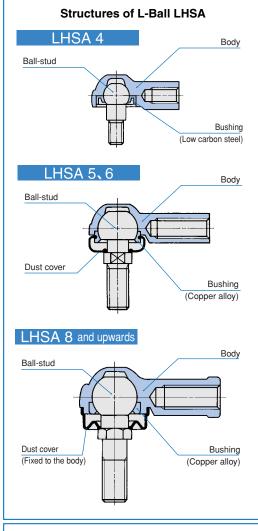
For these reasons, they are widely used in link mechanisms in automobiles, construction machinery, farm and packaging machines, etc.

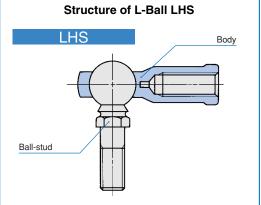
L-Balls are available in various types as shown in Table 1.

Table 1 Type of L-Balls

Туре	L-E	Ball	L-Ball dust cover
Model code	LHSA	LHS	PRC

L-Ball LHSA


These are compact rod-ends in which the spherical part of the ball-stud are held by the special zinc diecast alloy body. There is a dust cover on the stud side and good quality lithium soap base grease is prepacked. They can be run for long periods of time without re-lubrication and have excellent lubrication and anti-dust properties.


As shown in the structural drawing, these rod-ends are classified into 3 types by size. In addition, the ball-studs of LHSA 10 and lower are formed in one solid body, but those of LHSA 12 and higher, which are used under large loads, have the stud friction-welded to a high precision steel ball to give greater resistance to wear.

L-Ball LHS

These rod-ends have a friction-welded ball-stud, and a special zinc die-cast alloy body which houses the spherical surface of the high precision steel ball. There is an almost complete contact across the sliding surfaces, and the uniform clearance guarantees a stable bearing life.

An L-Ball dust cover can be attached to these rodends. If the rod-ends are lubricated with lithium soap

base grease, they have excellent lubrication and antidust properties and can run for long periods of time without re-lubrication.

When the L-Ball LHS is delivered with a dust cover on request, lithium soap base grease is prepacked.

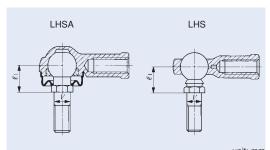
LHSA LHS

K45

L-Ball Dust Cover PRC

This is for the L-Ball LHS series. It is made of special synthetic rubber which has excellent resistance to oil and ozone. The cover offers very effective dust protection and prevents grease leakage.

Identification Number

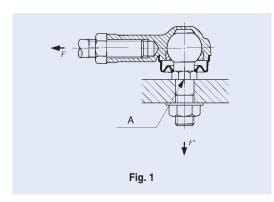

The identification number of L-Balls consists of a model code, a size and any supplemental codes as shown in the examples.

Accuracy

The accuracy of L-Balls is shown in Table 2.

Table 2 Tolerance

Туре	Dimension symbol	Tolerance
	ℓ_1	± 0.5
LHSA	V	0 - 0.2(¹)
LHS	ℓ_1	± 0.4
LIIO	I/	hQ


Note(1) This dimensional tolerance applies to LHSA 5 and higher

Selection of L-Balls

The static load capacity and maximum operating load of L-Balls are determined in consideration of the strength of the ball stud and the body. Accordingly, L-Balls are selected on the basis of the static load capacity $C_{\rm s}$ shown in the dimension table and the maximum operating load shown in Table 3.

Static load capacity

The static load capacity $C_{\rm s}$ shown in the dimension table represents the allowable axial force F which is determined by the mechanical strength of the ball-stud at the section 'A' under the bending moment due to the force F as illustrated in Fig. 1. If F increases beyond the static load capacity, deformation will begin at A, leading to breakage.

Maximum operating load

The strength of the body must also be taken into consideration when L-Balls are operated in a high-temperature or low-temperature atmosphere or receive repetitive loads of long duration or shock loads. A guideline for maximum operating load of L-Balls is shown in Table 3. When the fixing bolt in the main body is fixed and a load is applied in the direction of F^{\prime} , the bending stress in the fixing bolt must be taken into consideration.

Table 3 Maximum operating load

unit: N								
Identification number	Maximum operating load	Identification number	Maximum operating load					
LHSA 4	840	LHS 5	880					
LHSA 5	1 180	LHS 6	1 080					
LHSA 6	1 080	LHS 8	1 630					
LHSA 8	1 900	LHS10	2 100					
LHSA10	2 170	LHS12	2 620					
LHSA10M	2 170	LHS14	3 190					
LHSA12	2 790	LHS16	3 820					
LHSA14	3 540	LHS18	4 610					
_	_	LHS20	5 340					
_	_	LHS22	6 460					

Lubrication

LHSA is prepacked with lubricating grease ALVANIA GREASE S2 (SHOWA SHELL SEKIYU K.K.). LHS is not provided with prepacked grease. Perform proper lubrication for use.

Operating LHS without lubrication will increase the wear of the sliding contact surface or cause seizure.

■ Operating Temperature Range

Precautions for Use

1 Tightening depth

It is recommended that the tightening depth of the screw into the body is more than twice the nominal diameter of thread.

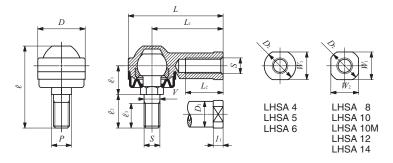
Allowable tilting angle

The allowable tilting angle is shown in Table 4.

Table 4 Allowable tilting angle

unit: degree

Nominal dia. mm	LHSA	LHS
V	α	α
4	15	_
5	17	15
6	17	17
8	18	18
10	19	19
12	19	19
14	20	20
16	_	20
18	_	21
20	_	20
22	_	21

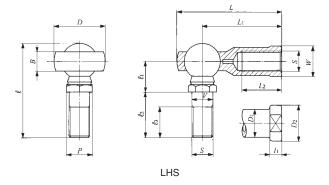


Mass				Во	oundar	y dime	ensions	mm	ı					
Identification number	(Ref.)	Thread	l		1 1		ı	ı		ı	ı	I	ı	1
	g	S	V	D	L	L_1	L_2	l_1	W_1	$W_2(^1)$	D_1	D_2	l	P
LHSA 4	11	M 4×0.7	* 4	14	25	18	8	4	8	_	8	10	19.5	* 5.5
LHSA 5	27	M 5×0.8	5	17	38.5	30	16	5	10	_	10	12	32.5	8
LHSA 6	27	M 6×1	6	19	39.5	30	16	5	10	_	10	12	32.5	8
LHSA 8	64	M 8 × 1.25	8	24	48	36	19	5	14	14	13	16	41.5	10
LHSA 10	106	M10 × 1.25	10	28	57	43	23	6.5	17	17	15	19	49	12
LHSA 10M	106	M10 × 1.5	10	28	57	43	23	6.5	17	17	15	19	49	12
LHSA 12	180	M12 × 1.75	12	34	67	50	27	6.5	19	19	17.5	22	64	14
LHSA 14	260	M14 × 2	14	38	76	57	30	8	22	22	20	25	72	17

Note(1)	Previous specification does not have the flat surfaces of W_2 dimension.	
---------	--	--

Remarks1. The item marked * is manufactured with a neck diameter of ϕ 3.4. The item marked * is manufactured with a diameter of ϕ 5.5 instead of a width across flats.

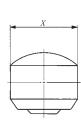
				Static load capacity
ℓ_1	ℓ_2	ℓ_3	Ball dia.	$C_{ m s}$ N
7	7	5	8	880
12	13	10	11.112	1 180
12	13	10	11.112	1 670
14.5	17	12.5	15	4 380
16	21	17	19.05	7 400
16	21	17	19.05	7 400
20	30	20	22.225	9 900
22.5		22	25.4	14 600

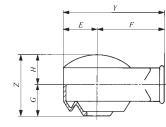


^{2.} Provided with prepacked grease.

	Mass				Bo	undary	dime	neione	e mm					
Identification number	(Ref.)	Thread			БО	undary	unner	1310113	, ,,,,,,					
identification number	g	S	V	D	В	L	L_1	L_2	l_1	W	D_1	D_2	l	P
LHS 5	22	M 5×0.8	5	17	6	35.5	27	16	4	9	9	11	30.5	8
LHS 6	32	M 6×1	6	19.5	6.75	39.7	30	16	5	11	10	13	36.5	10
LHS 8	60	M 8 × 1.25	8	24	9	48	36	19	5	14	12.5	16	44	11
LHS 10	102	M10 × 1.5	10	28	10.5	57	43	23	6.5	17	15	19	52.5	13
LHS 12	160	M12 × 1.75	12	32	12	66	50	27	6.5	19	17.5	22	61	17
LHS 14	227	M14 × 2	14	36	13.5	75	57	30	8	22	20	25	69	17
LHS 16	300	M16 × 2	16	40	15	84	64	36	8	22	22	27	74	19
LHS 18	445	M18 × 1.5	18	45	16.5	93.5	71	40	10	27	25	31	84	22
LHS 20	580	M20 × 1.5	20	49	18	101.5	77	43	10	30	27.5	34	90.5	24
LHS 22	765	M22 × 1.5	22	54	20	111	84	47	12	32	30	37	99	27

Remark No grease is prepacked. Perform proper lubrication.


				Static load capacity
0		0	Ball dia.	$C_{\rm s}$
ℓ_1	ℓ_2	ℓ_3		N
10	15	11	11.112	2 080
11.5	18.5	14	12.7	3 290
14.5	21.5	15	15.875	4 900
17	26	18	19.05	7 640
20	30	20	22.225	12 400
22.5	33.5	22	25.4	14 600
24.5	35.5	23	28.575	19 500
27.5	40.5	25	31.75	25 600
30	43	27	34.925	31 600
32.5	47.5	30	38.1	39 800



L-BALL

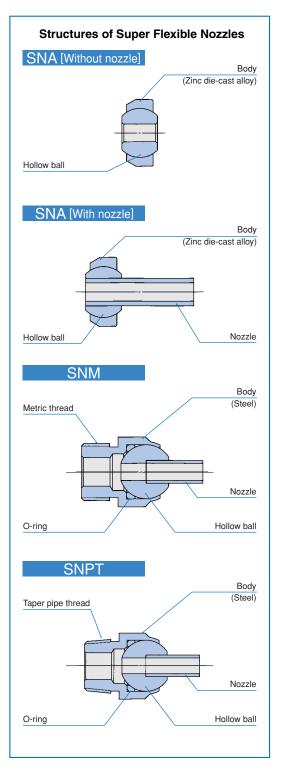
L-Ball Dust Cover

PRC

		Bou	ndary (dimens	sions	mm	
Identification number	X	Y	Е	F	Z	G	\mid H
PRC 5	20	29	10	19	16	8	8
PRC 6	22	31	11	20	19	9.5	9.5
PRC 8	27	38.5	13.5	25	24	12	12
PRC 10	31	45.5	15.5	30	27	14	13
PRC 12	36	53	18	35	32	16.5	15.5
PRC 14	40	60	20	40	36.5	19	17.5
PRC 16	44	68	22	46	40	20.5	19.5
PRC 18	49	74.5	24.5	50	46	23.5	22.5
PRC 20	54	82	27	55	50	25.5	24.5
PRC 22	59	89.5	29.5	60	53.5	27.5	26

SUPER FLEXIBLE NOZZLES

Structure and Features


IKO Super Flexible Nozzle is a compact nozzle for use on a machine tool to supply and spray cutting oil exactly at the required positions.

The angle of the nozzle can be changed easily and freely. Therefore, oil supply can be concentrated upon the working area, and cooling and lubrication can be performed effectively. As a result, cutting resistance is reduced and superior finish is obtained, achieving high machining accuracy. Also, tool life is longer.

The Super Flexible Nozzle is used in many places such as at the spindle end of Machining Center and at the tool holder of N/C lathe.

The features of Super Flexible Nozzle are as follows.

- **1** A spherical bushing is incorporated to adjust the tilting angle of nozzle easily.
- ②The Super Flexible Nozzle is compact in size, and the design on parts around the spindle and tool can be made simple.
- **③** The nozzle length is short, and winding of cutting chips around the nozzle will not occur.
- **4** By using a number of Super Flexible Nozzles, cutting oil can be supplied and cutting chips can be removed more effectively.
- **⑤** The press fitting type and screw fitting type are available. The press fitting type is economical.

K55

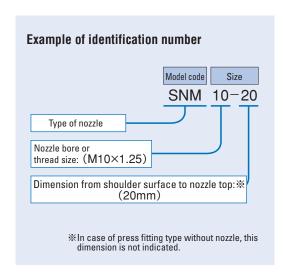

Super Flexible Nozzles shown in Table 1 are available.

Table 1 Type of Super Flexible Nozzle

	Model code	
Press fitting type	Without nozzle With nozzle	SNA
Screw fitting	With metric threads	SNM
type	With taper pipe threads	SNPT

Identification Number

The identification number of Super Flexible Nozzle consists of a model code and a size. An example is shown as follows.

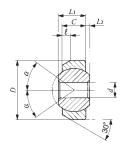
Precautions for Use

When the press fitting type Super Flexible Nozzle is used, a ϕ 15 (H8) $^{+0.027}_{_0}$ bore for fitting hole must be prepared and fitting is made from the 30° chamfered end of the outer body. In this case, the body portion should be pushed for press fitting.

When the screw fitting type Super Flexible Nozzle is used and prevention of oil leakage from the fitting part is required, it is recommended to wind sealing tape on the thread portion or use rubber packing for the shoulder face of the outer body.

The direction of lubrication can be adjusted by inserting a screwdriver, etc. in the bore of the nozzle.

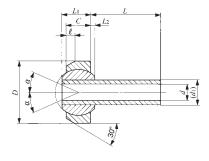
■ Special Specifications


Super Flexible Nozzles with special length are also available. In this case, specify the necessary nozzle length in units of 1 mm, but do not exceed the maximum length shown in the dimension table as "L". Super Flexible Nozzles with curved nozzle end or with special bore diameter are also available. In this case,

Super Flexible Nozzles with curved nozzle end or with special bore diameter are also available. In this case, please contact **IKD** by preparing a drawing or sketch with necessary specifications.

SUPER FLEXIBLE NOZZLE

Press Fitting Type Without Nozzle



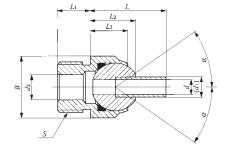
SNA

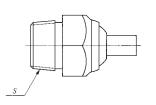
ldentification number	Boundary dimensions mm						Ball dia.	Allowable tilting angle
	d	D	L_1	L_2	C	l	mm (inch)	α degree
SNA 4	4			2	11.112	36		
SNA 6	6	15	/	'	6 2	2	(7/16)	24

Press Fitting Type With Nozzle

SNA

Identification		Boundary dimensions mm										Allowable tilting angle	
number	d	D		L		L_1	L_2	C	l	d_1	mm (inch)	lpha degree	
SNA 3- <i>L</i>	3			15	32	7	7 4		2	_	11.112	0.4	
SNA 4-L	4	15	6	16	40	/		6	2	6	6 (7/16)	24	


IKO


IKO

SUPER FLEXIBLE NOZZLE

Screw Fitting Type

SNPT

Identification number	d	Boundary dimensions mm Thread							Ball dia. mm (inch)	Allowable tilting angle $lpha$ degree				
SNM 10- <i>L</i>	4	M10 × 1.25	20	40	60	9	13	10.5	6	6	17	19.6	12.700	
SNPT 1/4- <i>L</i>	_	PT 1/4	20	+0			13	10.5	O		17	13.0	(1/2)	
SNM 20- <i>L</i>	6	M20 × 1.5	30	E0	70	13	18	15	8	8 10	24	27.7	19.050	35
SNPT 3/8- <i>L</i>		PT 3/8	30	50	70	13	10	15	0	10	24	21.1	(3/4)	33
SNM 24- <i>L</i>	8	M24 × 2.0	40	60	90	10	22	10	10	12	22	27	25.400	
SNPT 1/2- <i>L</i>	0	PT 1/2	40		80	18	23	19	10 1	12	32	37	(1)	

PARTS FOR NEEDLE ROLLER BEARINGS

- **●**Seals for Needle Roller Bearings
- **●**Cir-clips for Needle Roller Bearings
- **●**Needle Rollers

Seals for Needle Roller Bearings

Features

IKD Seals for Needle Roller Bearings have a low sectional height and consist of a sheet metal ring and special synthetic rubber.

As these seals are manufactured to the same sectional height as **IKU** Needle Roller Bearings, grease leakage and the penetration of foreign particles can be effectively prevented by fitting them directly to the sides of combinable bearings shown in the dimension table.

When fitting seals to needle roller bearings with inner ring, wide inner rings (see page H2) must be used, as shown in the mounting examples.

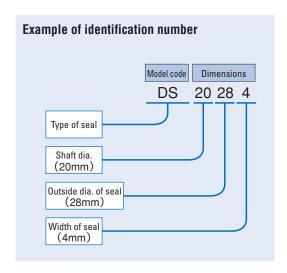

Seals for Needle Roller Bearings are available as shown in Table1.

Table 1 Seal type

	7.	
Туре	Single lip	Double lips
Structure	Metal ring Lip	Metal ring Secondary lip Main lip
Model code	os	DS

Identification Number

The identification number of Seals for Needle Roller Bearings consists of a model code and dimensions. An example of an identification number is shown as follows.

Accuracy

Tolerances of Seals for Needle Roller Bearings are based on JIS B 2402:2002.

Tolerances of outside diameter and width are based on Tables 2 and 3, respectively.

Table 2 Tolerance of outside diameter

unit:	r

Nominal outs	side diameter	Tolerance					
Over	Incl.	High	Low				
_	30	+0.09	+0.04				
30	50	+0.11	+0.05				
50	80	+0.14	+0.06				
80	120	+0.17	+ 0.08				

Table 3 Tolerance of width

unit: mm

Nominal si	ze of width	Tolerance					
Over	Incl.	High	Low				
_	6	+0.2	- 0.2				
6	10	+0.3	- 0.3				

Precautions for Use

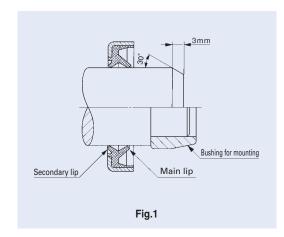
The DS type of double-lips is effective for prevention of grease leakage and dust penetration. However, when the main purpose is to prevent grease leakage, and outward to prevent the penetration of foreign particles. The DS type of double-lips is effective for prevention of grease leakage and dust penetration. However, when the main purpose is to prevent grease leakage, the main lip should face inward, and when used mainly to prevent dust penetration, it should face outward.

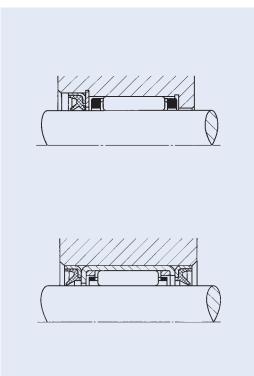
2 The permissible temperature range is -20 \sim +100 $^{\circ}$ C.

For use at higher or lower temperatures, a special seal is required. Please contact **IKO** for further information.

The limiting peripheral speed of shaft depends on the conditions of use, but is normally 6 to 8 m/s.

Double this speed is possible if the conditions (Jubrial Conditions)


Double this speed is possible if the conditions (lubrication, temperature, shaft finish, etc.) are good.


Mounting

When inserting the shaft, damage to the lip should be prevented by chamfering the end of the shaft, as shown in the upper part of Fig. 1. When this cannot be performed, a mounting bushing should be used, as shown in the lower part of Fig.1.

When press fitting the seal to the housing, do not strike it directly, but fit it gently, using a suitable tool.

To prevent early wear and heat generation at the seal surface, it is necessary to thickly coat the tip of the lip for the OS type, or to fill the space between the two lips for the DS type, with bearing grease.

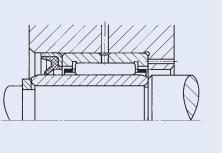
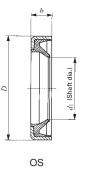
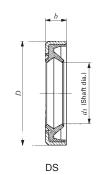


Fig.2 Mounting examples

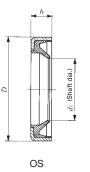

OS DS

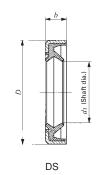


Shaft dia. 6 — 15mm

Shaft		dentificati	on number		ound nsion	ary s mm		Combinabl	e bearings	
dia.		ngle lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
6	os	6102.5	_	6	10	2.5	TLA 69Z	_	_	_
7	os	7112.5	_	7	11	2.5	TLA 79Z	_	_	_
	os	8123	_	8	12	3	TLA 810Z	_	_	
8	os	8153	_ _	8	15	3	TA 810Z TA 815Z TA 820Z YT 810	RNA 496 TAF 81512 TAF 81516	RNAF 81510	_
	os	9133	_	9	13	3	TLA 910Z TLA 912Z	_	_	_
9	os	9163	_	9	16	3	TA 912Z TA 916Z YT 912	TAF 91612 TAF 91616	_	_
	os	10143	_	10	14	3	TLA 1010Z TLA 1012Z TLA 1015Z	_	_	_
10	os	10173	_	10	17	3	TA 1010Z TA 1012Z TA 1015Z TA 1020Z	TAF 101712 TAF 101716	RNAF 101710	_

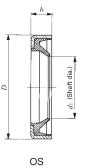
Shaft	Identification	on number		Sounda nsions	ary s mm		Combinabl	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 12163	_	12	16	3	TLA 1210Z YTL 1210	_	_	_
	OS 12183	_	12	18	3	TLA 1212Z	_		_
12	OS 12193	_	12	19	3	TA 1212Z TA 1215Z TA 1220Z TA 1225Z YT 1212	TAF 121912 TAF 121916	_	_
13	OS 13193	_	13	19	3	TLA 1312Z	_	_	_
	OS 14203	DS 14203	14	20	3	TLA 1412Z TLA 1416Z	_	_	_
14	OS 14223	DS 14223	14	22	3	TA 1416Z TA 1420Z	RNA 4900 TAF 142216 TAF 142220	RNAF 142213 RNAFW 142220	_
	OS 15213	DS 15213	15	21	3	TLA 1512Z TLA 1516Z TLA 1522Z	_	_	_
15	OS 15223	DS 15223	15	22	3	TA 1510Z TA 1512Z TA 1515Z TA 1520Z TA 1525Z	_	_	_
	OS 15235	DS 15235	15	23	5	_	TAF 152316 TAF 152320	RNAF 152313 RNAFW 152320	_

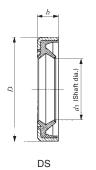

os DS



Shaft dia. 16 — 19mm

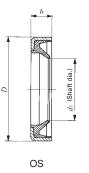
Shaft	Identificati	on number		ounda	ary s mm		Combinabl	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 16223	DS 16223	16	22	3	TLA 1612Z TLA 1616Z TLA 1622Z	_	_	_
16	OS 16243	DS 16243	16	24	3	TA 1616Z TA 1620Z	RNA 4901 RNA 6901 TAF 162416 TAF 162420	RNAF 162413 RNAFW 162420	
	OS 16285	DS 16285	16	28	5	_	_	RNAF 162812	
	OS 17233	DS 17233	17	23	3	TLA 1712Z	_	_	_
17	OS 17243	DS 17243	17	24	3	TA 1715Z TA 1720Z TA 1725Z YT 1715 YT 1725	_	_	_
	OS 17253	DS 17253	17	25	3		TAF 172516 TAF 172520	RNAF 172513 RNAFW 172520	_

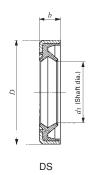

	Identificati	on number		Bounda			Combinable	e bearings	
Shaft dia.			dime	nsions	s mm				
mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 18243	DS 18243	18	24	3	TLA 1812Z TLA 1816Z	_		_
18	OS 18253	DS 18253	18	25	3	TA 1813Z TA 1815Z TA 1817Z TA 1819Z	_	_	_
						TA 1820Z TA 1825Z			
	OS 18264	DS 18264	18	26	4	_	RNA 49/14 TAF 182616 TAF 182620	RNAF 182613 RNAFW 182620	_
19	OS 19274	_	19	27	4	TA 1916Z TA 1920Z	TAF 192716 TAF 192720	_	_



Shaft dia. 20 – 24mm

Shaft	Identificati	ion number		Bounda nsion:	ary s mm		Combinabl	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 20264	DS 20264	20	26	4	TLA 2012Z TLA 2016Z TLA 2020Z TLA 2030Z	_	_	_
	OS 20274	DS 20274	20	27	4	TA 2015Z TA 2020Z TA 2025Z TA 2030Z YT 2015 YT 2025	_	_	_
20	OS 20284	DS 20284	20	28	4	TA 202820Z YT 202820	RNA 4902 RNA 6902 TAF 202816 TAF 202820	RNAF 202813 RNAFW 202826	_
	OS 20304	DS 20304	20	30	4	_	_	_	NAX 2030 NBX 2030
	OS 20324	DS 20324	20	32	4	_	_	RNAF 203212 RNAFW 203224	_
	OS 20326	DS 20326	20	32	6		_	RNAF 203212 RNAFW 203224	_
21	OS 21294	DS 21294	21	29	4	TA 2116Z TA 2120Z YT 2116 YT 2120	TAF 212916 TAF 212920	_	_


Shaft	Identificati	on number		Bounda nsions	ary s mm		Combinable	e bearings	
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 22284	DS 22284	22	28	4	TLA 2212Z TLA 2216Z TLA 2220Z	_	_	_
22	OS 22294	_	22	29	4	TA 2210Z TA 2215Z TA 2220Z TA 2225Z TA 2230Z	_	_	_
	OS 22304	DS 22304	22	30	4	TA 223016Z TA 223020Z YT 223016 YT 223020	RNA 4903 RNA 6903 TAF 223016 TAF 223020	RNAF 223013 RNAFW 223026	_
	OS 24314	DS 24314	24	31	4	TA 2420Z TA 2428Z YT 2428	_	_	_
24	OS 24324	DS 24324	24	32	4	TA 243216Z TA 243220Z YT 243216 YT 243220	TAF 243216 TAF 243220		_

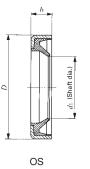


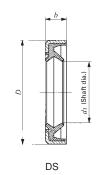
Shaft dia. 25 — 29mm

Shaft	Identificati	on number		Bounda Insions	ary s mm		Combinabl	e bearings	
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 25324	DS 25324	25	32	4	TLA 2512Z TLA 2516Z TLA 2520Z TLA 2526Z TLAW 2538Z YTL 2526	_	_	_
25	OS 25334	DS 25334	25	33	4	TA 2510Z TA 2515Z TA 2520Z TA 2525Z TA 2530Z YT 2510 YT 2515 YT 2520 YT 2525	TAF 253316 TAF 253320	_	
	OS 25356	DS 25356	25	35	6	_	_	RNAF 253517 RNAFW 253526	_
	OS 25376	DS 25376	25	37	6	_	RNA 4904 RNA 6904	RNAF 253716 RNAFW 253732	NAX 2530 NBX 2530
26	OS 26344	DS 26344	26	34	4	TA 2616Z TA 2620Z YT 2616 YT 2620	TAF 263416 TAF 263420	_	_

Shaft		on number		ounda	ary s mm		Combinabl	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 28354	DS 28354	28	35	4	TLA 2816Z TLA 2820Z	_	_	_
28	OS 28374	DS 28374	28	37	4	TA 2820Z TA 2830Z YT 2820	TAF 283720 TAF 283730	_	_
	OS 28396	DS 28396	28	39	6	_	RNA 49/22 RNA 69/22		
	OS 28406	DS 28406	28	40	6		_	RNAF 284016 RNAFW 284032	_
29	OS 29384	DS 29384	29	38	4	TA 2920Z TA 2930Z YT 2920	TAF 293820 TAF 293830	_	

IKO


SEALS FOR NEEDLE ROLLER BEARINGS

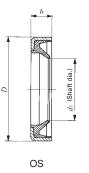


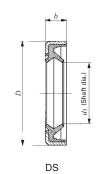
Shaft dia. 30 — 38mm

	Identification	on number	В	Boundary Combinable bearings					
Shaft			dimer	nsions	mm				
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 30374	DS 30374	30	37	4	TLA 3012Z TLA 3016Z TLA 3018Z TLA 3020Z TLA 3026Z TLAW 3038Z	_		_
30	OS 30404	DS 30404	30	40	4	TA 3013Z TA 3015Z TA 3020Z TA 3025Z TA 3030Z	TAF 304020 TAF 304030	RNAF 304017 RNAFW 304026	
	OS 30426	DS 30426	30	42	6	_	RNA 4905 RNA 6905	RNAF 304216 RNAFW 304232	NAX 3030 NBX 3030
20	OS 32424	DS 32424	32	42	4	TA 3220Z TA 3230Z YT 3220	TAF 324220 TAF 324230		_
32	OS 32456	DS 32456	32	45	6	_	RNA 49/28 RNA 69/28 GTR 324530	_	_

Shaft	Identificati	on number		Bound Insion	ary s mm		Combinable	e bearings	
dia.	Single lip	Double lips		D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 35424	DS 35424	35	42	4	TLA 3512Z TLA 3516Z TLA 3520Z		_	_
35	OS 35454	DS 35454	35	45	4	TA 3512Z TA 3515Z TA 3520Z TA 3525Z TA 3530Z	TAF 354520 TAF 354530	RNAF 354517 RNAFW 354526	_
	OS 35476	DS 35476	35	47	6	_	RNA 4906 RNA 6906	RNAF 354716 RNAFW 354732	NAX 3530 NBX 3530
37	OS 37474	DS 37474	37	47	4	TA 3720Z TA 3730Z YT 3720	TAF 374720 TAF 374730	_	_
38	OS 38484	DS 38484	38	48	4	TA 3815Z TA 3820Z TA 3825Z TA 3830Z TAW 3845Z	TAF 384820 TAF 384830	_	_
	OS 38506	DS 38506	38	50	6	_	_	_	_

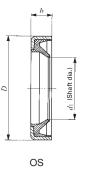
IKO

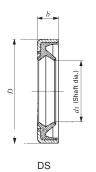

SEALS FOR NEEDLE ROLLER BEARINGS



Shaft dia. 40 — 50mm

		on number		lound			Combinabl	e bearings	
Shaft dia.					s mm	TA…Z YT	RNA TR	RNAF	NAX NBX
mm	Single lip	Double lips	d_1	D	b	TLA…Z YTL	TAF GTR		INDX
	OS 40474	DS 40474	40	47	4	TLA 4012Z TLA 4016Z TLA 4020Z	_	_	_
40	OS 40504	DS 40504	40	50	4	TA 4015Z TA 4020Z TA 4025Z TA 4030Z TA 4040Z YT 4015 YT 4025	TAF 405020 TAF 405030	RNAF 405017 RNAFW 405034	_
	OS 40526	DS 40526	40	52	6	_	RNA 49/32 RNA 69/32	_	NAX 4032 NBX 4032
	OS 40556	DS 40556	40	55	6	_	TR 405520 GTR 405520	RNAF 405520 RNAFW 405540	_
42	OS 42557	DS 42557	42	55	7		RNA 4907 RNA 6907		_


Shaft	Identificati	on number		Bounda nsions	ary s mm		Combinabl	e bearings	
dia.	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 45524	DS 45524	45	52	4	TLA 4516Z TLA 4520Z	_	_	_
45	OS 45554	DS 45554	45	55	4	TA 4520Z TA 4525Z TA 4530Z TA 4540Z YT 4520 YT 4525	TAF 455520 TAF 455530	RNAF 455517 RNAFW 455534	_
	OS 45627	DS 45627	45	62	7	_	_	RNAF 456220 RNAFW 456240	_
48	OS 48627	DS 48627	48	62	7	_	RNA 4908 RNA 6908 TR 486230 GTR 486230	_	_
	OS 50584	DS 50584	50	58	4	TLA 5020Z TLA 5025Z	_		_
50	OS 50624	DS 50624	50	62	4	TA 5012Z TA 5015Z TA 5020Z TA 5025Z TA 5030Z TA 5040Z TAW 5045Z	TAF 506225 TAF 506235	RNAF 506220 RNAFW 506240	NAX 5035 NBX 5035
	OS 50657	DS 50657	50	65	7	_	RNA 49/42	RNAF 506520 RNAFW 506540	



Shaft dia. 52 – 72mm

Shaft	Identificati	on number		Bounda Insions	ary s mm		Combinabl	e bearings	
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
52	OS 52687	DS 52687	52	68	7	_	RNA 4909 RNA 6909	_	_
55	OS 55674	DS 55674	55	67	4	TA 5520Z TA 5525Z TA 5530Z TA 5540Z TAW 5545Z TAW 5550Z	_	_	_
	OS 55687	DS 55687	55	68	7	_	TAF 556825 TAF 556835	RNAF 556820 RNAFW 556840	_
	OS 55727	_	55	72	7	_	_	RNAF 557220 RNAFW 557240	_
58	OS 58727	DS 58727	58	72	7	_	RNA 4910 RNA 6910	_	_
60	OS 60724	DS 60724	60	72	4	TA 6025Z TA 6030Z TA 6040Z TAW 6045Z TAW 6050Z	TAF 607225 TAF 607235	_	NAX 6040 NBX 6040
	OS 60787	DS 60787	60	78	7	_	_	RNAF 607820 RNAFW 607840	_
62	OS 62744	DS 62744	62	74	4	TA 6212Z	_		_
63	OS 63807	DS 63807	63	80	7	_	RNA 4911 RNA 6911	_	_

	Identification number Boundary Combinable bearings						Combinable	e bearings	
Shaft	idontinodti				s mm		Combinable		
dia. mm	Single lip	Double lips	d_1	D	b	TA…Z YT TLA…Z YTL	RNA TR TAF GTR	RNAF	NAX NBX
	OS 65774	DS 65774	65	77	4	TA 6525Z TA 6530Z	_	_	_
65						TAW 6545Z TAW 6550Z			
	OS 65857	DS 65857	65	85	7	_		RNAF 658530 RNAFW 658560	_
68	OS 68857	DS 68857	68	85	7		RNA 4912 RNA 6912	_	_
70	OS 70824	DS 70824	70	82	4	TA 7025Z TA 7030Z TA 7040Z TAW 7050Z YT 7025 YT 7030 YT 7040	_	_	_
	OS 70907	DS 70907	70	90	7	_	_	RNAF 709030 RNAFW 709060	_
72	OS 72907	DS 72907	72	90	7	_	RNA 4913 RNA 6913	_	

Cir-clips for Needle Roller Bearings

Features

IKO Cir-clips for Needle Roller Bearings have been specially designed for needle roller bearings on which, in many cases, generally available Cir-clips cannot be used. They have a low sectional height and are very rigid. They are made of spring steel.

There are Cir-clips for shafts and for bores, and they are used for positioning to prevent bearing movement in the axial direction.

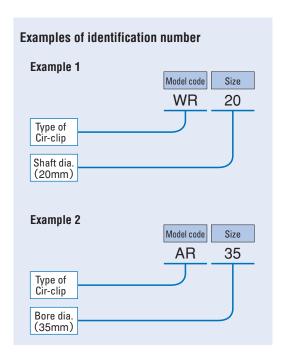
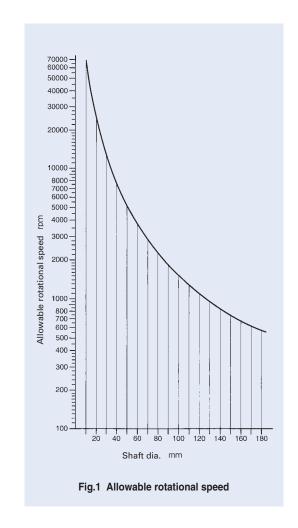

Cir-clips for Needle Roller Bearings are available as shown in Table. 1.

Table 1 Type of Cir-clip

Туре	For shaft	For bore
Shape		
Model code	WR	AR


■ Identification number

The identification number of Cir-clips consists of a model code and a size as shown below.

■ Allowable Rotational Speed

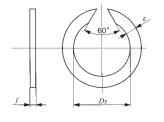
Cir-clips for Needle Roller Bearings are fixed in the groove with a certain amount of pressure on the bottom of the groove. In the case of Cir-clips for shaft WR type, the centrifugal force causes a decrease in the gripping pressure. Therefore, when using them at high rotational speeds, it is necessary to first check the allowable rotational speed shown in Fig.1.

Mounting

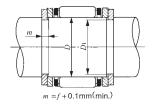
The mounting dimensions for Cir-clips for Needle Roller Bearings are shown in the dimension table.

When using these Cir-clips to restrict the movement of the needle roller cage in the axial direction, it is recommended that a spacer be used between the Circlip and the cage. Spacers are not required at low rotational speeds.

When it is difficult to reach Cir-clips with dismounting tools and disassembly is difficult, or when the frequency of dismounting is high, it is necessary to consider the use of a retaining ring (JIS B 2804:2001), although they have a higher sectional height.


WR AR

IKO


CIR-CLIPS FOR NEEDLE ROLLER BEARINGS

For Shaft

WR

Shaft dia. 4 — 390mm

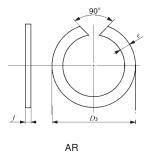
		Bound	dary di	mensio	ns mr	m
Identification number	Shaft dia. $oldsymbol{D}$	D_3 (Max.)	e	\int	Groo	ve dia. Tolerance
WR 4 WR 5 WR 6 WR 7 WR 8 WR 9 WR 10	4 5 6 7 8 9	3.7 4.7 5.6 6.5 7.4 8.4 9.4	0.8 1 1.1 1.2 1.3 1.3	0.5 0.5 0.7 0.7 1 1	3.8 4.8 5.7 6.7 7.6 8.6 9.6	0 - 0.09
WR 11 WR 12 WR 13 WR 14 WR 15 WR 16 WR 17 WR 18	11 12 13 14 15 16 17	10.2 11.2 12.1 13.1 14 15 16	1.3 1.3 1.5 1.75 1.75 1.75 1.75	1 1 1.2 1.2 1.2 1.2	10.5 11.5 12.5 13.5 14.4 15.4 16.4 17.4	0 - 0.11
WR 19 WR 20 WR 21 WR 22 WR 23 WR 24 WR 25 WR 26 WR 28 WR 29 WR 30	19 20 21 22 23 24 25 26 28 29 30	17.9 18.7 19.7 20.7 21.7 22.5 23.5 24.5 26.5 27.5 28.5	1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75	1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.5 1.5	18.4 19.2 20.2 21.2 22.2 23 24 25 27 28 29	0 - 0.13
WR 32 WR 35 WR 36 WR 37 WR 38 WR 40	32 35 36 37 38 40	30.2 33.2 34.2 35.2 36.2 37.8	2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.5 1.5 1.5 1.5 1.5 1.5	30.8 33.8 34.8 35.8 36.8 38.5	0 - 0.16

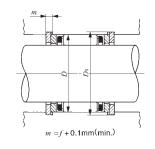
		Bound	lary di	mensic	ns mr	n
Identification	Shaft dia.				Groo	ve dia.
number	D	D_3	e	f	D_1	Tolerance
		(Max.)				
WR 42	42	39.8	2.3	1.5	40.5	
WR 43	43	40.8	2.3	1.5	41.5	0
WR 45	45	42.8	2.3	1.5	43.5	- 0.16
WR 47	47	44.8	2.3	1.5	45.5	- 0.16
WR 50	50	47.8	2.3	1.5	48.5	
WR 52	52	49.8	2.3	1.5	50.5	
WR 55	55	52.6	2.3	1.5	53.5	
WR 60	60	57.6	2.3	1.5	58.5	
WR 63	63	60.6	2.3	1.5	61.5	0
WR 65	65	62.6	2.3	1.5	63.5	- 0.19
WR 68	68	65.4	2.8	2	66.2	0.13
WR 70	70	67.4	2.8	2	68.2	
WR 75	75	72.4	2.8	2	73.2	
WR 80	80	77.4	2.8	2	78.2	
WR 82	82	79.3	3.4	2.5	80.2	
WR 85	85	82	3.4	2.5	83	
WR 90	90	87	3.4	2.5	88	
WR 95	95	92	3.4	2.5	93	0
WR 100	100	97	3.4	2.5	98	-0.22
WR 105	105	101.7	3.4	2.5	102.7	0.22
WR 110	110	106.7	3.4	2.5	107.7	
WR 115	115	111.7	3.4	2.5	112.7	
WR 120	120	116.7	3.4	2.5	117.7	
WR 125	125	121.7	3.4	2.5	122.7	
WR 130	130	126.7	3.4	2.5	127.7	
WR 135	135	131.6	4	2.5	132.4	
WR 140	140	136.6	4	2.5	137.4	0
WR 145	145	141.6	4	2.5	142.4	-0.25
WR 150	150	146.6	4	2.5	147.4	
WR 155	155	151.6	4	2.5	152.4	
WR 160	160	156.6	4	2.5	157.4	
WR 165	165	161.6	4	2.5	162.4	

		Boundary dimensions mm					
Identification number	Shaft dia.	D_3	e	$\int f$	D_1	ve dia.	
		(Max.)		<i>J</i>	21	Tolcrance	
WR 170 WR 175	170 175	166.6 171.6	4 4	2.5 2.5	167.4 172.4	0	
WR 173	180	171.6	5	3	177.4	− 0.25	
WR 185	185	180.6	5	3	182		
WR 190 WR 195	190 195	185.6 190.6	5 5	3	187 192		
WR 200	200	195.6	5	3	197	0	
WR 210 WR 220	210 220	205.6 215.6	5 5	3	207 217	- 0.29	
WR 230	230	225.6	5	3	227		
WR 240	240	235.6	5	3	237		
WR 260 WR 265	260 265	253 258	7.5 7.5	4	255 260		
WR 270	270	263	7.5	4	265		
WR 280 WR 285	280 285	273 278	7.5 7.5	4	275 280	0 - 0.32	
WR 300	300	293	7.5	4	295	0.02	
WR 305 WR 320	305	298 313	7.5	4	300		
WR 320 WR 330	320 330	323	7.5 7.5	4	315 325		
WR 340	340	333	7.5	4	335		
WR 350 WR 360	350 360	343 353	7.5 7.5	4	345 355	0 - 0.36	
WR 370	370	363	7.5	4	365		
WR 390	390	383	7.5	4	385		

IKO

CIR-CLIPS FOR NEEDLE ROLLER BEARINGS


For Bore



Bore dia. 7 – 440mm

	Boundary dimensions mm						
Identification number	Doro ala.			C		ve dia.	
	D	D_3 (Min.)	e	f	D_1	Tolerance	
AR 7	7	7.5	1	0.8	7.3	+ 0.09	
AR 8 AR 9	8	8.5 9.5	1 1.1	0.8 0.8	8.3 9.3	0	
AR 10	10	10.6	1.2	0.8	10.4		
AR 11	11	11.6	1.3	1	11.4		
AR 12 AR 13	12 13	12.7 13.8	1.3 1.3	1	12.4 13.5	+ 0.11	
AR 14	14	14.8	1.3	1	14.5	0.11	
AR 15	15	15.8	1.3	1	15.5		
AR 16	16	16.8	1.6	1.2	16.5		
AR 17 AR 18	17 18	17.8 18.9	1.6 1.75	1.2 1.2	17.5 18.5		
AR 19	19	19.9	1.75	1.2	19.6		
AR 20	20	21	1.75	1.2	20.6		
AR 21	21	22	1.75	1.2	21.6		
AR 22 AR 23	22 23	23 24	1.75 1.75	1.2 1.2	22.6 23.6	+ 0.13	
AR 24	24	25.2	1.75	1.2	24.8	0.13	
AR 25	25	26.2	1.75	1.2	25.8		
AR 26	26	27.2	1.75	1.2	26.8		
AR 27 AR 28	27 28	28.2 29.2	1.75 1.75	1.2 1.2	27.8 28.8		
AR 29	29	30.2	1.75	1.2	29.8		
AR 30	30	31.4	2.3	1.5	31		
AR 31	31	32.4	2.3	1.5	32		
AR 32 AR 33	32 33	33.4 34.4	2.3 2.3	1.5 1.5	33 34		
AR 34	34	35.4	2.3	1.5	35	+ 0.16	
AR 35	35	36.4	2.3	1.5	36	0	
AR 37	37	38.8	2.3	1.5	38.2		
AR 38 AR 39	38 39	39.8 40.8	2.3 2.3	1.5 1.5	39.2 40.2		
AU 99	39	40.0	2.3	1.5	40.2		

	Boundary dimensions mm						
ldentification number	Bore dia.	<i>D</i> ₃ (Min.)	e	f	D_1	Tolerance	
AR 40 AR 42 AR 43 AR 44 AR 45 AR 47	40 42 43 44 45 47 48	41.8 43.8 44.8 45.8 46.8 48.8 49.8	2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.5 1.5 1.5 1.5 1.5 1.5	41.2 43.2 44.2 45.2 46.2 48.2 49.2	+ 0.16	
AR 50 AR 52 AR 53 AR 55 AR 57 AR 58 AR 60 AR 62 AR 65 AR 68 AR 70 AR 72 AR 73 AR 75 AR 76 AR 78	50 52 53 55 57 58 60 62 65 68 70 72 73 75 76	51.8 54.3 55.3 57.3 59.3 60.3 62.3 64.3 70.3 72.3 74.6 75.6 77.6 78.6 80.6	2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 2 2 2 2 2	51.2 53.5 54.5 56.5 59.5 61.5 66.5 69.5 71.5 73.8 74.8 77.8 79.8	+0.19	
AR 80 AR 81 AR 82 AR 83 AR 85 AR 86 AR 88 AR 90 AR 92	80 81 82 83 85 86 88 90	82.6 83.6 84.6 85.6 87.6 88.6 91 93	2.8 2.8 2.8 2.8 2.8 2.8 3.4 3.4	2 2 2 2 2 2 2 2.5 2.5 2.5	81.8 82.8 83.8 84.8 86.8 87.8 90 92 94	+0.22	

	Boundary dimensions mm						
Identification number	Bore dia. $$	<i>D</i> ₃ (Min.)	e	f	Groo	ve dia. Tolerance	
AR 93 AR 95 AR 97 AR 98 AR 100 AR 102 AR 103 AR 107 AR 108 AR 110 AR 112 AR 113 AR 115 AR 117	93 95 97 98 100 102 103 105 107 108 110 112 113 115	96 98 100 101 103 105.3 106.3 108.3 110.3 111.3 115.3 116.3 118.3 120.3	3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	95 97 99 100 102 104.3 105.3 107.3 110.3 112.3 114.3 115.3 117.3 119.3	+0.22	
AR 118 AR 120 AR 123 AR 125 AR 127 AR 130 AR 133 AR 135 AR 140 AR 143 AR 145 AR 150 AR 153 AR 160 AR 163 AR 165	118 120 123 125 127 130 133 135 137 140 143 145 150 153 160 163 165	121.3 123.3 126.3 128.3 130.3 133.3 136.3 140.3 143.6 146.6 153.6 156.6 166.6 166.6 168.6	3.4 3.4 3.4 3.4 3.4 3.4 4 4 4 4 4 4	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	120.3 122.3 125.3 127.3 129.3 132.3 135.3 137.3 142.6 145.6 147.6 152.6 165.6 165.6 165.6	+ 0.25	

		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
Identification number	Bore dia. $$	<i>D</i> ₃ (Min.)	e	f		ve dia. Tolerance
AR 170 AR 173 AR 175 AR 180	170 173 175 180	176.6 178.6 183.6	4 4 4	2.5 2.5 2.5	175.6 177.6 182.6	+ 0.25 0
AR 183 AR 190 AR 195 AR 200 AR 205 AR 210 AR 215 AR 220 AR 225 AR 230 AR 235	183 190 195 200 205 210 215 220 225 230 235	194.5 199.5 204.5 209.5 214.5 219.5 224.5 229.5	55555555555	3 3 3 3 3 3 3 3 3 3 3 3	193 198 203 208 213 218 223 228 233 238	+ 0.29
AR 240 AR 245 AR 250 AR 260 AR 270 AR 280 AR 300	240 245 250 260 270 280 300	244.5 249.5 254.5 267 277 287 307	5 5 7.5 7.5 7.5 7.5	3 3 4 4 4	243 248 253 265 275 285 305	+ 0.32
AR 320 AR 325 AR 355 AR 375 AR 395	320 325 355 375 395	327 332 362 382 402	7.5 7.5 7.5 7.5 7.5	4 4 4 4	325 330 360 380 400	+ 0.36
AR 415 AR 420 AR 440	415 420 440	422 427 447	7.5 7.5 7.5	4 4 4	420 425 445	+ 0.4

Needle Rollers

Features

IKD Needle Rollers are made of high carbon chromium bearing steel. They are rigid and highly accurate and are finished to a hardness of 58HRC or more (See Table 1.) and a surface roughness of 0.1 μ m R_a or less.

These needle rollers are widely used as rolling elements for bearings, and also as pins and shafts.

Please contact **IKI**, if Needle Rollers made of stainless steel are required.

Table 1 Hardness

Nominal diam	neter $D_{ m w}$ mm	Hard	ness
Over	Incl.	HRC	HV
_	3	(60~67)	697~900
3	_	58~66	(653~865)

Remarks1. Hardness is flat surface hardness.

The values in parentheses are converted values for reference.

End Shapes

Needle Rollers come in spherical and flat end shapes, as shown in Table 2.

Please contact **IKD**, if other shapes are required.

Table 2 Shapes of ends

I doic 2	Shapes of ends	
Туре	Spherical end	Flat end
Shapes		
Symbol	Α	F

Accuracy

The dimensional accuracy of Needle Rollers conforms to JIS B 1506:2005 (Rolling bearings-Rollers), and is shown in Table 3.

The selective classification for the mean diameter tolerance is shown in Table 4. The selective classification rollers according to Table 4 can be provided as requested.

Table 3 Dimensional accuracy of needle rollers

unit: μ

Class	Diameter variation in a single radial plane $^{(1)}$ V_{Dwp} (Max.)	Circularity (1) Δ_R (Max.)	Gauge lot diameter variation $\binom{1}{1}$ $V_{D\text{wL}} \pmod{\text{Max.}}$	Deviation of a single length (2) Δ_{Lws}
2	1	1	2	h13
3	1.5	1.5	3	h13
5	2	2.5	5	h13

Notes(1) Applicable to the measurement at the center of roller length

(²) Tolerance is based on the classification according to the nominal length $L_{\rm no}$.

emark

Any measured diameter along the total length of roller
must not be larger than the actual maximum diameter at
the center of roller length by the amount exceeding the
values given below.

 $0.5 \,\mu$ m for Class 2

 $0.8 \,\mu$ m for Class 3

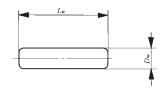
1 μ m for Class 5

Table 4 Classification of needle rollers

unit: μ m

Classification symbol	Tolerance for mean dia.
С 3	0∼− 3
B 2	0∼− 2
B 4	-2~- 4
B 6	-4~- 6
B 8	-6~- 8
B10	-8~-10

■ Use as Full-complement Bearings


For normal rotation, Needle Roller Bearings with cage are most suitable, but for low rotational speeds and for oscillating movement, full-complement bearings are also used.

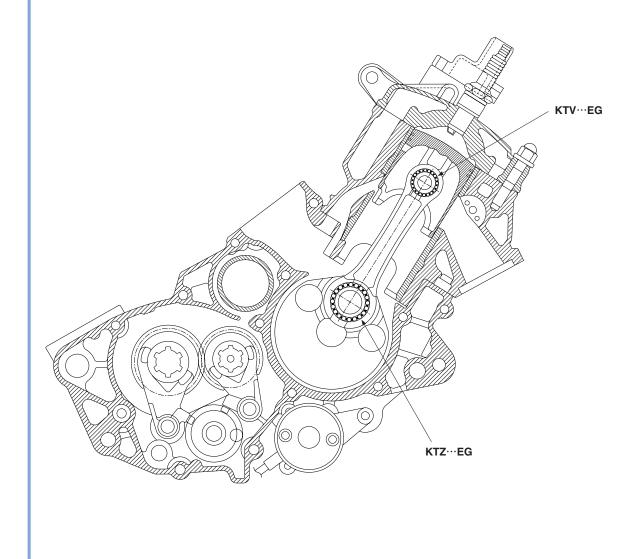
If Needle Rollers are combined with a shaft and a housing which have been hardened and ground to form a suitable raceway surface, the combined assembly can be used as a full-complement bearing which has a large load capacity and a low sectional height. (See page A44, Design of shaft and housing.) Normally in this case, the radial clearance is made a little larger than that of a bearing with cage and the circumferential clearance is made to be approximately 1/10 of the diameter of needle rollers. When the bearing is used under severe conditions, please contact TICO for further information.

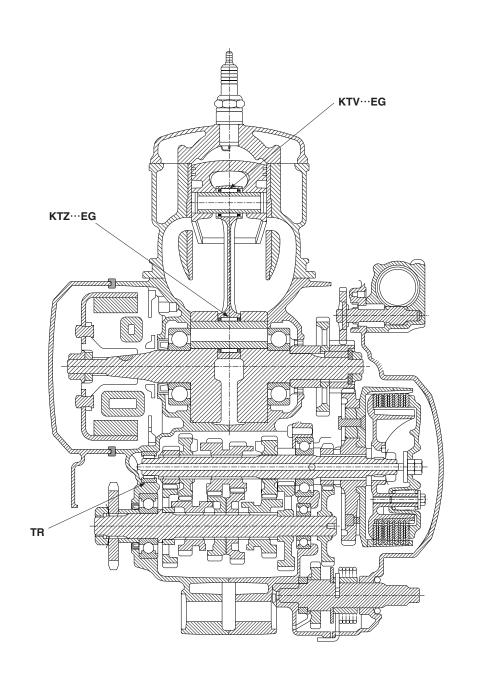
Needle Rollers

Roller dia. 1 – 6mm

Nominal dimen	sions mm	Mass (Ref.)	Nominal dimen	sions mm	Mass (Ref.)		Nominal dimen	sions mm	Mass (Ref.)
$D_{ m w}$	$L_{ m w}$	g	$D_{ m w}$	$L_{ m w}$	g		$D_{ m w}$	$L_{ m w}$	g
1	5.8 6.8 7.8 9.8	0.03 0.04 0.05 0.06	3.5	11.8 13.8 15.8 17.8 19.8	0.86 1 1.15 1.29 1.44		5	15.8 17.8 19.8 21.8 23.8	2.3 2.6 2.9 3.2 3.5
1.5	5.8 6.8 7.8 9.8 11.8 13.8	0.08 0.09 0.1 0.13 0.16 0.18		21.8 23.8 25.8 27.8 29.8 31.8 34.8	1.58 1.73 1.88 2.1 2.2 2.3 2.5			25.8 27.8 29.8 31.8 34.8 37.8 39.8	3.8 4.1 4.4 4.7 5.2 5.6 5.9
2	6.8 7.8 9.8 11.8 13.8 15.8 17.8 19.8	0.16 0.19 0.23 0.28 0.33 0.38 0.42 0.47	4	11.8 13.8 15.8 17.8 19.8 21.8 23.8	1.12 1.31 1.5 1.69 1.88 2.1 2.3	-	6	49.8 17.8 19.8 21.8 23.8 25.8 27.8	7.4 3.9 4.3 4.8 5.2 5.5 6
2.5	7.8 9.8 11.8 13.8 15.8 17.8	0.29 0.36 0.44 0.51 0.59 0.66 0.73		25.8 27.8 29.8 31.8 34.8 37.8 39.8	2.5 2.6 2.8 3 3.3 3.6 3.8	-		29.8 34.8 39.8 49.8 59.8	6.4 7.5 8.6 10.8 13
3	21.8 23.8 9.8 11.8 15.8 17.8 19.8 21.8 23.8 25.8 27.8 29.8	0.81 0.88 0.52 0.63 0.74 0.84 0.95 1.06 1.16 1.27 1.38 1.48 1.59	4.5	17.8 19.8 21.8 23.8 25.8 29.8 31.8 34.8 37.8 39.8 44.8	2.1 2.4 2.6 2.9 3.1 3.6 3.8 4.2 4.5 4.5				

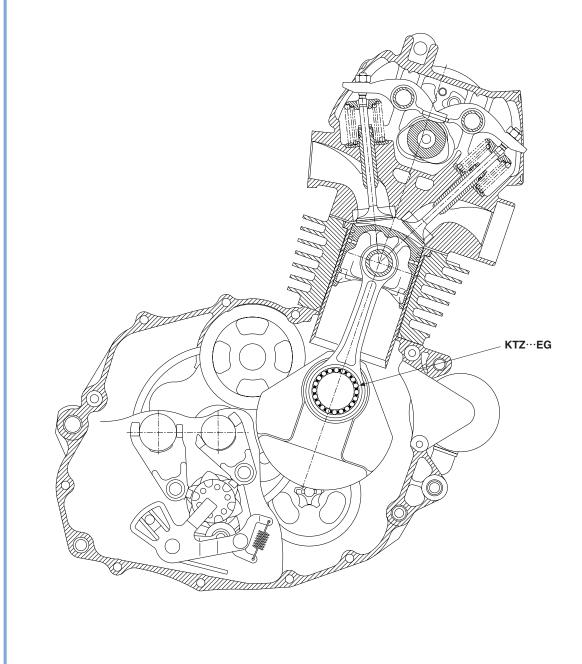
Remark For the names of the needle rollers, nominal dimensions are used.

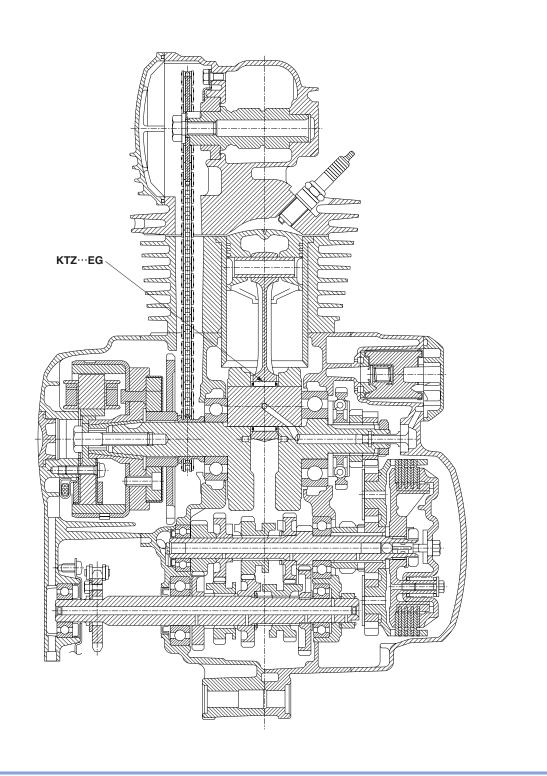

Needle Rollers other than those shown in the dimension table can also be manufactured. Please contact **IKO** for further information.

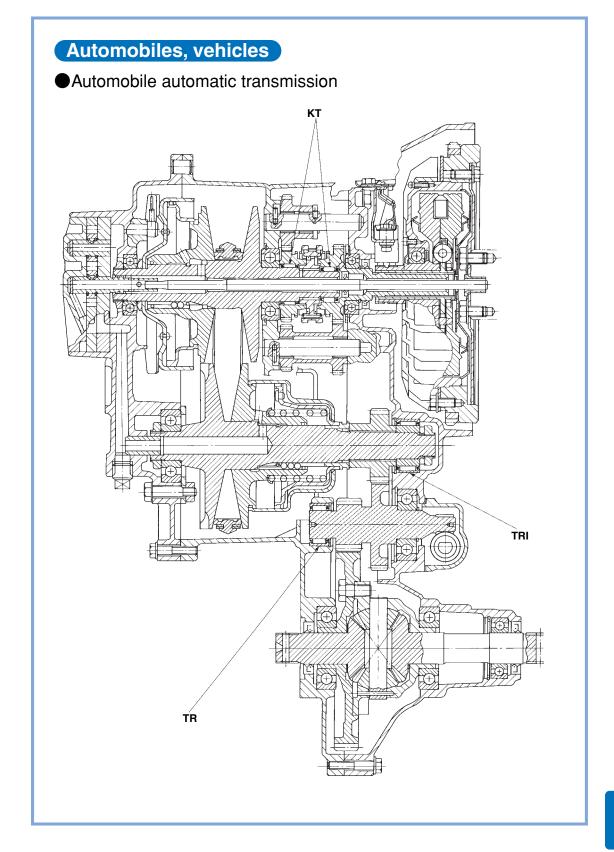

APPLICATIONS/ MISCELLANEOUS TABLES

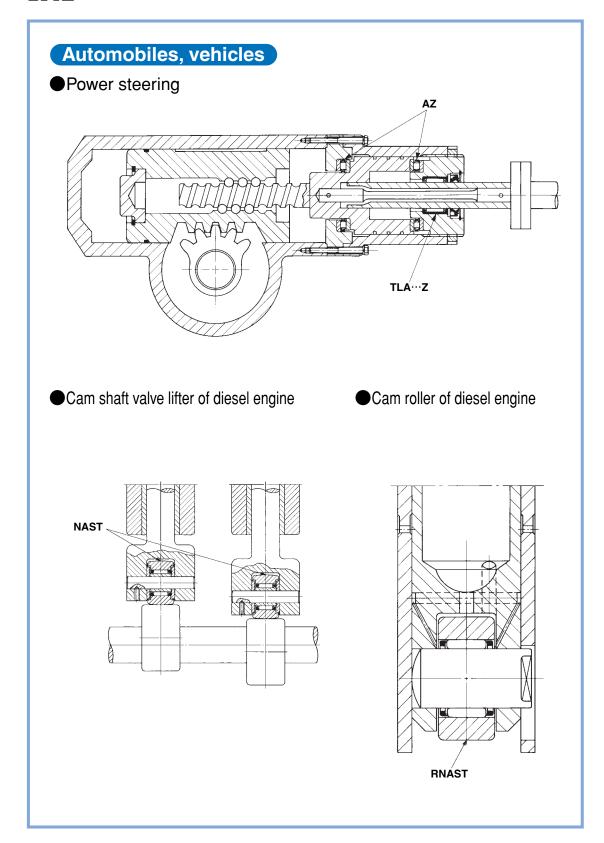
Applications	М1
Miscellaneous Tables M	33

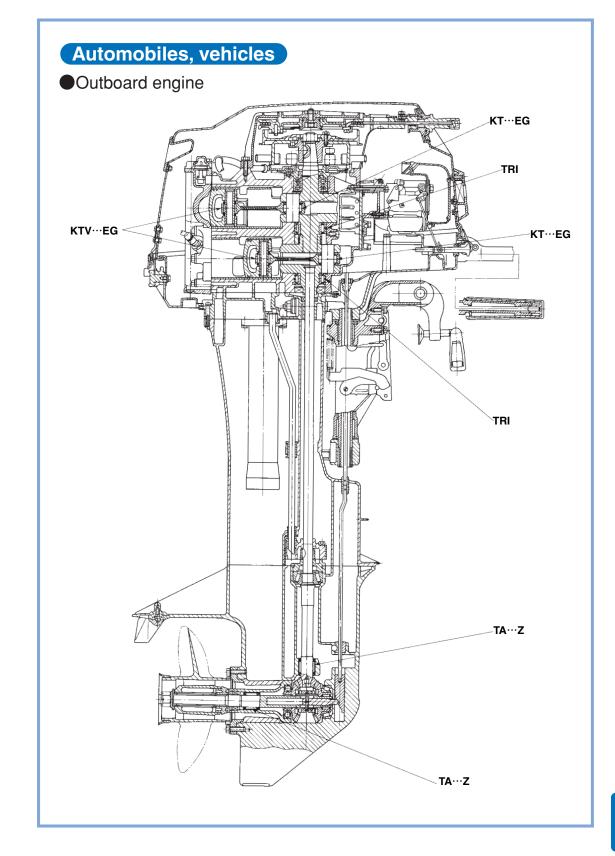
Automobiles, vehicles

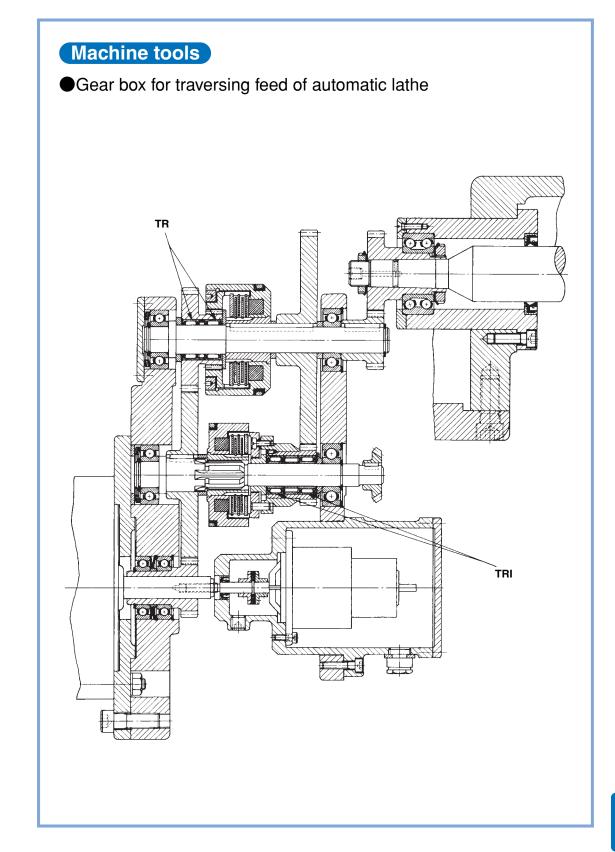

●Engine and transmission of 2-cycle motor cycle

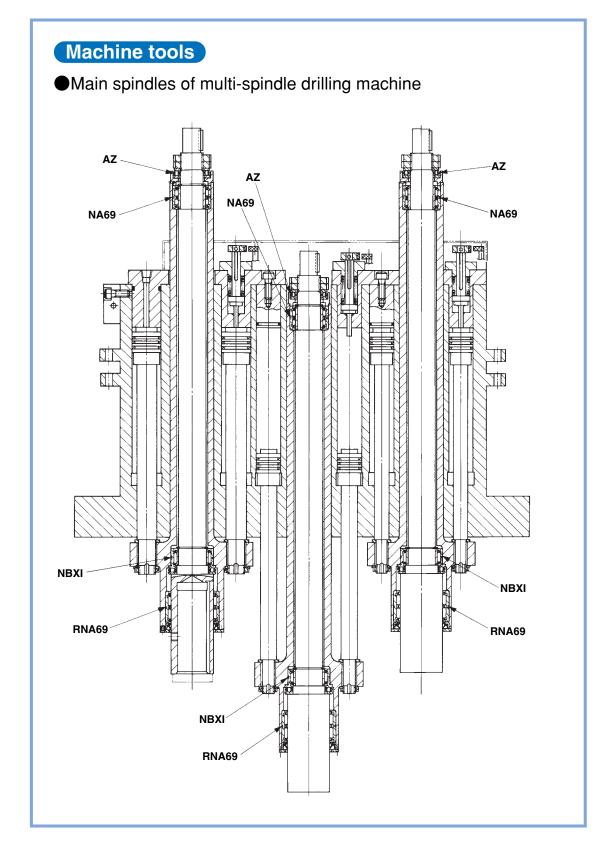


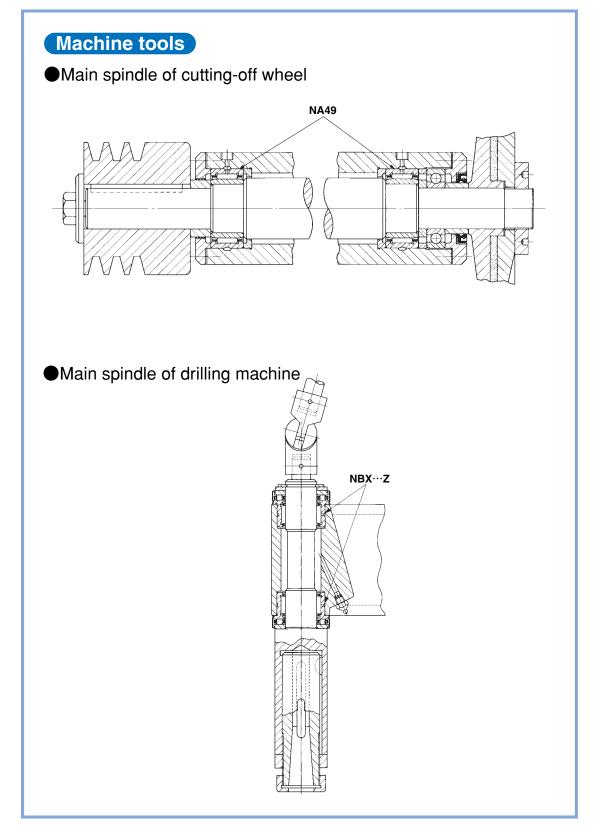


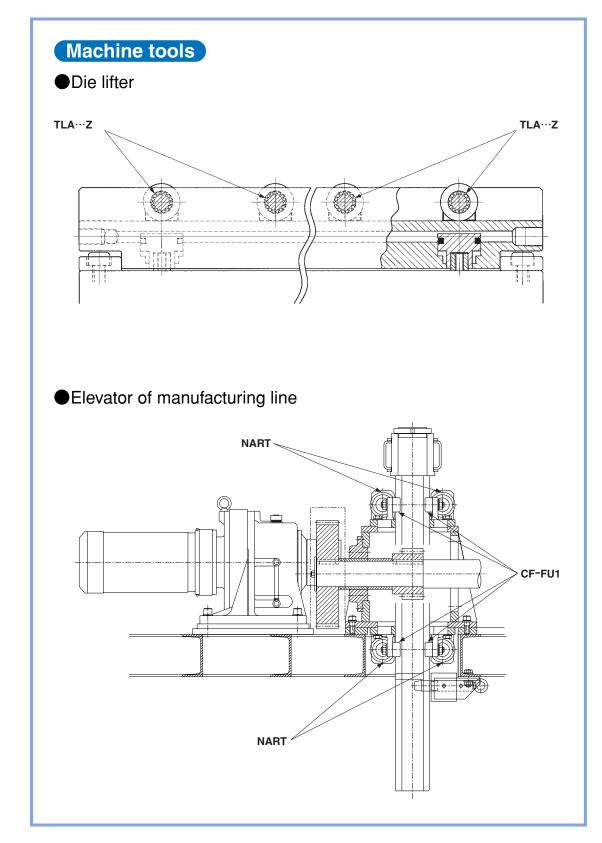

Automobiles, vehicles

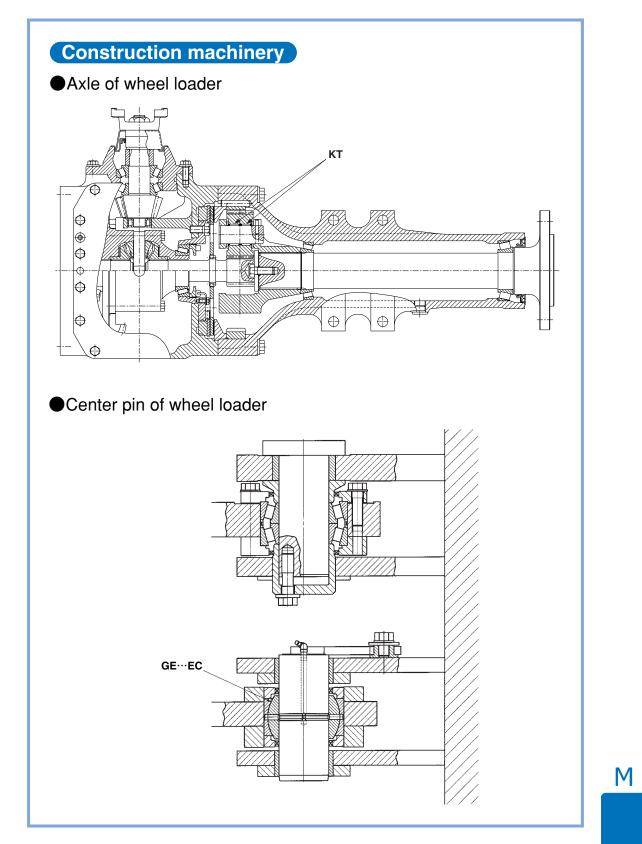

●Engine and transmission of 4-cycle motor cycle

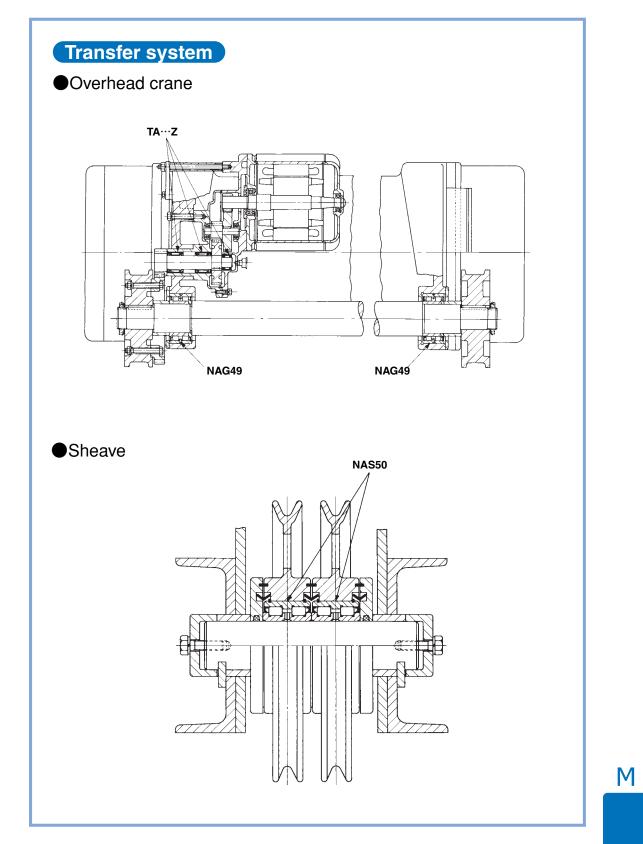


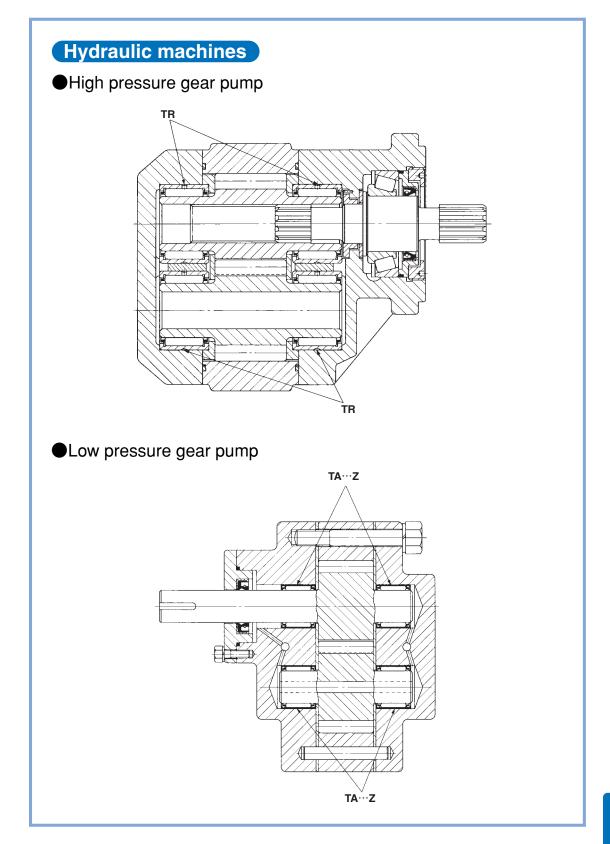


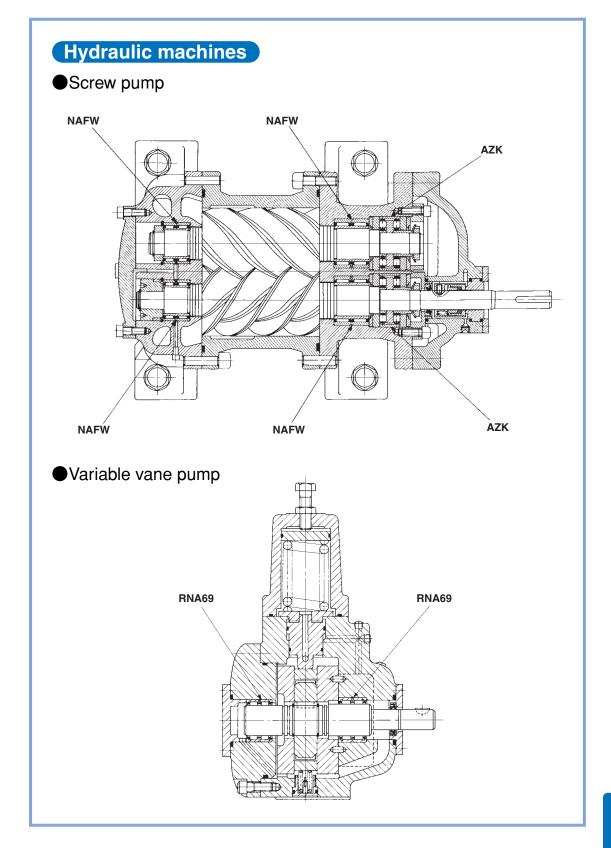


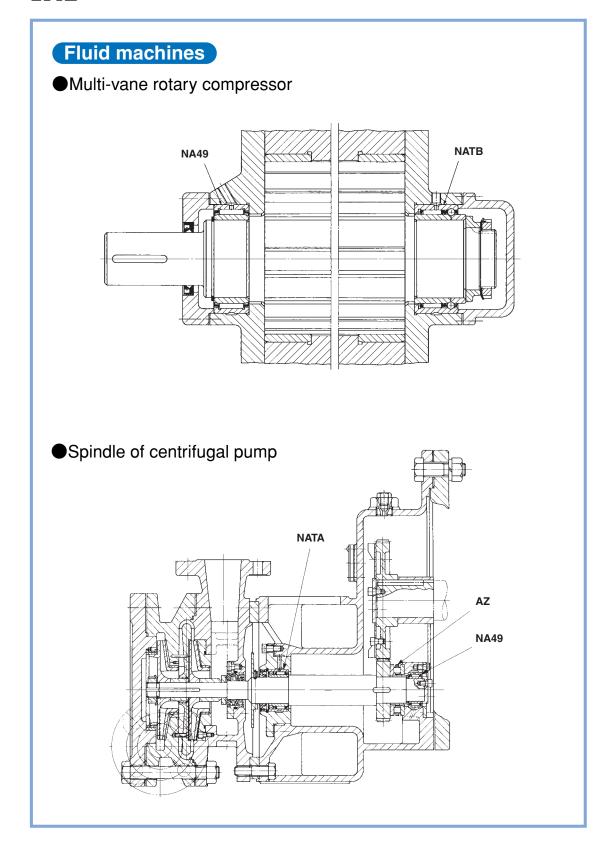


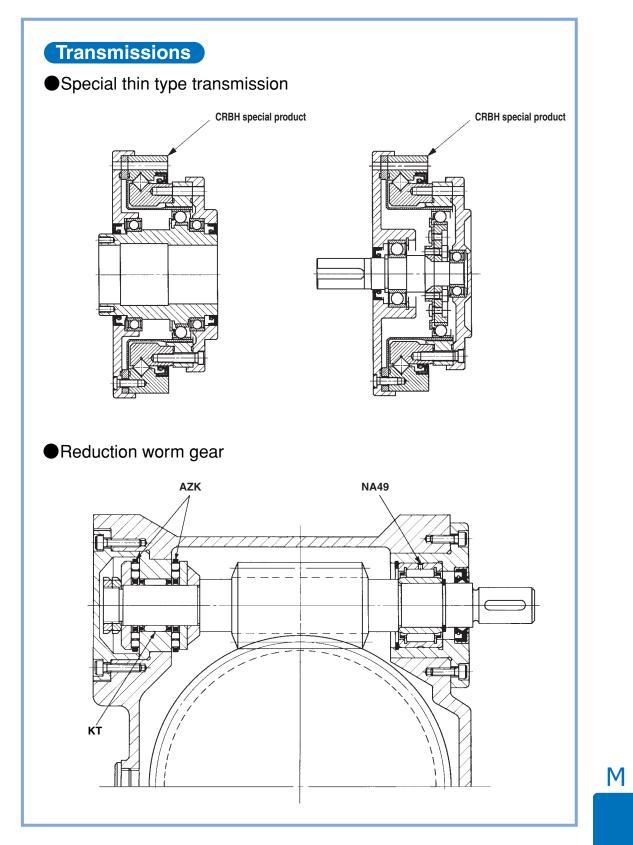


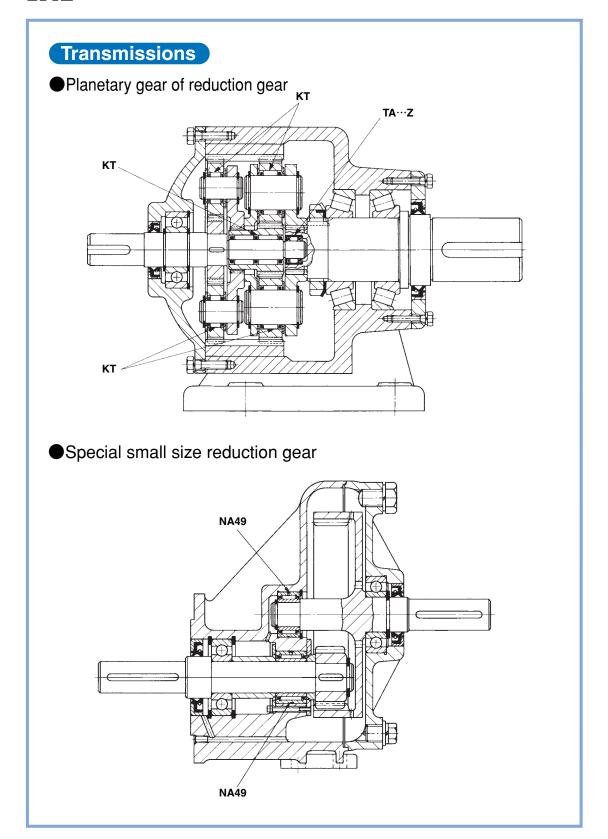


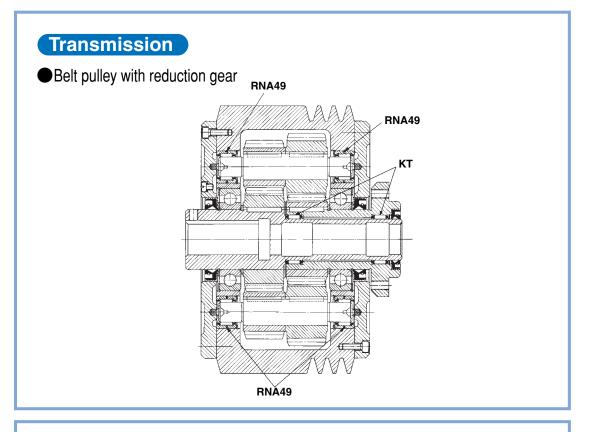


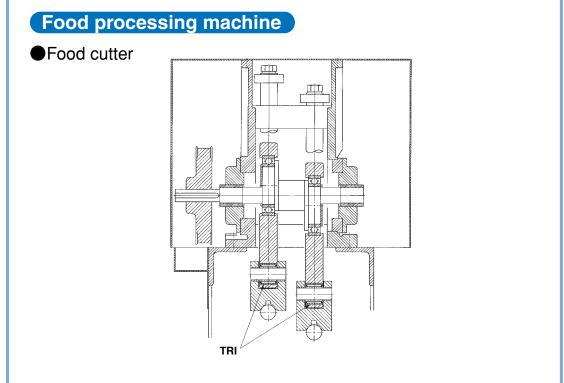


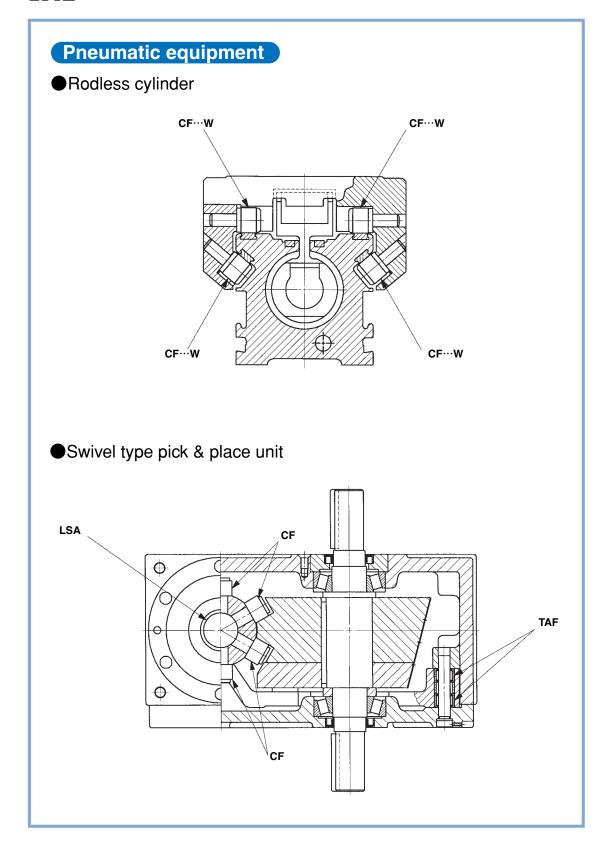


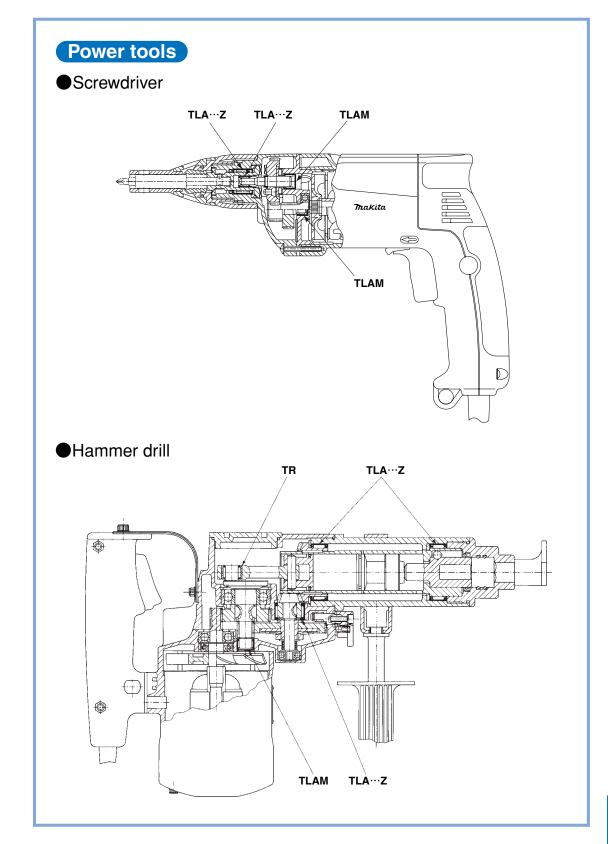


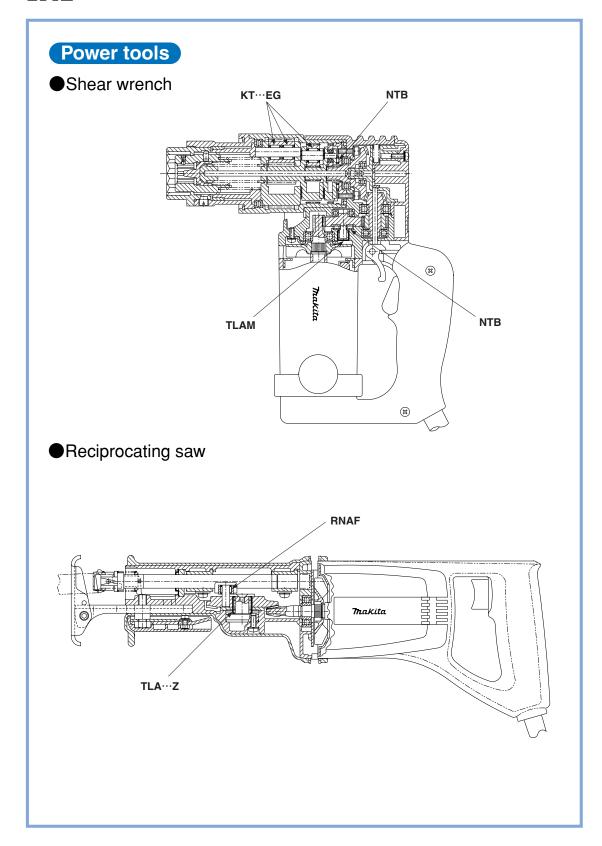


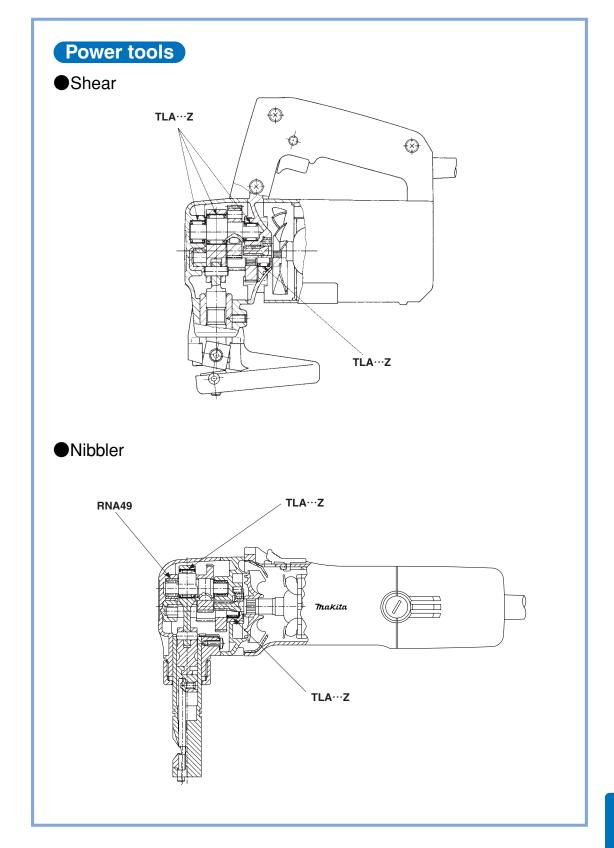


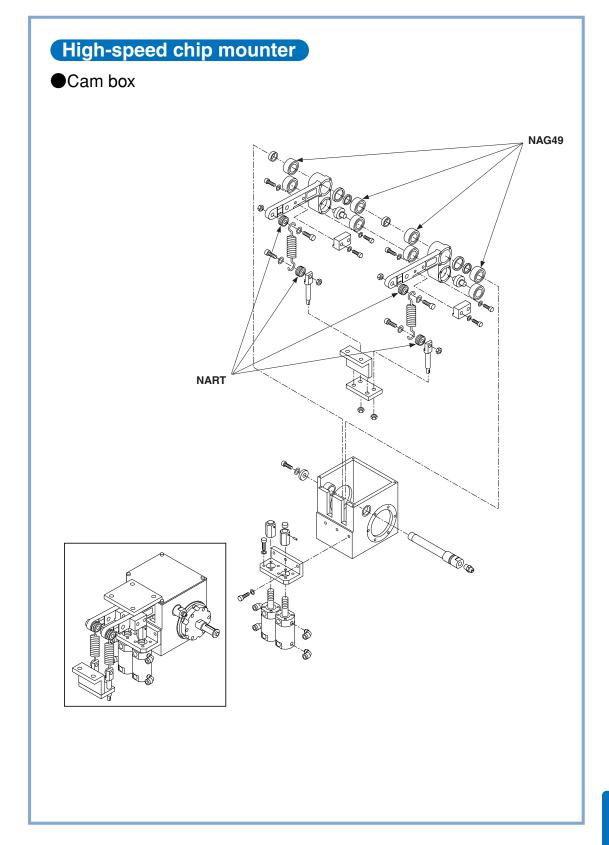












MISCELLANEOUS TABLES

Conversion Table of Units

Comparison table between SI units (system of international units), CGS units and gravitational system of units

Item System of units	Length	Mass	Time	Acceleration	Force	Stress	Pressure
SI units	m	kg	s	m/s ²	N	Pa	Pa
CGS units	cm	g	S	Gal	dyn	dyn/cm ²	dyn/cm ²
Grav. units	m	kgf•s²/m	s	m/s ²	kgf	kgf/m²	kgf/m²

Conversion	ratac	into	CI	unite

Item	Unit name	Symbol	Conversion rate into SI	SI unit name	Symbol
Angle	Degree Minute Second	° , , , , , , , , , , , , , , , , , , ,	π/180 π/10 800 π/648 000	Radian	rad
Length	Meter Micronmeter Angstrom X-ray unit Nautical mile	m μ Å n mile	1 10 ⁻⁶ 10 ⁻¹⁰ ≈1.002 08×10 ⁻¹³ 1852	Meter	m
Area	Square meter Are Hectare	m² a ha	1 10 ² 10 ⁴	Square meter	m ²
Volume	Cubic meter Liter	m³ I, L	1 10 ⁻³	Cubic meter	m ³
Mass	Kilogram Ton Atomic mass unit	kg t u	1 10 ³ ≈1.660 57×10 ⁻²⁷	Kilogram	kg
Time	Second Minute Hour Day	s min h d	1 60 3 600 86 400	Second	s
Velocity	Meter per second Knot	m/s kn	1 1 852/3 600	Meter per second	m/s
Frequency and number of oscillations per time	Cycle	s ⁻¹	1	Hertz	Hz
Rotation speed	Rotation per minute	rpm	1/60	Per second	s ⁻¹
Angular velocity	Radian per second	rad/s	1	Radian per second	rad/s
Acceleration	Meter per square second G	m/s² G	1 9.806 65	Meter per square second	m/s ²
Force	Kilogram force Ton force Dyne	kgf tf dyn	9.806 65 9 806.65 10 ⁻⁵	Newton	N
Moment of force	Kilogram force-meter	kgf•m	9.806 65	Newton-meter	N∙m
Stress and pressure	Kilogram force per square meter Kilogram force per square centimeter Kilogram force per square millimeter	kgf/m ² kgf/cm ² kgf/mm ²	9.806 65 9.806 65×10 ⁴ 9.806 65×10 ⁶	Pascal	Pa

Energy	Power	Temperature	Viscosity	Kinematic viscosity	Magnetic flux	Magnetic flux density	Magnetic field intensity
J	W	K	Pa•s	m²/s	Wb	T	A/m
erg	erg/s	°C	Р	St	Mx	Gs	Oe
kgf∙m	kgf•m/s	°C	kgf•s/m²	m²/s	_	_	_

Item	Unit name	Symbol	Conversion rate into SI	SI unit name	Symbol
Pressure	Hydro-column meter Mercurial column millimeter Torr Atmosphere Bar	mH2O mmHg Torr atm bar	9 806.65 101 325/760 101 325/760 101 325 10 ⁵	Pascal	Pa
Energy	Erg IT calorie Kilogram force - meter Kilowatt hour Horse power hour (French) Electron volt	erg calı⊤ kgf∙m kW∙h PS∙h eV	10 ⁻⁷ 4.186 8 9.806 65 3.600×10 ⁶ ≈2.647 79×10 ⁶ ≈1.602 19×10 ⁻¹⁹	Joule	J
Power	Watt Horse power (French) Kilogram force -meter per second	W PS kgf•m/s	1 ≈735.5 9.806 65	Watt	W
Viscosity	Poise Centipoise Kilogram force-second per square meter	P cP kgf•s/m²	10 ⁻¹ 10 ⁻³ 9.806 65	Pascal-second	Pa•s
Kinematic viscosity	Stokes Centistokes	St cSt	10 ⁻⁴ 10 ⁻⁶	Square meter per second	m²/s
Temperature	Degree	°C	+273.15	Kelvin	K
Radioactivity Exposure dose Absorbed dose Dose equivalent	Curie Roentgen Rad Rem	Ci R rad rem	3.7×10 ¹⁰ 2.58×10 ⁻⁴ 10 ⁻² 10 ⁻²	Becquerel Coulomb per kilogram Gray Sievert	Bq C/kg Gy Sv
Magnetic flux	Maxwell	Mx	10-8	Weber	Wb
Magnetic flux density	Gamma Gauss	γ Gs	10 ⁻⁹ 10 ⁻⁴	Tesla	Т
Magnetic field intensity	Oersted	Oe	$10^{3}/4 \pi$	Ampere per meter	A/m
Quantity of electricity Electric potential difference Electrostatic capacity (Electric) resistance (Electric) conductance Inductance	Coulomb Volt Farad Ohm Siemens Henry	C > F Ω S H •	1 1 1 1 1 1	Coulomb Volt Farad Ohm Siemens Henry	C V F Ω S H
Current	Ampere	Α	1	Ampere	Α

M34

M

IKO

Inch-mm Conversion Table

1 inch = 25.4 mm 1 inch = 25.4 mm

ir	nch	0"	1"	2"	3"	4"	5"	6"	7"	8"
Fraction	Decimal									
	0		25.400	50.800	76.200	101.600	127.000	152.400	177.800	203.200
1 / 64"	0.015625	0.397	25.797	51.197	76.597	101.997	127.397	152.797	178.197	203.597
1 / 32"	0.031250	0.794	26.194	51.594	76.994	102.394	127.794	153.194	178.594	203.994
3 / 64"	0.046875	1.191	26.591	51.991	77.391	102.791	128.191	153.591	178.991	204.391
1 / 16"	0.062500	1.588	26.988	52.388	77.788	103.188	128.588	153.988	179.388	204.788
5 / 64"	0.078125	1.984	27.384	52.784	78.184	103.584	128.984	154.384	179.784	205.184
3 / 32"	0.093750	2.381	27.781	53.181	78.581	103.981	129.381	154.781	180.181	205.581
7 / 64"	0.109375	2.778	28.178	53.578	78.978	104.378	129.778	155.178	180.578	205.978
1 / 8"	0.125000	3.175	28.575	53.975	79.375	104.775	130.175	155.575	180.975	206.375
9 / 64"	0.140625	3.572	28.972	54.372	79.772	105.172	130.572	155.972	181.372	206.772
5 / 32"	0.156250	3.969	29.369	54.769	80.169	105.569	130.969	156.369	181.769	207.169
11 / 64"	0.171875	4.366	29.766	55.166	80.566	105.966	131.366	156.766	182.166	207.566
3 / 16"	0.187500	4.762	30.162	55.562	80.962	106.362	131.762	157.162	182.562	207.962
13 / 64"	0.203125	5.159	30.559	55.959	81.359	106.759	132.159	157.559	182.959	208.359
7 / 32"	0.218750	5.556	30.956	56.356	81.756	107.156	132.556	157.956	183.356	208.756
15 / 64"	0.234375	5.953	31.353	56.753	82.153	107.553	132.953	158.353	183.753	209.153
1 / 4"	0.250000	6.350	31.750	57.150	82.550	107.950	133.350	158.750	184.150	209.550
17 / 64"	0.265625	6.747	32.147	57.547	82.947	108.347	133.747	159.147	184.547	209.947
9 / 32"	0.281250	7.144	32.544	57.944	83.344	108.744	134.144	159.544	184.944	210.344
19 / 64"	0.296875	7.541	32.941	58.341	83.741	109.141	134.541	159.941	185.341	210.741
5 / 16"	0.312500	7.938	33.338	58.738	84.138	109.538	134.938	160.338	185.738	211.138
21 / 64"	0.328125	8.334	33.734	59.134	84.534	109.934	135.334	160.734	186.134	211.534
11 / 32"	0.343750	8.731	34.131	59.531	84.931	110.331	135.731	161.131	186.531	211.931
23 / 64"	0.359375	9.128	34.528	59.928	85.328	110.728	136.128	161.528	186.928	212.328
3 / 8"	0.375000	9.525	34.925	60.325	85.725	111.125	136.525	161.925	187.325	212.725
25 / 64"	0.390625	9.922	35.322	60.722	86.122	111.522	136.922	162.322	187.722	213.122
13 / 32"	0.406250	10.319	35.719	61.119	86.519	111.919	137.319	162.719	188.119	213.519
27 / 64"	0.421875	10.716	36.116	61.516	86.916	112.316	137.716	163.116	188.516	213.916
7 / 16"	0.437500	11.112	36.512	61.912	87.312	112.712	138.112	163.512	188.912	214.312
29 / 64"	0.453125	11.509	36.909	62.309	87.709	113.109	138.509	163.909	189.309	214.709
15 / 32"	0.468750	11.906	37.306	62.706	88.106	113.506	138.906	164.306	189.706	215.106
31 / 64"	0.484375	12.303	37.703	63.103	88.503	113.903	139.303	164.703	190.103	215.503
1 / 2"	0.500000	12.700	38.100	63.500	88.900	114.300	139.700	165.100	190.500	215.900

in	ch									
Fraction	Decimal	0"	1"	2″	3″	4"	5″	6″	7"	8″
33 / 64"	0.515625	13.097	38.497	63.897	89.297	114.697	140.097	165.497	190.897	216.297
17 / 32"	0.531250	13.494	38.894	64.294	89.694	115.094	140.494	165.894	191.294	216.694
35 / 64"	0.546875	13.891	39.291	64.691	90.091	115.491	140.891	166.291	191.691	217.091
9 / 16"	0.562500	14.288	39.688	65.088	90.488	115.888	141.288	166.688	192.088	217.488
37 / 64"	0.578125	14.684	40.084	65.484	90.884	116.284	141.684	167.084	192.484	217.884
19 / 32"	0.593750	15.081	40.481	65.881	91.281	116.681	142.081	167.481	192.881	218.281
39 / 64"	0.609375	15.478	40.878	66.278	91.678	117.078	142.478	167.878	193.278	218.678
5 / 8"	0.625000	15.875	41.275	66.675	92.075	117.475	142.875	168.275	193.675	219.075
41 / 64"	0.640625	16.272	41.672	67.072	92.472	117.872	143.272	168.672	194.072	219.472
21 / 32"	0.656250	16.669	42.069	67.469	92.869	118.269	143.669	169.069	194.469	219.869
43 / 64"	0.671875	17.066	42.466	67.866	93.266	118.666	144.066	169.466	194.866	220.266
11 / 16"	0.687500	17.462	42.862	68.262	93.662	119.062	144.462	169.862	195.262	220.662
45 / 64"	0.703125	17.859	43.259	68.659	94.059	119.459	144.859	170.259	195.659	221.059
23 / 32"	0.718750	18.256	43.656	69.056	94.456	119.856	145.256	170.656	196.056	221.456
47 / 64"	0.734375	18.653	44.053	69.453	94.853	120.253	145.653	171.053	196.453	221.853
3 / 4"	0.750000	19.050	44.450	69.850	95.250	120.650	146.050	171.450	196.850	222.250
49 / 64"	0.765625	19.447	44.847	70.247	95.647	121.047	146.447	171.847	197.247	222.647
25 / 32"	0.781250	19.844	45.244	70.644	96.044	121.444	146.844	172.244	197.644	223.044
51 / 64"	0.796875	20.241	45.641	71.041	96.441	121.841	147.241	172.641	198.041	223.441
13 / 16"	0.812500	20.638	46.038	71.438	96.838	122.238	147.638	173.038	198.438	223.838
53 / 64"	0.828125	21.034	46.434	71.834	97.234	122.634	148.034	173.434	198.834	224.234
27 / 32"	0.843750	21.431	46.831	72.231	97.631	123.031	148.431	173.831	199.231	224.631
55 / 64"	0.859375	21.828	47.228	72.628	98.028	123.428	148.828	174.228	199.628	225.028
7 / 8"	0.875000	22.225	47.625	73.025	98.425	123.825	149.225	174.625	200.025	225.425
57 / 64"	0.890625	22.622	48.022	73.422	98.822	124.222	149.622	175.022	200.422	225.822
29 / 32"	0.906250	23.019	48.419	73.819	99.219	124.619	150.019	175.419	200.819	226.219
59 / 64"	0.921875	23.416	48.816	74.216	99.616	125.016	150.416	175.816	201.216	226.616
15 / 16"	0.937500	23.812	49.212	74.612	100.012	125.412	150.812	176.212	201.612	227.012
61 / 64"	0.953125	24.209	49.609	75.009	100.409	125.809	151.209	176.609	202.009	227.409
31 / 32"	0.968750	24.606	50.006	75.406	100.806	126.206	151.606	177.006	202.406	227.806
63 / 64"	0.984375	25.003	50.403	75.803	101.203	126.603	152.003	177.403	202.803	228.203

IKO

Hardness Conversion Table (Reference)

68 940 — — 85.6 — 98.6 — 79.6 — 79.6	nardness
HRC HV carbide ball Diamond circular cone 1/16" ball F 68 940 — — 85.6 — 98.6 67 900 — — 85.0 — 98.6 66 865 — — 84.5 — 98.6 65 832 — (739) 83.9 — 98.6 64 800 — (722) 83.4 — 88.6 63 772 — (705) 82.8 — 88.6 62 746 — (688) 82.3 — 88.6 61 720 — (670) 81.8 — 88.6 61 720 — (654) 81.2 — 88.6 59 674 — (634) 80.7 — 88.7 58 653 — 615 80.1 — 77.7 79.0 — 77.7 79	
67 900 — — 85.0 — 66 66 865 — — 84.5 — 65 65 832 — (739) 83.9 — 68 64 800 — (722) 83.4 — 88 63 772 — (705) 82.8 — 82 62 746 — (688) 82.3 — 86 61 720 — (670) 81.8 — 86 60 697 — (654) 81.2 — 86 60 697 — (654) 81.2 — 86 59 674 — (634) 80.7 — 86 57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 <td< td=""><td>IS</td></td<>	IS
66 865 — — 84.5 — 9.5 65 832 — (739) 83.9 — 9.5 64 800 — (722) 83.4 — 8.6 63 772 — (705) 82.8 — 8.6 62 746 — (688) 82.3 — 8.6 61 720 — (670) 81.8 — 8.6 60 697 — (654) 81.2 — 8.6 60 697 — (654) 81.2 — 8.6 59 674 — (634) 80.7 — 8.7 58 653 — 615 80.1 — 7.7 58 653 — 615 80.1 — 7.7 56 613 — 595 79.6 — 7.7 55 595 — 560 78.5 — 7.7 54 577 — 543 78.0	97
65 832 — (739) 83.9 — 68 64 800 — (722) 83.4 — 88 63 772 — (705) 82.8 — 88 62 746 — (688) 82.3 — 88 61 720 — (670) 81.8 — 88 60 697 — (654) 81.2 — 88 59 674 — (634) 80.7 — 88 58 653 — 615 80.1 — 78 57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 53 560 — 525 77.4 — 77 53 560 — 525 77.4 — 77 51 528 (487) 496 76.3	95
64 800 — (722) 83.4 — 8 63 772 — (705) 82.8 — 8 62 746 — (688) 82.3 — 8 61 720 — (670) 81.8 — 8 60 697 — (654) 81.2 — 8 59 674 — (634) 80.7 — 8 58 653 — 615 80.1 — 7 57 633 — 595 79.6 — 7 56 613 — 577 79.0 — 7 55 595 — 560 78.5 — 7 54 577 — 543 78.0 — 7 53 560 — 525 77.4 — 7 51 528 (487) 496 76.3 — 6 50 513 (475) 481 75.9 — <td>92</td>	92
63 772 — (705) 82.8 — 8 62 746 — (688) 82.3 — 8 61 720 — (670) 81.8 — 8 60 697 — (654) 81.2 — 8 59 674 — (634) 80.7 — 8 58 653 — 615 80.1 — 7 57 633 — 595 79.6 — 7 56 613 — 577 79.0 — 7 55 595 — 560 78.5 — 7 54 577 — 543 78.0 — 7 53 560 — 525 77.4 — 7 51 528 (487) 496 76.3 — 6 50 513 (475) 481 75.9 — 6 49 498 (464) 469 75.2 —<	91
62 746 — (688) 82.3 — 8 61 720 — (670) 81.8 — 8 60 697 — (654) 81.2 — 8 59 674 — (634) 80.7 — 8 58 653 — 615 80.1 — 7 57 633 — 595 79.6 — 7 56 613 — 577 79.0 — 7 55 595 — 560 78.5 — 7 54 577 — 543 78.0 — 7 53 560 — 525 77.4 — 7 52 544 (500) 512 76.8 — 6 51 528 (487) 496 76.3 — 6 49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 —<	38
62 746 — (688) 82.3 — 68 61 720 — (670) 81.8 — 68 60 697 — (654) 81.2 — 68 59 674 — (634) 80.7 — 68 58 653 — 615 80.1 — 77 57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 66 51 528 (487) 496 76.3 — 66 50 513 (475) 481 75.9 — 66 48 484 451 455 74.7	37
60 697 — (654) 81.2 — 68 59 674 — (634) 80.7 — 68 58 653 — 615 80.1 — 77 57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 62 51 528 (487) 496 76.3 — 62 50 513 (475) 481 75.9 — 62 49 498 (464) 469 75.2 — 62 48 484 451 455 74.7 — 62 46 458 432 432 73.6 <td>35</td>	35
60 697 — (654) 81.2 — 68 59 674 — (634) 80.7 — 68 58 653 — 615 80.1 — 77 57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 62 51 528 (487) 496 76.3 — 62 50 513 (475) 481 75.9 — 62 49 498 (464) 469 75.2 — 62 48 484 451 455 74.7 — 62 46 458 432 432 73.6 <td>33</td>	33
58 653 — 615 80.1 — 77 57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 76 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 66 51 528 (487) 496 76.3 — 66 50 513 (475) 481 75.9 — 66 49 498 (464) 469 75.2 — 66 48 484 451 455 74.7 — 66 48 484 451 455 74.7 — 66 47 471 442 443 74.1 — 66 46 458 432 432 73.6 <td>31</td>	31
57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 62 51 528 (487) 496 76.3 — 62 50 513 (475) 481 75.9 — 62 49 498 (464) 469 75.2 — 62 48 484 451 455 74.7 — 62 47 471 442 443 74.1 — 62 46 458 432 432 73.6 — 62 45 446 421 421 73.1 — 62	30
57 633 — 595 79.6 — 77 56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 66 51 528 (487) 496 76.3 — 66 50 513 (475) 481 75.9 — 66 49 498 (464) 469 75.2 — 66 48 484 451 455 74.7 — 66 47 471 442 443 74.1 — 66 45 446 458 432 432 73.6 — 66 45 446 421 421 73.1 — 66	78
56 613 — 577 79.0 — 77 55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 66 51 528 (487) 496 76.3 — 66 50 513 (475) 481 75.9 — 66 49 498 (464) 469 75.2 — 66 48 484 451 455 74.7 — 66 47 471 442 443 74.1 — 66 46 458 432 432 73.6 — 66 45 446 421 421 73.1 — 66	76
55 595 — 560 78.5 — 77 54 577 — 543 78.0 — 77 53 560 — 525 77.4 — 77 52 544 (500) 512 76.8 — 66 51 528 (487) 496 76.3 — 66 50 513 (475) 481 75.9 — 66 49 498 (464) 469 75.2 — 66 48 484 451 455 74.7 — 66 47 471 442 443 74.1 — 66 46 458 432 432 73.6 — 66 45 446 421 421 73.1 — 66	75
54 577 — 543 78.0 — 7 53 560 — 525 77.4 — 7 52 544 (500) 512 76.8 — 6 51 528 (487) 496 76.3 — 6 50 513 (475) 481 75.9 — 6 49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 — 6 47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	74
52 544 (500) 512 76.8 — 6 51 528 (487) 496 76.3 — 6 50 513 (475) 481 75.9 — 6 49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 — 6 47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	72
52 544 (500) 512 76.8 — 6 51 528 (487) 496 76.3 — 6 50 513 (475) 481 75.9 — 6 49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 — 6 47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	⁷ 1
51 528 (487) 496 76.3 — 6 50 513 (475) 481 75.9 — 6 49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 — 6 47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	69
50 513 (475) 481 75.9 — 6 49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 — 6 47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	88
49 498 (464) 469 75.2 — 6 48 484 451 455 74.7 — 6 47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	67
47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	66
47 471 442 443 74.1 — 6 46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	64
46 458 432 432 73.6 — 6 45 446 421 421 73.1 — 6	33
45 446 421 421 73.1 — 6	62 62
	30 30
	58
43 423 400 400 72.0 —	57
	56
	55
	54
	52

Rockwell C scale hardness	Vickers' hardness	Brinell h	ardness	Rockwell	hardness	Shore hardness
Load 1471N HRC	HV	Standard ball	Tungsten carbide ball	A scale Load 588.4N Diamond circular cone	B scale Load 980.7N 1/16" ball	HS
						_
38	372	353	353	69.4	_	51
37	363	344	344	68.9	_	50
36	354	336	336	68.4	(109.0)	49
35	345	327	327	67.9	(108.5)	48
34	336	319	319	67.4	(108.0)	47
33	327	311	311	66.8	(107.5)	46
32	318	301	301	66.3	(107.0)	44
31	310	294	294	65.8	(106.0)	43
30	302	286	286	65.3	(105.5)	42
29	294	279	279	64.7	(104.5)	41
28	286	271	271	64.3	(104.0)	41
27	279	264	264	63.8	(103.0)	40
26	272	258	258	63.3	(102.5)	38
25	266	253	253	62.8	(101.5)	38
24	260	247	247	62.4	(101.0)	37
23	254	243	243	62.0	100.0	36
22	248	237	237	61.5	99.0	35
21	243	231	231	61.0	98.5	35
20	238	226	226	60.5	97.8	34
(18)	230	219	219	_	96.7	33
(16)	222	212	212	_	95.5	32
(14)	213	203	203	_	93.9	31
(12)	204	194	194	_	92.3	29
(4.0)	400		107			
(10)	196	187	187	_	90.7	28
(8)	188	179	179	_	89.5	27
(6)	180	171	171	_	87.1	26
(4)	173	165	165	_	85.5	25
(2)	166	158	158	_	83.5	24
(0)	160	152	152	_	81.7	24

M

Tolerance of Shaft Diameter

Nominal m	Diameter M	þ.	12	C.	12	d	6	е	6	e ⁻	12	f	5	f	6	g	5
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	-140	- 240	- 60	- 160	- 20	- 26	- 14	- 20	- 14	-114	– 6	-10	– 6	- 12	- 2	– 6
3	6	-140	- 260	— 70	- 190	- 30	- 38	- 20	— 28	- 20	-140	-10	-15	-10	- 18	- 4	– 9
6	10	-150	- 300	- 80	- 230	- 40	- 49	- 25	- 34	- 25	-175	-13	-19	-13	- 22	- 5	-11
10	18	-150	- 330	- 95	- 275	- 50	— 61	- 32	- 43	- 32	-212	-16	-24	-16	— 27	- 6	-14
18	30	-160	- 370	-110	- 320	— 65	— 78	- 40	- 53	- 40	-250	-20	-29	-20	- 33	- 7	-16
30	40	-170	- 420	-120	- 370	- 80	– 96	– 50	- 66	- 50	-300	—25	-36	_ ₂₅	_ 41	- 9	_ ₂₀
40	50	-180	— 430	-130	— 380	- 80	- 96	- 50	_ 66	- 50	-300	-25	-36	-25	- 41	9	_20
50	65	-190	- 490	-140	- 440	-100	-119	– 60	_ 79	- 60	—360	—30	-43	-30	_ 49	-10	-23
65	80	-200	- 500	-150	— 450	100	119	00	/ 5	00	300	30	40	30	45	10	23
80	100	-220	- 570	-170	- 520	-120	-142	_ 72	_ 94	- 72	-422	—36	-51	_ ₃₆	- 58	-12	—27
100	120	-240	- 590	-180	- 530	120	172	12	34	12	722	30	31	30	30	12	21
120	140	-260	- 660	-200	- 600												
140	160	-280	— 680	-210	— 610	-145	-170	- 85	-110	— 85	-485	-43	-61	-43	— 68	-14	-32
160	180	-310	- 710	-230	— 630												
180	200	-340	- 800	-240	— 700												
200	225	-380	- 840	-260	- 720	-170	-199	-100	-129	-100	-560	-50	-70	-50	— 79	-15	-35
225	250	-420	- 880	-280	— 740												
250	280	-480	-1000	-300	- 820	-190	-222	-110	-142	-110	—630	—56	— 79	_ ₅₆	— 88	-17	-40
280	315	-540	-1060	-330	- 850	100	222	110	172	110	000	30	13	30	00		70
315	355	-600	-1170	-360	- 930	-210	-246	—125	—161	-125	-695	-62	—87	_ ₆₂	_ 98	-18	-43
355	400	-680	-1250	-400	- 970	210	240	123	101	123	000	02	07	02	30	10	70
400	450	—760	-1390	-440	-1070	-230	-270	—135	—175	-135	—765	-68	-95	_ ₆₈	-108	-20	—47
450	500	-840	-1470	-480	-1110	200	210	100	1/3	100	703	00	33	00	100	20	47

Nominal M		h [.]	12	h [.]	13	js	s5	j:	5	js	66	j	6	j	7	k	5
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	0	-100	0	-140	+ 2	- 2	+2	– 2	+ 3	- 3	+ 4	- 2	+ 6	- 4	+ 4	0
3	6	0	-120	0	-180	+ 2.5	- 2.5	+3	- 2	+ 4	- 4	+ 6	- 2	+ 8	- 4	+ 6	+1
6	10	0	-150	0	-220	+ 3	- 3	+4	– 2	+ 4.5	- 4.5	+ 7	- 2	+10	- 5	+ 7	+1
10	18	0	-180	0	-270	+ 4	- 4	+5	- 3	+ 5.5	- 5.5	+ 8	— з	+12	— 6	+ 9	+1
18	30	0	-210	0	-330	+ 4.5	- 4.5	+5	- 4	+ 6.5	— 6.5	+ 9	- 4	+13	– 8	+11	+2
30	40	0	—250	0	—390	+ 5.5	– 5.5	+6	– 5	+ 8	_ 8	+11	– 5	+15	—10	+13	+2
40	50	U	-250	U	-390	⊤ 5.5	- 5.5	70	- 5	Τ 0	- 0	711	- 5	T13	-10	+13	T2
50	65	0	-300	0	—460	+ 6.5	- 6.5	+6	_ 7	+ 9.5	- 9.5	+12	– 7	+18	-12	+15	+2
65	80	U U	300	· ·	400	1 0.5	0.5	10		1 3.3	3.5	1 12	,	1 10	12	1 13	12
80	100	0	—350	0	—540	+ 7.5	- 7.5	+6	_ 9	+11	-11	+13	– 9	+20	—15	+18	+3
100	120		000		040	1 7.0	7.0	10	,	1 11	'''	1 10	3	120	13	1 10	- 10
120	140																
140	160	0	-400	0	-630	+ 9	– 9	+7	-11	+12.5	-12.5	+14	-11	+22	-18	+21	+3
160	180																
180	200																
200	225	0	-460	0	-720	+10	-10	+7	-13	+14.5	-14.5	+16	-13	+25	-21	+24	+4
225	250																
250	280	0	-520	0	-810	+11.5	-11.5	+7	-16	+16	-16	+16	-16	+26	-26	+27	+4
280	315																
315	355	0	—570	0	-890	+12.5	-12.5	+7	-18	+18	-18	+18	-18	+29	-28	+29	+4
355	400		,,,		,,,,											. 20	
400	450	0	-630	0	-970	+13.5	-13.5	+7	_ ₂₀	+20	-20	+20	-20	+31	-32	+32	+5
450	500								_,			,	,				

																	unit : μm
g	6	h	5	h	6	h	7	h	8	h	9	h [.]	10	h	11		Diameter M
High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
- 2	- 8	0	- 4	0	- 6	0	-10	0	-14	0	- 25	0	- 40	0	- 60	_	3
- 4	-12	0	- 5	0	- 8	0	-12	0	-18	0	- 30	0	- 48	0	– 75	3	6
– 5	-14	0	— 6	0	— 9	0	-15	0	-22	0	— 36	0	- 58	0	- 90	6	10
- 6	-17	0	– 8	0	-11	0	-18	0	-27	0	— 43	0	— 70	0	-110	10	18
– 7	-20	0	– 9	0	-13	0	-21	0	-33	0	- 52	0	- 84	0	-130	18	30
– 9	-25	0	-11	0	-16	0	—25	0	—39	0	– 62	0	-100	0	_ ₁₆₀	30	40
9	23	U	- ''	U	10	U	23	U	39	U	02	U	100	U	-160	40	50
-10	-29	0	_ ₁₃	0	-19	0	-30	0	—46	0	– 74	0	-120	0	_ ₁₉₀	50	65
10	23	U	13	U	15	U	30	U	40	U	/4	U	120	U	190	65	80
-12	-34	0	_ ₁₅	0	-22	0	—35	0	_54	0	– 87	0	-140	0	-220	80	100
12	34		13				33		34	0	07	0	140	0	220	100	120
																120	140
-14	-39	0	-18	0	-25	0	-40	0	-63	0	-100	0	-160	0	-250	140	160
																160	180
																180	200
-15	-44	0	-20	0	-29	0	-46	0	-72	0	-115	0	-185	0	-290	200	225
																225	250
-17	-49		_ ₂₃		-32		-52		—81		-130		-210		_320	250	280
-17	-49	0	-23	0	-32	0	-52	0	-01	0	-130	0	-210	0	-320	280	315
-18	-54	0	-25	0	-36	0	-57	0	-89	0	-140	0	-230	0	-360	315	355
10	34	U	23	U	30	U	-57	U	-09	U	-140	U	-230	U	-360	355	400
-20	-60	0	_ ₂₇	0	-40	0	-63	0	—97	0	—155	0	—250	0	_ ₄₀₀	400	450
-20	60	U	21	U	40	U	63	U	97	U	155	U	250	U	400	450	500

unit : μ m

k	6	m	15	m	16	n	5	n	6	р	6	Nominal M	
High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
+ 6	0	+ 6	+ 2	+ 8	+ 2	+ 8	+ 4	+10	+ 4	+ 12	+ 6	_	3
+ 9	+1	+ 9	+ 4	+12	+ 4	+13	+ 8	+16	+ 8	+ 20	+12	3	6
+10	+1	+12	+ 6	+15	+ 6	+16	+10	+19	+10	+ 24	+15	6	10
+12	+1	+15	+ 7	+18	+ 7	+20	+12	+23	+12	+ 29	+18	10	18
+15	+2	+17	+ 8	+21	+ 8	+24	+15	+28	+15	+ 35	+22	18	30
140	+2	+20	+ 9	+25	+ 9	+28	+17	+33	+17	+ 42	+26	30	40
+18	T2	+ 20	T 9	+25	99 †	T-28	+17	+33	+17	T 42	+26	40	50
+21	+2	+24	+11	+30	+11	+33	+20	+39	+20	+ 51	+32	50	65
721	T2	T24	T11	T-30	711	T-33	T20	T39	T20	T 31	T32	65	80
+25	+3	+28	+13	+35	+13	+38	+23	+45	+23	+ 59	+37	80	100
T25	±3	T20	713	⊤აა	T13	T30	T23	T43	T23	T 39	T3/	100	120
												120	140
+28	+3	+33	+15	+40	+15	+45	+27	+52	+27	+ 68	+43	140	160
												160	180
												180	200
+33	+4	+37	+17	+46	+17	+51	+31	+60	+31	+ 79	+50	200	225
												225	250
+36	+4	+43	+20	+52	+20	+57	+34	+66	+34	+ 88	+56	250	280
T36	⊤4	T43	T20	⊤52	T20	T31	⊤34	700	⊤34	⊤ 08	T30	280	315
+40	+4	+46	+21	+57	+21	+62	+37	+73	+37	+ 98	+62	315	355
T40	T4	T40	TZI	⊤3/	TZI	T02	T3/	⊤/3	⊤ 3/	T 98	T02	355	400
+45	+5	+50	+23	+63	+23	+67	+40	+80	+40	+108	+68	400	450
T43	Τυ	T30	T23	T03	⊤23	⊤07	+4 0	⊤0 0	⊤40	T108	⊤00	450	500

M

unit : μ m

450 500

400

• Tolerance of Housing Bore Diameter

	Diameter M	B.	12	E	7	E.	11	E.	12	F	6	F	7	G	i6	G	7
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	+ 240	+140	+ 24	+ 14	+ 74	+ 14	+114	+ 14	+ 12	+ 6	+ 16	+ 6	+ 8	+ 2	+12	+ 2
3	6	+ 260	+140	+ 32	+ 20	+ 95	+ 20	+140	+ 20	+ 18	+10	+ 22	+10	+12	+ 4	+16	+ 4
6	10	+ 300	+150	+ 40	+ 25	+115	+ 25	+175	+ 25	+ 22	+13	+ 28	+13	+14	+ 5	+20	+ 5
10	18	+ 330	+150	+ 50	+ 32	+142	+ 32	+212	+ 32	+ 27	+16	+ 34	+16	+17	+ 6	+24	+ 6
18	30	+ 370	+160	+ 61	+ 40	+170	+ 40	+250	+ 40	+ 33	+20	+ 41	+20	+20	+ 7	+28	+ 7
30	40	+ 420	+170	+ 75	+ 50	+210	+ 50	+300	+ 50	1 44	+25	+ 50	+25	+25	+ 9	+34	+ 9
40	50	+ 430	+180	T /5	T 30	T210	T 50	⊤300	T 30	+ 41	T23	T 50	T23	T25	Т 9	⊤34	T 9
50	65	+ 490	+190	+ 90	+ 60	+250	+ 60	+360	+ 60	+ 49	+30	+ 60	+30	+29	+10	+40	+10
65	80	+ 500	+200	1 30	1 00	1 230	1 00	1 300	1 00	1 43	1 30	1 00	1 30	129	1 10	1 40	1 10
80	100	+ 570	+220	+107	+ 72	+292	+ 72	+422	+ 72	+ 58	+36	+ 71	+36	+34	+12	+47	+12
100	120	+ 590	+240	1 107	1 12	1 232	1 /2	1 422	1 12	1 30	1 30	1 /1	1 30	1 34	1 12	1 47	1 12
120	140	+ 660	+260														
140	160	+ 680	+280	+125	+ 85	+335	+ 85	+485	+ 85	+ 68	+43	+ 83	+43	+39	+14	+54	+14
160	180	+ 710	+310														
180	200	+ 800	+340														
200	225	+ 840	+380	+146	+100	+390	+100	+560	+100	+ 79	+50	+ 96	+50	+44	+15	+61	+15
225	250	+ 880	+420														
250	280	+1000	+480	+162	+110	+430	+110	+630	+110	+ 88	+56	+108	+56	+49	+17	+69	+17
280	315	+1060	+540	1 102	1110	1 400	1 110	1 000	1110	1 00	1 00	1 100	1 00	1 40	' ''	1 00	1 17
315	355	+1170	+600	+182	+125	+485	+125	+695	+125	+ 98	+62	+119	+62	+54	+18	+75	+18
355	400	+1250	+680	, .02	, ,,,	, 100	, .20	, 300	, ,,,,	, 50	, 02	, 110	, 02	, 04	, 10	, 70	, 10
400	450	+1390	+760	+198	+135	+535	+135	+765	+135	+108	+68	+131	+68	+60	+20	+83	+20
450	500	+1470	+840	, .00	, 100	, 300	, .00	, . 00	, 700	, 100	, 00	101	, 00	, 00	, 20	, 00	, 20

Nominal M		JS	67	J	7	K	.5	K		K	.7	N	16	M	17	N	16
Over	Incl.	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low
_	3	+ 5	- 5	+ 4	– 6	0	- 4	0	– 6	0	-10	– 2	– 8	-2	-12	- 4	-10
3	6	+ 6	– 6	+ 6	— 6	0	- 5	+2	— 6	+ 3	- 9	- 1	- 9	0	-12	- 5	-13
6	10	+ 7	– 7	+ 8	– 7	+1	– 5	+2	– 7	+ 5	-10	— з	-12	0	-15	- 7	-16
10	18	+ 9	– 9	+10	- 8	+2	- 6	+2	– 9	+ 6	-12	– 4	-15	0	-18	– 9	-20
18	30	+10	-10	+12	– 9	+1	– 8	+2	-11	+ 6	-15	– 4	-17	0	-21	-11	-24
30 40	40 50	+12	-12	+14	-11	+2	- 9	+3	-13	+ 7	-18	- 4	-20	0	-25	-12	-28
50 65	65 80	+15	-15	+18	-12	+3	-10	+4	-15	+ 9	-21	- 5	-24	0	-30	-14	-33
80	100 120	+17	-17	+22	-13	+2	-13	+4	-18	+10	-25	– 6	-28	0	-35	-16	-38
120 140 160	140 160 180	+20	-20	+26	-14	+3	-15	+4	-21	+12	-28	- 8	-33	0	-40	-20	-45
180 200 225	200 225 250	+23	-23	+30	-16	+2	-18	+5	-24	+13	-33	– 8	-37	0	-46	-22	-51
250 280	280 315	+26	-26	+36	-16	+3	-20	+5	-27	+16	-36	- 9	-41	0	-52	-25	-57
315 355	355 400	+28	-28	+39	-18	+3	-22	+7	-29	+17	-40	-10	-46	0	-57	-26	-62
400 450	450 500	+31	-31	+43	-20	+2	-25	+8	-32	+18	-45	-10	-50	0	-63	-27	-67

Н	16	Н	17	Н	8	Н	9	Н	10	Н	11	JS	S6	J	6	Nominal M	
High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
+ 6	0	+10	0	+14	0	+ 25	0	+ 40	0	+ 60	0	+ 3	- 3	+ 2	-4	_	3
+ 8	0	+12	0	+18	0	+ 30	0	+ 48	0	+ 75	0	+ 4	- 4	+ 5	-3	3	6
+ 9	0	+15	0	+22	0	+ 36	0	+ 58	0	+ 90	0	+ 4.5	- 4.5	+ 5	-4	6	10
+11	0	+18	0	+27	0	+ 43	0	+ 70	0	+110	0	+ 5.5	- 5.5	+ 6	-5	10	18
+13	0	+21	0	+33	0	+ 52	0	+ 84	0	+130	0	+ 6.5	— 6.5	+ 8	-5	18	30
+16	0	+25	0	+39	0	+ 62	0	+100	0	1400	0			+10	-6	30	40
+16	U	T-25	U	+39	U	+ 62	U	+100	U	+160	U	+ 8	– 8	+10	-6	40	50
+19	0	+30	0	+46	0	+ 74	0	+120	_	+190	0	+ 9.5	- 9.5	+13	-6	50	65
719	U	T30	U	T40	U	T 74	0	T120	0	+190	U	+ 9.5	- 9.5	T13	-6	65	80
+22	0	+35	0	+54	0	+ 87	0	+140	0	+220	0	+11	-11	+16	-6	80	100
T22	U	+35	U	±54	U	+ 87	0	T140	U	+220	U	T 11	-11	+16	-6	100	120
																120	140
+25	0	+40	0	+63	0	+100	0	+160	0	+250	0	+12.5	-12.5	+18	-7	140	160
																160	180
																180	200
+29	0	+46	0	+72	0	+115	0	+185	0	+290	0	+14.5	-14.5	+22	- 7	200	225
																225	250
+32	_	1.50	_	1.04	_	1400	_	1.010		1.000	_	140	40	+25	— 7	250	280
+32	0	+52	0	+81	0	+130	0	+210	0	+320	0	+16	-16	+25	-/	280	315
+36	0	+57		+89	0	1.140	0	1 000		1 000		140	40	+29	-7	315	355
+36	0	T-5/	0	T-89	١	+140	U	+230	0	+360	0	+18	-18	+ 29	-/	355	400

+250 0 +400

unit : μ m

0 +20 -20

+33

N	17	Р	6	Р	7	R	17	S	57	Nominal m	Diameter M
High	Low	High	Low	High	Low	High	Low	High	Low	Over	Incl.
- 4	-14	- 6	-12	– 6	- 16	- 10	- 20	- 14	- 24	_	3
- 4	-16	– 9	-17	– 8	— 20	- 11	- 23	— 15	- 27	3	6
- 4	-19	-12	-21	– 9	- 24	— 13	- 28	— 17	- 32	6	10
– 5	-23	-15	-26	-11	— 29	— 16	- 34	- 21	- 39	10	18
– 7	-28	-18	-31	-14	- 35	- 20	- 41	— 27	— 48	18	30
		0.1	0.7	47	40	0.5				30	40
– 8	-33	<u>-21</u>	-37	<u>-17</u>	– 42	— 25	- 50	- 34	– 59	40	50
						— 30	- 60	- 42	- 72	50	65
– 9	-39	-26	-45	-21	— 51	- 32	— 62	— 48	— 78	65	80
						— 38	- 73	- 58	— 93	80	100
-10	-45	-30	-52	-24	– 59	- 41	— 76	— 66	— 101	100	120
						- 48	- 88	— 77	-117	120	140
-12	-52	-36	-61	-28	— 68	- 50	- 90	— 85	-125	140	160
						- 53	- 93	— 93	-133	160	180
						— 60	-106	-105	-151	180	200
-14	-60	-41	-70	-33	— 79	— 63	-109	-113	-159	200	225
						— 67	-113	-123	-169	225	250
						— 74	-126	-138	-190	250	280
-14	-66	-47	-79	-36	- 88	— 78	-130	-150	-202	280	315
						— 87	-144	-169	-226	315	355
-16	-73	—51	-87	<u>-41</u>	— 98	- 93	-150	-187	-244	355	400
4-	00		0.5	45	400	-103	-166	-209	-272	400	450
-17	-80	-55	-95	-45	-108	-109	-172	-229	-292	450	500

+155 0

+63

+97

0

M

1N = 0.1019716 kgf 1kgf = 9.80665 N

N-lbf Conversion Table

- 11 151	00111	70101011 1	abio					1N = 0.22480	9 lbf 1lb	of = 4.44822 N
N		lbf		N		lbf		N		lbf
4.440		0.005		151.01	0.4	7.040		200.00	07	45.000
4.448	1	0.225		151.24	34	7.643		298.03	67	15.062
8.896	2	0.450		155.69	35	7.868		302.48	68	15.287
13.345	3	0.674		160.14	36	8.093		306.93	69	15.512
17.793	4	0.899		164.58	37	8.318		311.38	70	15.737
22.241	5	1.124		169.03	38	8.543		315.82	71	15.961
26.689	6	1.349		173.48	39	8.768		320.27	72	16.186
31.138	7	1.574		177.93	40	8.992		324.72	73	16.411
35.586	8	1.798		182.38	41	9.217		329.17	74	16.636
40.034	9	2.023		186.83	42	9.442		333.62	75	16.861
44.482	10	2.248		191.27	43	9.667		338.06	76	17.085
48.930	11	2.473		195.72	44	9.892		342.51	77	17.310
53.379	12	2.698		200.17	45	10.116		346.96	78	17.535
57.827	13	2.923		204.62	46	10.341		351.41	79	17.760
62.275	14	3.147		209.07	47	10.566		355.86	80	17.985
66.723	15	3.372		213.51	48	10.791		360.31	81	18.210
71.171	16	3.597		217.96	49	11.016		364.75	82	18.434
75.620	17	3.822		222.41	50	11.240		369.20	83	18.659
80.068	18	4.047		226.86	51	11.465		373.65	84	18.884
84.516	19	4.271		231.31	52	11.690		378.10	85	19.109
88.964	20	4.496		235.76	53	11.915		382.55	86	19.334
93.413	21	4.721		240.20	54	12.140		386.99	87	19.558
97.861	22	4.946		244.65	55	12.364		391.44	88	19.783
102.31	23	5.171		249.10	56	12.589		395.89	89	20.008
106.76	24	5.395		253.55	57	12.814		400.34	90	20.233
111.21	25	5.620		258.00	58	13.039		404.79	91	20.458
115.65	26	5.845		262.44	59	13.264		409.24	92	20.682
120.10	27	6.070		266.89	60	13.489		413.68	93	20.002
124.55	28	6.295		271.34	61	13.713		418.13	94	21.132
124.55	29	6.519		271.34	62	13.938		422.58	95	21.132
133.45	30	6.744		280.24	63	14.163		422.38	96	21.557
155.45	30	0.744		200.24	03	14.103		427.03	30	21.302
137.89	31	6.969		284.69	64	14.388		431.48	97	21.806
142.34	32	7.194		289.13	65	14.613		435.93	98	22.031
146.79	33	7.419		293.58	66	14.837		440.37	99	22.256
Have to use a Face	ovemble	to convert 00 N is	to lbf fin	d the number 20	in the ear	tor of the first cal	ımn Pu	referring to the lb	f a a lumana	on the violet it will

How to use: For example, to convert 20 N into lbf, find the number 20 in the center of the first column. By referring to the lbf column on the right, it will be found that 20 N equals 4.496 lbf.

To convert 20 lbf into N, refer to the N column on the left and it will be found that 20 lbf equals 88.964 N.

N-kgf Conversion Table

						111 = 0.1010710	, ng	91 - 0.00000 11
N		kgf	N		kgf	N		kgf
9.8066	1	0.1020	333.43	34	3.4670	657.05	67	6.8321
19.613	2	0.2039	343.23	35	3.5690	666.85	68	6.9341
29.420	3	0.3059	353.04	36	3.6710	676.66	69	7.0360
39.227	4	0.4079	362.85	37	3.7729	686.47	70	7.1380
49.033	5	0.5099	372.65	38	3.8749	696.27	71	7.2400
.0.000		0.0000	5.2.00		0.07.10	000.2.		
58.840	6	0.6118	382.46	39	3.9769	706.08	72	7.3420
68.647	7	0.7138	392.27	40	4.0789	715.89	73	7.4439
78.453	8	0.8158	402.07	41	4.1808	725.69	74	7.5459
88.260	9	0.9177	411.88	42	4.2828	735.50	75	7.6479
98.066	10	1.0197	421.69	43	4.3848	745.31	76	7.7498
107.87	11	1.1217	431.49	44	4.4868	755.11	77	7.8518
117.68	12	1.2237	441.30	45	4.5887	764.92	78	7.9538
127.49	13	1.3256	451.11	46	4.6907	774.73	79	8.0558
137.29	14	1.4276	460.91	47	4.7927	784.53	80	8.1577
147.10	15	1.5296	470.72	48	4.8946	794.34	81	8.2597
156.91	16	1.6315	480.53	49	4.9966	804.15	82	8.3617
166.71	17	1.7335	490.33	50	5.0986	813.95	83	8.4636
176.52	18	1.8355	500.14	51	5.2006	823.76	84	8.5656
186.33	19	1.9375	509.95	52	5.3025	833.57	85	8.6676
196.13	20	2.0394	519.75	53	5.4045	843.37	86	8.7696
205.94	21	2.1414	529.56	54	5.5065	853.18	87	8.8715
215.75	22	2.2434	539.37	55	5.6084	862.99	88	8.9735
225.55	23	2.3453	549.17	56	5.7104	872.79	89	9.0755
235.36	24	2.4473	558.98	57	5.8124	882.60	90	9.1774
245.17	25	2.5493	568.79	58	5.9144	892.41	91	9.2794
054.07	00	0.0540	F70 F0	F0	0.0100	000.01	00	0.0014
254.97	26	2.6513	578.59	59	6.0163	902.21	92	9.3814
264.78	27	2.7532	588.40	60	6.1183	912.02	93	9.4834
274.59	28	2.8552	598.21	61	6.2203	921.83	94	9.5853
284.39	29	2.9572	608.01	62	6.3222	931.63	95	9.6873

How to use: For example, to convert 20 N into kgf, find the number 20 in the center of the first column. By referring to the kgf column on the right, it will be found that 20 N equals 2.0394 kgf.

To convert 20 kgf into N, refer to the N column on the left and it will be found that 20 kgf equals 196.13 N.

63

64

65

66

6.4242

6.5262

6.6282

6.7301

941.44

951.25

961.05

970.86

96

97

98

99

9.7893

9.8912

9.9932

10.0952

617.82

627.63

637.43

647.24

M

M43 M44

294.20

304.01

313.81

323.62

30

31

32

33

3.0591

3.1611

3.2631

3.3651

• Temperature Conversion Table

Ten	Temperature Conversion Table						$C = \frac{5}{9} (F$	-32) F	$= 32 + \frac{9}{5}C$				
°C		°F	°C		°F		°C		°F		°C		°F
-73.3	-100	-148.0	-2.2	28	82.4		16.1	61	141.8		34.4	94	201.2
-62.2	- 80	-112.0	-1.7	29	84.2		16.7	62	143.6		35.0	95	203.0
-51.1	- 60	- 76.0	-1.1	30	86.0		17.2	63	145.4		35.6	96	204.8
-40.0	- 40	- 40.0	-0.6	31	87.8		17.8	64	147.2		36.1	97	206.6
-28.9	- 20	- 4.0	0	32	89.6		18.3	65	149.0		36.7	98	208.4
-17.8	0	32.0	0.6	33	91.4		18.9	66	150.8		37.2	99	210.2
-17.2	1	33.8	1.1	34	93.2		19.4	67	152.6		37.8	100	212
-16.7	2	35.6	1.7	35	95.0		20.0	68	154.4		43.3	110	230
-16.1	3	37.4	2.2	36	96.8		20.6	69	156.2		48.9	120	248
-15.6	4	39.2	2.8	37	98.6		21.1	70	158.0		54.4	130	266
-15.0	5	41.0	3.3	38	100.4		21.7	71	159.8		60.0	140	284
-14.4	6	42.8	3.9	39	102.2		22.2	72	161.6		65.6	150	302
-13.9	7	44.6	4.4	40	104.0		22.8	73	163.4		71.1	160	320
-13.3	8	46.4	5.0	41	105.8		23.3	74	165.2		76.7	170	338
-12.8	9	48.2	5.6	42	107.6		23.9	75	167.0		82.2	180	356
-12.2	10	50.0	6.1	43	109.4		24.4	76	168.8		87.8	190	374
-11.7	11	51.8	6.7	44	111.2		25.0	77	170.6		93.3	200	392
-11.1	12	53.6	7.2	45	113.0		25.6	78	172.4		121.1	250	482
-10.6	13	55.4	7.8	46	114.8		26.1	79	174.2		149	300	572
-10.0	14	57.2	8.3	47	116.6		26.7	80	176.0		177	350	662
- 9.4	15	59.0	8.9	48	118.4		27.2	81	177.8		204	400	752
- 8.9	16	60.8	9.4	49	120.2		27.8	82	179.6		232	450	842
- 8.3	17	62.6	10.0	50	122.0		28.3	83	181.4		260	500	932
- 7.8	18	64.4	10.6	51	123.8		28.9	84	183.2		288	550	1022
- 7.2	19	66.2	11.1	52	125.6		29.4	85	185.0		316	600	1112
- 6.7	20	68.0	11.7	53	127.4		30.0	86	186.8		343	650	1202
- 6.1	21	69.8	12.2	54	129.2		30.6	87	188.6		371	700	1292
- 5.6	22	71.6	12.8	55	131.0		31.1	88	190.4		399	750	1382
- 5.0	23	73.4	13.3	56	132.8		31.7	89	192.2		427	800	1472
- 4.4	24	75.2	13.9	57	134.6		32.2	90	194.0		454	850	1562
- 3.9	25	77.0	14.4	58	136.4		32.8	91	195.8		482	900	1652
- 3.3	26	78.8	15.0	59	138.2		33.3	92	197.6		510	950	1742
- 2.8	27	80.6	15.6	60	140.0		33.9	93	199.4		538	1000	1832
How to use i	For ove	mple, to convert	20°C into °E fi	nd tho n	umbor 20 in t	ho oo	ntor of the fir	ot o o li un	an Diventance	a the	°C asluman ar	ماد ماد	ha ia coll

How to use: For example, to convert 20°C into °F, find the number 20 in the center of the first column. By referring the °F column on the right, it will be found that 20°C equals 68.0°F.

To convert 20°F into °C, refer to the °C column on the left and it will be found that 20°F equals -6.7°C.

• Grease names and the characteristics (Reference)

Sort	Name	Supplier	Thickener of metallic soap	Con- sistency	Dropping point (°C)	Service range(1) (°C)	Remarks
	ALVANIA GREASE S1	SHELL	Li	323	182	-35~+120	General, Centralized greasing
Φ	ALVANIA GREASE S2	SHELL	Li	275	185	-25~+120	General, Centralized greasing
rpos	ALVANIA GREASE S3	SHELL	Li	242	185	-20~+135	General
al pu	DAPHNE EPONEX GREASE No.2	IDEMITSU	Li	276	195	-20~+120	General
General purpose	COSMO GREASE DYNAMAX No.2	соѕмо	Li	280	188	-20~+120	General
G	MULTINOC GREASE 2	NIPPON OIL	Li	278	212	-30~+125	General
	MOBILAX GREASE No.2	MOBIL	Li	280	196	-35~+120	General
Ф	ALVANIA GREASE RA	SHELL	Li	252	183	-40~+130	Low temperature
ratur	BEACON 325	ESSO	Li	280	193	(+160) -60~+120	Low temperature, Low torque
Low temperature	ISOFLEX LDS 18 SPECIAL A	KLÜBER	Li	280	≧185	-60~+130	Low temperature, High speed,Extreme pressure
ow te	ISOFLEX SUPER LDS 18	KLÜBER	Li	280	≧185	−60~+130	Low temperature, High speed,Low noise
Ľ	LT GREASE No.2	JAPAN ENERGY	Li	275	181	−50∼+150	Low temperature
nge	TEMPREX N3	ESSO	Li Complex	235	≧300	(+200) -20~+160	Wide temperature range, High temperature
ure ra	AEROSHELL GREASE 7	SHELL	Microgel	288	≧260	−73∼+149	Wide temperature range, Low temperature
temperature range	MULTEMP PS No.2	KYODO YUSHI	Li	275	190	−50∼+130	Wide temperature range, For low temperature & low noise
e tem	MULTEMP SRL	KYODO YUSHI	Li	242	192	−50∼+150	Wide temperature range, For low temperature & low noise
Wide 1	MULTINOC WIDE No.2	NIPPON OIL	Li+special Na	247	203	-40~+135	Wide temperature range
e e	ALVANIA EP-2	SHELL	Li	276	187	-20~+110	Extreme pressure, Centralized greasing
Extreme pressure	MOLYKOTE BR2-PLUS	DOW CORNING	Li	265	185	-30~+150	With MoS ₂ , Extreme pressure
<u>ي</u> 2	MOLUB-ALLOY #777-2	CASTROL	Li	280	182	0~+135	With MoS ₂ , Extreme pressure
	G 40M	SHIN-ETSU	Li	260	≧200	-30~+200	Wide temperatur range, Superior at high temperature with stable anti-oxidation and water proof, Chemically inert
	G 40H	SHIN-ETSU	Li	220	≧200	-30~+200	Wide temperatur range, Superior at high temperature with stable anti-oxidation and water proof, Chemically inert
	KRYTOX 240AD	DU PONT	Fluorinated	275	None	-30~+288	Stabl at high temperature, Chemically inert, Anti-solvent
Others	BARRIERTA L55/2	KLÜBER	Fluorinated	No.2	None	(+250) -35~+220	General, Low evaporation at high temperature, Chemically inert
Ö	BARRIERTA IMI/V	KLÜBER	Fluorinated	No.2	None	−50~+220	For high vacuum
	DEMNUM GREASE L-200	DAIKIN	Fluorinated	280	None	-60~+300	Stabl at high temperature, Anti- solvent, Chemically inert
	DOLIUM GREASE R	SHELL	Polyurea	281	249	-30~+150	Heat resistant, Superior at high temperature with stable anti-oxidation
	STAMINA GREASE RL2	SHELL	Polyurea	268	271	-20~+180	Heat resistant, Superior at high temperature with stable anti-oxidation

Note(1): Figures in parentheses show the maximum allow operation.

Remark When using these products, see individual manufacturer's catalogs.

M

M45 M46



"Linear Motion Rolling Guide Series" being a leader of growth and "Mechatronics Series" being a pioneer of the next generation

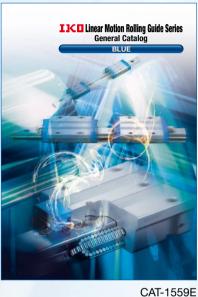
IKO Nippon Thompson Co., Ltd. has been developing various products related to linear motion rolling guides. With their high quality and excellent functional characteristics recognized, **IKO** is supplying its products to a wide range of different applications.

The following **IKO** linear motion rolling guide series and mechatronics series show a remarkable increase in sales in advanced industries including semiconductor manufacturing equipment requiring precise positioning, and are also expected to grow further in the high technology industry.

For details, refer to the "General Catalog for Linear Motion Rolling Guide Series" and "Catalog of Mechatronics Series".

Linear Motion Rolling Guide Series,

Configuration of General Catalog


IK Linear Motion Rolling Guide Series General Catalog Consists of

the two volumes.



[Models]

Rail Guide Type **Endless Linear Motion Type**

[Models]

- Rail Guide Type **Limited Linear Motion Type**
- Shaft Guide Type **Endless Linear Motion Type Limited Linear Motion Type** Limited Linear Motion Type + Rolling Motion Type
- Flat Guide Type **Endless Linear Motion Type Limited Linear Motion Type**

CAT-1555.3E

MLV

MV

C-Lube Linear Way ML C-Lube Linear Way MV C-Lube Linear Way MV C-Lube Linear Way MH C-Lube Linear Way MH Linear Way E

ME · LWE

Linear Way H

Rail Guide Type Shaft Guide Type Linear Slide Unit Linear Ball Spline

Shaft Guide Type Linear Bushing

LMG · LM · LMS

Linear Way F

Linear Way L

ML · LWL

C-Lube Linear Way MUL Linear Way U

C-Lube Linear Roller Way Super MX

Linear Roller Way Super X Linear Roller Way X Linear Way Module

Shaft Guide Type Stroke Rotary Bushing

Flat Guide Type Roller Way & Flat Roller Cage

Cam follower Roller follower

M49 M50

Features of C-Lube Linear Way and C-Lube Linear Roller Way

Original and world's first structure with [C-Lube]

C-Lube Linear Way C-Lube Linear Roller Way The aquamarine end plate is the symbol of maintenance free.

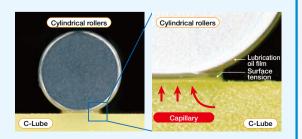
C-Lube integrated

Lubrication oil is carried through circulation of rolling elements

The lubrication oil is supplied directly to the rolling elements, not to the track rail

When rolling elements make contact with the capillary lubricating element integrated with the circulation path of slide unit rolling elements, the lubrication oil is supplied to surfaces of rolling elements and carried to the loading area through circulation of rolling elements.

This results in adequate lubrication oil being properly maintained in the loading area and lubrication performance will last for a long time.



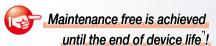
Lubrication oil is directly supplied to surfaces of the rolling elements

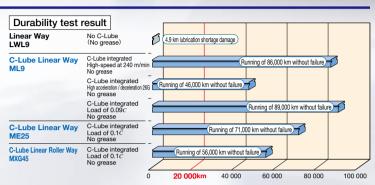
The surface of capillary lubricating element is always covered with the lubrication oil.

Lubrication oil is continuously supplied to the surface of rolling elements by surface tension in the contact of capillary lubricating element surface and rolling elements.

On the surface of capillary lubricating element with which the rolling elements make contact, new lubrication oil is always supplied from the other sections.

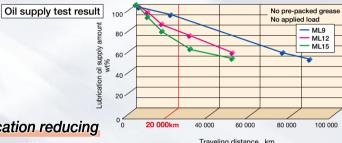
Long term maintenance free is realized with


oil impregnated with C-Lube only !!


Maintenance free

This endures running over 20,000 km without oil feeding with lubrication oil in the C-Lube

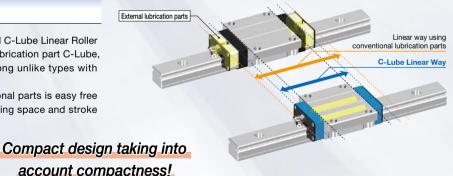
Furthermore, grease is pre-packed in the slide unit so long term maintenance free can be realized.


*1. Typical device life is assumed. Re-greasing may be necessary depending on use condition

Eco-friendly

As lubrication oil in C-Lube is supplied by the amount necessary to maintain lubrication performance of the rolling guide, the consumption of lubrication oil is reduced and lubrication performance is maintained even when it run for a long period.

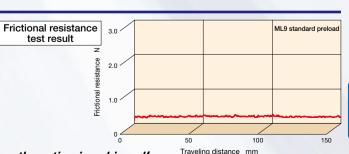
Eco-friendly specification reducing usage of lubrication oil!


Traveling distance km

Traveling distance km

Compact

As C-Lube Linear Way and C-Lube Linear Roller Way are integrated with lubrication part C-Lube, their slide units are not long unlike types with external lubrication parts.


Replacement of conventional parts is easy free from constraints of mounting space and stroke

Smooth

C-Lube Linear Way and C-Lube Linear Roller Way do not generate slide resistance unlike lubrication parts external to the slide unit that make contact with the track rail.

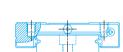
Driving force follow-up property is superior and energy is saved by improvement of accuracy and reduction of friction loss.

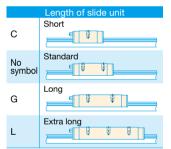
Light and smooth motion is achieved!

A variety of models and size variations

Ball Type Miniature Series

C-Lube Linear Way ML C-Lube Linear Way MLV Linear Way L


Thanks to the structure with two rows of balls to contact with the way at four points, stable accuracy and rigidity can be achieved even in applications where load has variable direction and size or complex load is applied, despite its very small body.


Micro Linear Way L

As the lineup of track rail width from 1 mm to 6 mm is available, you can select an optimal product for the specifications of your machine and device. For LWL1, world's smallest size is realized: track rail width of 1 mm, slide unit width of 4 mm and assembly height of

Standard type LWL

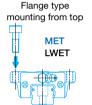
Wide type LWLF

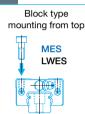
Size				
Standard type	1, 2, 3, 5, 7, 9, 12, 15, 20, 25			
Wide type	4, 6, 10, 14, 18, 24, 30, 42			

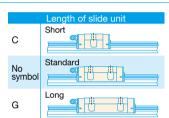
Ball Type Low Profile/Light Weight Series C-Lube Linear Way MV

Despite its extra low profile and extra light weight, this linear motion rolling guide has the maximum load rating among the ball types while achieving high load capacity.

Length o	of slide unit
Standard	
	4 -


Size	
20, 25, 30	


Ball Type Compact Series


C-Lube Linear Way ME Linear Way E Low Decibel Linear Way E

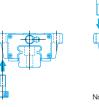
Versatile linear motion rolling guide that has achieved utility pursuing compactness in every aspect. Low decibel types with resin separator to prevent direct contact between balls are also available.

Flange type mounting from bottom **LWE**

15, 20, 25, 30, 35, 45

Ball Type High Rigidity Series

C-Lube Linear Way MH Linear Way H

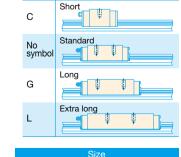

Compact block type

LWHS

mounting from top mounting from top

High rigidity linear motion rolling guides designed to evenly support high load capacity by incorporating large-diameter balls. Stable accuracy and rigidity can be achieved even in applications where load with variable direction and size and complex load are applied.

mounting from bottom LWH



Flange type mounting from top(1) LWHT

LWHD

Note (1) Some models may be mounted from bottom.

8, 10, 12, 15, 20, 25, 30, 35, 45, 55, 65

A variety of models and size variations

Ball Type Wide Type Series

Linear Way F

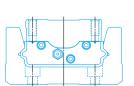
As wide track rail is used and the distance between the load points is long, this is a linear motion rolling guide suitable to single-row use due to the structure resistant to across-the-width moment load. It is also resistant to complex load.

Flange type mounting from top / bottom LWFH Flange type mounting from top / bottom LWFF

Block type mounting from top LWFS

1	
\otimes	

No symbol	Standard			
01				
	Size			
LWFH	40,60,90			
LWFF	33,37,42,69			
LWFS	33,37,42			



Ball Type U-Shaped Track Rail Series

C-Lube Linear Way MUL Linear Way U

Linear motion rolling guide of the structure with way inside the track rail of U-shaped section and slide unit therein. With the U-shaped track rail, rigidity against the track rail moment load and torsion is significantly improved.

Small type MUL LWUL

Standard type

LWU

Length of slide unit					
No	Standard				
symbol					
Size					
	Size				
MUL	25, 30				
MUL LWUL					

Roller Type

C-Lube Linear Roller Way Super MX Linear Roller Way Super X

Linear motion rolling guide that has achieved the highest level of performance in all characteristics utilizing the roller's superior characteristic, such as rigidity, load capacity, running accuracy and vibration damping property. With extra long unit with the maximum slide unit length, load capacity and rigidity are improved and running performance with super high accuracy is realized.

Flange type mounting from top / bottom MX(¹) LRX(¹)

Block type

Compact block type mounting from top

MXS

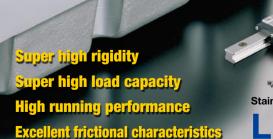
LRXS

Low profile block type mounting from top

Low profile flange type

mounting from top

MXN


Note (1) Size 20 series allows only for mounting from top and model mounting from bottom is MXH and LRXH.

	Leng	th of slide unit		
С	No symbol	G	L	
Short	Standard	Long	Extra long	

Size 10, 12, 15, 20, 25, 30, 35, 45, 55, 65, 85, 100

Four-row roller guide of world's smallest size

Track rail width of 10 mm

Stainless steel made

LRXD10···SL

Μ

Mechatronics Series

TU Series

IKO Precision Positioning Table TU is a compact and slim positioning table with good load balance and high resistance to complex loads, in which the side table is arranged inside the U-shape track rail. Six types with a track rail width of $25 \sim 130$ mm are available. Each slide table length can be selected as required. Different table specifications includ-

ing ball screw, motor, sensor, etc. can be selected. This allows each user to configure the most suitable positioning table for each application.

Abundant options meet diversified market needs such as a motor loopback specification, table with bellows, table with bridge cover, and table finished by black chrome surface treatment.

Linear Motor Table LT

The IKO Linear Motor Table LT is a compact and lightweight directdrive positioning table with a very small sectional height in which an AC servo-motor and an optional linear scale are integrated in a moving table and a bed made of aluminum alloy.

The IKO Linear Motor Table LT employs a C-shaped magnet yoke, and a coil board is sandwiched between two stator magnets. It pro-

vides a high thrust of 450N though its height is only 40 mm. The moving table is as light as 1.5 kg but provides high thrust. It permits high acceleration and deceleration exceeding 10 G. (In the case of LT150 CG.) Also, High Thrust Series LT... H outputs 900N thrust.

Long-stroke Series

- Standard type which has been practically used in many fields.
- Stable characteristics in parallel use together with Linear Way

TSL...M

High-rigidity Series

- High reliability and high accuracy with component parts strictly selected
- High rigidity and large mounting weight

TSLH---M · CTLH---M

Super Precision Series

- XY configuration available for advanced inspection stage
- High positioning accuracy realized with IXD Roller technology and full closed loop controlling

TX···M CTX···M

Compact Series

- Compact structure with a small sectional height
- High reliability and high accuracy achieved by using Crossed Roller Way

TS · CT

High-speed Long Stroke Series

- High-speed type using a timing belt drive
- Stable and high traveling performance in parallel use together with Linear Way

TSLB

Precision Positioning Table

- Light weight precision positioning table made of high-strength aluminum alloy.
- Built-in C-Lube for long-term maintenancefree service.

TE···B

Micro Precision Positioning Table

- Very compact positioning table that is 20mm high(sectional) and 17mm wide driven by a ground ball screw.
- -/-0.5micron repeatability is achieved with 60 mm stroke length.

Nano Linear

- Direct drive type with high speed and high response
- Maximum thrust of 25 N achieved with a sectional height of 14 mm

NT---V

Alignment Stage Direct Drive

- lacktriangle Ultra compact XY θ stage contributing to space saving
- High resolution and response realized with optical scale

SA---DE

Using advanced servo technology, this product achieves high static stability and high-speed stability.

Μ

IK Introduction of Technical Service Site

"IKO Technical Service Site" can be accessed from our home page IKO. The site also distributes various tools, etc., to select linear ways/linear roller ways, and please utilize the site for the assistance to select products. Additionally the site also provides CAD data and product catalog of needle series, linear motion rolling guide series and mechatronics series for you to download. Please consider to use for enhancing your design efficiency.

http://www.ikont.co.jp/eg/

1. Technical calculations

In the section of linear way/linear roller way load and life calculation, you can have the calculated load and the rating life by entering the use conditions.

Also you can derive the motor torque required for operation and the effective propulsion force during operation in the sections of motor torque calculation and calculation of effective propulsion force of linear motor tables respectively, and output the calculation results in PDF format, as well as save the histories.

2. Selection of Identification Number

By selecting such specification as model code, dimensions, part code, material code, preload symbol, classification symbol, interchangeable code and supplemental code of linear ways/linear roller ways, you can easily specify the identification number used for ordering.

Also you can browse the CAD data of the selected products, calculate the load, and output the selection results in PDF format, as well as save the histories.

Layer and condition of Linear Way Layer and condition of Linear Way Layer and condition of Linear Way Layer and Condition of Linear Way Layer and Condition of Linear Way Layer and Condition of Linear Way Layer and Condition of Linear Way Layer and Condition of Linear Way Layer and Condition of Linear Way Condition of Linear Way Layer and Condition Way Condition of Linear Way Condit

3. Downloading CAD data

2-dimensional CAD data (DXF file)

There are two types of figures, brief figure and detailed figure. The brief figure shows only the external view lines, and the detailed figure shows the detailed lines. The drawing consists of three drawings: front view, side view and plain view. The scale shows only the original size (1:1), and it does not show dimension lines.

3-dimensional CAD data

It is linked to the mechanical parts CAD library "PART community". Entering the rail dimension and option contents to the detail, you can view the 2D/3D CAD data suitable for the specification for free of charge.

4. Downloading Catalog and Operation Manual

You can download product catalogs of needle series, linear motion rolling guide series and mechatronics series, operation manuals of precision positioning tables and various electrical components in PDF format, as well as support software for precision positioning tables. If you would like a copy of our catalog, please visit the **IKD** official website and apply for the catalog, or contact our regional office or sales office nearby.

Index of Model Codes

IKO

Index of Model Codes

Α		
AR	L21	Cir-clips for Needle Roller Bearings
AS	F7	Thrust Bearings
AZ	F11	Thrust Bearings
AZK	F11	Thrust Bearings

В		
BA···Z	B27	Shell Type Needle Roller Bearings
BAM	B27	Shell Type Needle Roller Bearings
BAMW	B45	Shell Type Needle Roller Bearings
BAW···Z	B45	Shell Type Needle Roller Bearings
BHA···Z	B27	Shell Type Needle Roller Bearings
BHAM	B27	Shell Type Needle Roller Bearings
BR	D47	Machined Type Needle Roller Bearings
BR···UU	D75	Machined Type Needle Roller Bearings
BRI	D51	Machined Type Needle Roller Bearings
BRI…UU	D79	Machined Type Needle Roller Bearings

С		
CF···B	I21	Cam Followers
CF···BM	I21	Cam Followers
CF···BR	I21	Cam Followers
CF···BRM	I21	Cam Followers
CF···BUU	I21	Cam Followers
CF···BUUM	I21	Cam Followers
CF···BUUR	I21	Cam Followers
CF···BUURM	I21	Cam Followers
CF···FB	I25	Cam Followers
CF···FBR	I25	Cam Followers
CF···FBUU	I25	Cam Followers
CF···FBUUR	I25	Cam Followers
CF···FWBR	I35	Cam Followers

CF···FWBUUR	I35	Cam Followers
CF···G	I41	Cam Followers
CF···VB	I23	Cam Followers
CF···VBM	I23	Cam Followers
CF···VBR	I23	Cam Followers
CF···VBRM	I23	Cam Followers
CF···VBUU	I23	Cam Followers
CF···VBUUM	I23	Cam Followers
CF···VBUUR	I23	Cam Followers
CF···VBUURM	I23	Cam Followers
CF···WBR	I33	Cam Followers
CF···WBUUR	I33	Cam Followers
CF···WBUUR/SG	I43	C-Lube Cam Followers
CF-FU1	I37	Cam Followers
CF-RU1	I37	Cam Followers
CF-SFU···B	I39	Cam Followers
CFE···B	I29	Cam Followers
CFE···BR	I29	Cam Followers
CFE···BUU	I29	Cam Followers
CFE···BUUR	I29	Cam Followers
CFE···VB	I31	Cam Followers
CFE···VBR	I31	Cam Followers
CFE···VBUU	I31	Cam Followers
CFE···VBUUR	I31	Cam Followers
CFES···B	I27	Cam Followers
CFES···BR	I27	Cam Followers
CFES···BUU	I27	Cam Followers
CFES···BUUR	I27	Cam Followers
CFS	I45	Miniature Type Cam Followers
CFS···F	I47	Miniature Type Cam Followers
CFS···FW	I51	Miniature Type Cam Followers
CFS···FV	I47	Miniature Type Cam Followers
CFS···V	I45	Miniature Type Cam Followers
CFS···W	I49	Miniature Type Cam Followers

CFS···WV	I49	Miniature Type Cam Followers
CL	I20	C-Lube Unit for Cam Followers
CR	157	Cam Followers
CR···B	I55	Cam Followers
CR···BR	I55	Cam Followers
CR···BUU	I55	Cam Followers
CR···BUUR	155	Cam Followers
CR···R	I57	Cam Followers
CR···UU	I57	Cam Followers
CR···UUR	I57	Cam Followers
CR···V	I61	Cam Followers
CR···VB	159	Cam Followers
CR···VBR	I59	Cam Followers
CR···VBUU	I59	Cam Followers
CR···VBUUR	I59	Cam Followers
CR···VR	I61	Cam Followers
CR···VUU	I61	Cam Followers
CR···VUUR	I61	Cam Followers
CRB	J17	Crossed Roller Bearings
CRBUU	J17	Crossed Roller Bearings
CRBC	J17	Crossed Roller Bearings
CRBC···UU	J17	Crossed Roller Bearings
CRBF	J25	Crossed Roller Bearings
CRBH···A	J15	Crossed Roller Bearings
CRBH···AUU	J15	Crossed Roller Bearings
CRBS	J23	Crossed Roller Bearings
CRBS···AUU	J23	Crossed Roller Bearings
CRBSV	J23	Crossed Roller Bearings
CRBSVUU	J23	Crossed Roller Bearings
CRBT···A	J21	Crossed Roller Bearings
CRH···V	I69	Cam Followers
CRH···VR	I67	Cam Followers
CRH···VB	I65	Cam Followers
CRH···VBR	I63	Cam Followers

CRHVBUU	I65	Cam Followers
CRH···VBUUR	I63	Cam Followers
CRH···VUU	I69	Cam Followers
CRH···VUUR	I67	Cam Followers
CRY…V	I91	Roller Followers
CRY…VR	I89	Roller Followers
CRY…VUUR	I89	Roller Followers
CRYVUU	I91	Roller Followers
D		
DS	L4	Seals for Needle Roller Bearings
G		
GBR	D55	Machined Type Needle Roller Bearing
GBR···UU	D83	Machined Type Needle Roller Bearing
GBRI	D59	Machined Type Needle Roller Bearing
GBRI…UU	D87	Machined Type Needle Roller Bearing
GE…E	K15	Cubariaal Duahinga
-	KID	Spherical Bushings
GE···EC	K27	Spherical Bushings Spherical Bushings
GE···EC – 2RS		•
	K27	Spherical Bushings
GE···EC-2RS	K27	Spherical Bushings Spherical Bushings
GE···EC-2RS GE···ES	K27 K27 K15	Spherical Bushings Spherical Bushings Spherical Bushings
GE···ES – 2RS GE···ES – 2RS	K27 K27 K15 K15	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings
GE···ES – 2RS GE···ES – 2RS GE···G	K27 K27 K15 K15 K19	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings
GE···ES – 2RS GE···ES – 2RS GE···G GE···GS	K27 K27 K15 K15 K19	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings
GE···EC-2RS GE···ES GE···ES-2RS GE···G GE···GS GE···GS	K27 K27 K15 K15 K19 K19	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings

H10 Inner Rings

IRB

M

IKO

Index of Model Codes

IRT	H5	Inner Rings	NAST	I80	Roller Followers
K			NAST···R	I80	Roller Followers
KT	C5	Needle Roller Cages for General Usage	NAST…ZZ	I81	Roller Followers
KT···EG	C21	Needle Roller Cages for Engine Connecting Rods	NAST…ZZR	I81	Roller Followers
KTV···EG	C22	Needle Roller Cages for Engine Connecting Rods	NAST…ZZUU	I81	Roller Followers
KTW	C9	Needle Roller Cages for General Usage	NAST…ZZUUR	I81	Roller Followers
			NATA 59	G9	Combined Type Needle Roller Bear
			NATB 59	G9	Combined Type Needle Roller Bear
L			NAU 49	E7	Roller Bearings
LHS	K51	L-Balls	NAU 49···UU	E13	Roller Bearings
LHSA	K49	L-Balls	NAX	G5	Combined Type Needle Roller Bear
LRB	H25	Inner Rings	NAX····Z	G5	Combined Type Needle Roller Bear
LRBZ	H25	Inner Rings	NAXI	G7	Combined Type Needle Roller Bear
LRBZ···B	H25	Inner Rings	NAXI···Z	G7	Combined Type Needle Roller Bear
LRT	H13	Inner Rings	NBX	G5	Combined Type Needle Roller Bear
LRTZ	H13	Inner Rings	NBX···Z	G5	Combined Type Needle Roller Bear
			NBXI	G7	Combined Type Needle Roller Bear
			NBXI···Z	G7	Combined Type Needle Roller Bear
N			NTB	F7	Thrust Needle bearings
NA 48	D41	Machined Type Needle Roller Bearings	NUCF···BR	I53	Cam Followers
NA 49	D29	Machined Type Needle Roller Bearings	NURT	I87	Roller Followers
NA 49···UU	D69	Machined Type Needle Roller Bearings	NURT…R	I87	Roller Followers
NA 69	D29	Machined Type Needle Roller Bearings			
NA 69…UU	D69	Machined Type Needle Roller Bearings			
NAF	D105	Needle Roller Bearings with Separable Cage	0		
NAFW	D105	Needle Roller Bearings with Separable Cage	OS	L3	Seals for Needle Roller Bearings
NAG 49	E7	Roller Bearings			
NAG 49···UU	E13	Roller Bearings			
NART···R	I83	Roller Followers	P		
NART…UUR	I83	Roller Followers	РВ	K37	PILLOBALLs
NART···VR	I83	Roller Followers	PHS	K38	PILLOBALLs
NART…VUUR	I83	Roller Followers	PHS···EC	K43	PILLOBALLs
NAS 50···UUN	R E19	Roller Bearings	PHSA	K42	PILLOBALLs
NAS 50···ZZNI	R E19	Roller Bearings	PHSB	K40	PILLOBALLs

POS	K39	PILLOBALLs
POSB	K41	PILLOBALLs
POS···EC	K44	PILLOBALLs
PRC	K53	PILLOBALLs
R		
RNA 48	D23	Machined Type Needle Roller Bearings
RNA 49	D7	Machined Type Needle Roller Bearings
RNA 49···UU	D63	Machined Type Needle Roller Bearings
RNA 69	D9	Machined Type Needle Roller Bearings
RNA 69···UU	D63	Machined Type Needle Roller Bearings
RNAF	D99	Needle Roller Bearings with Separable Cage
RNAFW	D99	Needle Roller Bearings with Separable Cage
RNAST	I79	Roller Followers
	-, ,	Hollet Lollower2
RNAST···R	I79	Roller Followers
RNAST···R		
RNAST···R		
RNAST···R		
S	I79	Roller Followers
SB SB···A	I79 K11	Roller Followers Spherical Bushings
S SB	I79 K11 K11	Roller Followers Spherical Bushings Spherical Bushings
SB SB····A SBB	K11 K11 K23	Roller Followers Spherical Bushings Spherical Bushings Spherical Bushings
S SB SB···A SBB SBB···-2RS	K11 K11 K23 K23	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings
S SB SB···A SBB SBB···-2RS SNA	K11 K11 K23 K23 K58	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings
S SB SB···A SBB SBB···-2RS SNA SNM	K11 K11 K23 K23 K58 K59	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Super Flexible Nozzle Super Flexible Nozzle
S SB SB···A SBB SBB···-2RS SNA SNM	K11 K11 K23 K23 K58 K59	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Super Flexible Nozzle Super Flexible Nozzle
S SB SB···A SBB SBB···-2RS SNA SNM	K11 K11 K23 K23 K58 K59	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Super Flexible Nozzle Super Flexible Nozzle
S SB SB···A SBB SBB···-2RS SNA SNM	K11 K11 K23 K23 K58 K59	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Super Flexible Nozzle Super Flexible Nozzle
S SB SB···A SBB SBB···-2RS SNA SNM SNPT	K11 K11 K23 K23 K58 K59 K59	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Super Flexible Nozzle Super Flexible Nozzle Super Flexible Nozzle
S SB SB···A SBB SBB···-2RS SNA SNM SNPT T TA···Z	K11 K11 K23 K23 K58 K59 K59	Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Spherical Bushings Super Flexible Nozzle Super Flexible Nozzle Super Flexible Nozzle Super Flexible Nozzle

B7 Shell Type Needle Roller Bearings

TAMW	B21	Shell Type Needle Roller Bearings
TAW···Z	B21	Shell Type Needle Roller Bearings
TLA···UU	B49	Shell Type Needle Roller Bearings
TLA···Z	В7	Shell Type Needle Roller Bearings
TLAM	В7	Shell Type Needle Roller Bearings
TLAMW	B17	Shell Type Needle Roller Bearings
TLAW···Z	B17	Shell Type Needle Roller Bearings
TR	D9	Machined Type Needle Roller Bearings
TRI	D31	Machined Type Needle Roller Bearings
TRU	E7	Roller Bearings
TRU…UU	E13	Roller Bearings
W		
WR	L19	Cir-clips for Needle Roller Bearings
WS	F7	Thrust Bearings
Υ		
Y YB	B27	Shell Type Needle Roller Bearings
	B27 B29	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB		
YB YBH	B29	Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings
YB YBH YT	B29 B7	Shell Type Needle Roller Bearings Shell Type Needle Roller Bearings

Index of Model Codes

M

M63

TAM

IK Gentle to The Earth

Nippon Thompson Co., Ltd. is working to develop global environment-friendly products. It is committed to developing products that make its customers' machinery and equipment more reliable, thereby contributing to preserving the global environment.

This development stance manifests well in the keyword "Oil Minimum."

Our pursuit of Oil Minimum has led to the creation of

IKD's proprietary family of lubricating parts as "C-Lube."

IKO Products Underpin Sustain Technology Leaps

Nippon Thompson Co., Ltd. was the first Japanese manufacturer to develop needle bearings on its own and has since expanded into the arena of linear motion rolling guides (Linear Motion Series and Mechatro Series) on the support of its advanced expertise. The company now offers a vast assortment of ingenious products, including the world's first C-Lube maintenance-free series, to address increasingly diversified customer needs and thus sustain technology leaps.

C-Lube Maintenance-Free Series Products Evolving from the "Oil Minimum" Concept

We have developed lubricating parts impregnated with a large amount of lubricant as C-Lube Series to save the customer's oiling management workload and built them into bearings and linear motion rolling guides.

The C-Lube Series not only keeps products maintenance-free for long by giving them an optimal and minimal amount of a lubricant for an extended period of time but also contributes greatly to preserving the global environment.

• Although all data in this catalog has been carefully compiled to make the information as complete as possible, NIPPON THOMPSON CO., LTD. shall not be liable for any damage whatsoever, direct or indirect, based on on any of the information contained in this catalog.
NIPPON THOMPSON CO., LTD. makes no warranty, either express or implied, including the implied warranty of merchantability or fitness for a particular purpose.

NIPPON THOMPSON CO., LTD.

CAT-5508.3 ©All rights reserved AKA
Printed in China 2014. 08

New Jersey, U.S.A

Illinois, U.S.A

California, U.S.A

Silicon Valley, U.S.A

Georgia, U.S.A

Texas, U.S.A

The Netherlands

Düsseldorf, Germany

United Kingdom

Spain

France

NIPPON THOMPSON CO., LTD. (JAPAN)

: 19-19 Takanawa 2-chome Minato-ku

Tokvo 108-8586, Japan Phone : +81 (0)3-3448-5850 : +81 (0)3-3447-7637 Fax : ntt@ikonet.co.jp E-mail : http://www.ikont.co.jp/eq

Plant : Gifu. Kamakura

IKO THOMPSON ASIA CO., LTD. (THAILAND)

1-7 Zuellig House, 3rd Floor Silom Road, Silom, Bangrak Bangkok 10500, Thailand

Phone : +66 (0)2-637-5115 : +66 (0)2-637-5116 FAX E-mail : ita@ikonet.co.jp

IKO-THOMPSON (SHANGHAI) LTD. (CHINA)

Shanghai Sales Head Office

1608-10 MetroPlaza No.555 LouShanGuan Road

ChangNing District Shanghai People's Republic of China 200051 Phone : +86 (0)21-3250-5525 : +86 (0)21-3250-5526 E-mail : ntc@ikonet.co.ip

Beijing Branch

Room 609 Scitech Tower

No.22 Jianguomenwai Avenue, Chaoyang District, Beijing

People's Republic of China 100004 : +86 (0)10-6515-7681 Fax : +86 (0)10-6515-7681*106 F-mail : ntc@ikonet.co.jp

Guangzhou Branch

Room 834. Garden Tower, Garden Hotel

368 Huanshi East Road, Yuexiu District, Guangzhou, Guangdong

People's Republic of China 510064 Phone : +86 (0)20-8384-0797 Fax : +86 (0)20-8381-2863 E-mail : ntc@ikonet.co.ip

Wuhan Branch

Room 2300, Truroll Plaza No.72 Wusheng Road,

Qiao kou District, Wuhan, Hubei People's Republic of China 430033 Phone : +86 (0)27-8556-1610 : +86 (0)27-8556-1630 Fax E-mail : ntc@ikonet.co.ip

Xi'an Office

Room 1613, Building B, Jingiao International Plaza No.50 Keji Road, Gaoxin District, Xi'an, Shanxi

People's Republic of China 710075 Phone : +86 (0)29-8882-3225 : +86 (0)29-8882-3215 : ntc@ikonet.co.jp F-mail

Shenzhen Office

Room 532, Oriental Plaza,

1072 Jianshe Road, Luohu District, Shenzhen, Guangdong

People's Republic of China 518001 : +86 (0)20-8384-0797 Phone Fax : +86 (0)20-8381-2863 F-mail : ntc@ikonet.co.jp

Chengdu Office

Room 01-A. 12F of Tower 1. Central Plaza

8 Shuncheng Avenue, Jinjiang District ,Chengdu, Sichuan

People's Republic of China 610016 Phone : +86 (0)28-6250-5159 Fax : +86 (0)28-6250-5259 E-mail : ntc@ikonet.co.ip

Ningbo Office

Room 3406, Zhongnongxin Building, No.181 Zhongshan East Road, Haishu Ward, Ningbo, Zhejiang

People's Republic of China 315000 Phone : +86 (0)574-8718-9535 : +86 (0)574-8718-9533 Fax E-mail : ntc@ikonet.co.jp

Qingdao Office

2107 Block A, World Trade Center Building, No.230 Changjiang Middle Road, Development Zone Qingdao

People's Republic of China 266555 Phone : +86 (0)532-8670-2246 : +86 (0)532-8670-2242 E-mail : ntc@ikonet.co.jp

Shenyang Office

2-1203 Tower I.City Plaza Shenyang, No.206 Nanjing North Street Heping District, Shenyang

People's Republic of China 110001 : +86 (0)24-2334-2662 Phone FAX : +86 (0)24-2334-2442 E-mail : ntc@ikonet.co.jp

IKO INTERNATIONAL, INC. (U.S.A.)

East Coast Operation (Sales Head Office)

91 Walsh Drive Parsippany, NJ 07054

U.S.A. : +1 973-402-0254 Phone Toll Free : 1-800-922-0337 : +1 973-402-0441 Fax : eco@ikonet.co.jp F-mail

Midwest Operation

500 East Thorndale Avenue, Suite K

Wood Dale, IL 60191 USA

: +1 630-766-6464 Phone : 1-800-323-6694 Toll Free Fax : +1 630-766-6869 E-mail : mwo@ikonet.co.ip

West Coast Operation

9830 Norwalk Boulevard, Suite 198

Santa Fe Springs, CA 90670 U.S.A.

Phone : +1 310-609-3988 Toll Free 1-800-252-3665 · +1 310-609-3916 Fax E-mail : wco@ikonet.co.jp

Silicon Valley Sales Office 1500 Wyatt Drive, Suite 10 Santa Clara, CA 95054

U.S.A.

Phone : +1 408-492-0240 Toll Free 1-800-252-3665 : +1 408-492-0245 Fax E-mail : wco@ikonet.co.jp

Southeast Operation

2150 Boggs Road, Suite 100 Duluth, GA 30096

U.S.A.

: +1 770-418-1904 Phone Toll Free : 1-800-874-6445 : +1 770-418-9403 Fax : seo@ikonet.co.jp F-mail

Southwest Operation

8105 N. Beltline Road, Suite 130 Irving, TX 75063

U.S.A.

: +1 972-929-1515 Phone Toll Free : 1-800-295-7886 Fax : +1 972-915-0060 E-mail : swo@ikonet.co.ip

NIPPON THOMPSON EUROPE B.V. (EUROPE)

The Netherlands Sales Head Office

Sheffieldstraat 35-39 3047 AN Rotterdam The Netherlands

: +31 (0)10-462 68 68 Phone : +31 (0)10-462 60 99 E-mail nte@ikonet.co.ip

Germany Branch

Mündelheimer Weg 56 40472 Düsseldorf

Germany

Phone +49 (0)211-41 40 61 : +49 (0)211-42 76 93 Fax F-mail : ntd@ikonet.co.jp

Regensburg Sales Office Im Gewerbepark D 30

93059 Regensburg

Germany

: +49 (0)941-20 60 70 Phone : +49 (0)941-20 60 719 Fax : ntdr@iko-nt.de F-mail

Neunkirchen Sales Office

Gruben Str 95c 66540 Neunkirchen

Germany

Phone +49 (0)6821-99 98 60 : +49 (0)6821-99 98 626 Fax F-mail : ntdn@iko-nt.de

U.K. Branch

2 Vincent Avenue, Crownhill Milton Keynes, Bucks, MK8 0AB United Kingdom

+44 (0)1908-566144 Phone +44 (0)1908-565458 Fax E-mail sales@iko.co.uk

Spain Branch

Autovia Madrid-Barcelona, Km. 43,700 Polig. Ind. AIDA - Nove A-8, Ofic. 2-1^a 19200 Azugueca de Henares

(Guadalajara) Spain

+34 949-26 33 90 Phone

: +34 949-26 31 13 Fax E-mail : nts@ikonet.co.jp

France Branch

Roissypole Le Dôme 2 rue de La Have

BP 15950 Tremblay en France 95733 Roissy C. D. G. Cedex

France

+33 (0)1-48 16 57 39 Phone : +33 (0)1-48 16 57 46 Fax : contact@iko-france.com F-mail

Recognizing that conservation of the global environment is the top-priority challenge for the world's population. Nippon Thompson will conduct its activities with consideration of the nvironment as a corporate social responsibility, reduce its negative impact on the environment, and help foster a rich alohal environment

ISO 9001 & 14001 Quality system registration certificate

• The specifications and dimensions of products in this catalog are subject to change without prior

 When these products are exported, the exporter should confirm a forwarding country and a use, and in case of falling under the customer's requirements, take necessary procedures such as export

 Although all data in this catalog has been carefully compiled to make the information as complete as possible, NIPPON THOMPSON CO., LTD. shall not be liable for any damages whatsoever, direct or indirect, based upon any information in this catalog. NIPPON THOMPSON CO., LTD. makes no warranty, either express or impiled, including the impiled warranty of merchantability or fitness for a particular purpose

• Reproduction and conversion without permission are prohibited.